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A B S T R A C T  
We consider how the boundary-layer flow induced by a constant temperature 
vertical surface embedded in a porous medium is modified by time-periodic 
variations in the gravitational acceleration. The amplitude of these variations 
is assumed to be small compared with the mean acceleration. An amplitude 
expansion is used to determine the detailed effect of such g-jitter, and the ex- 
pansion is carried through to fourth order. It is  found that the mathematical 
problem has no free parameters when Darcy-flow is assumed; the resulting 
nonsimilar boundary-layer equations are solved using the Keller-box tech- 
nique. The numerical and asymptotic solutions show that the g-jitter effect 
is eventually confined to a thin layer embedded within the main boundary- 
layer, but it becomes weak at increasing distances from the leading edge. 
© 2000 Elsevier Science Ltd 

I n t r o d u c t i o n  

The subject of thermal convection in porous media has attracted considerable attention 

in the last three decades and is now considered to be an important field of study in the 

general areas of fluid mechanics and heat transfer in view of its importance in various 

engineering applications, such as heat transfer associated with storage of nuclear waste, 

exothermic reaction in packed-bed reactors, heat removal from nuclear fuel debris, heat 

recovery from geothermal systems and particularly in the field of large storage systems of 

agricultural products, to name a few applications. The exhaustive volume of work devoted 

to this area is amply documented by the most recent books by Nield and Bejan [1], and 

Ingham and Pop [2]. 

As it is well accepted, the free convection is driven by buoyancy forces resulting from 

both temperature gradient and gravity field. Such forces can arise in a number of ways, 
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for example when a system with density gradients is subjected to vibrations. The result- 

ing buoyancy forces, which are produced by the interaction of density gradients with the 

acceleration field, known as g-jitter, have a complex spatio-temporal structure depending 

on both the nature of density gradients and the spatial and frequency distribution of the 

vibration-induced acceleration field. There is a growing literature which tries to character- 

ize the g-jitter environment, and the review articles by Alexander [3] and Nelson [4] give a 

good summary of the earlier work on the subject. Also papers by Amin [5], Biringen and 

Peltier [6], Biringen and Danabasoglu [7], Alexander et al. [8], Farooq and Homsy [9,10], 

Li [11], and Pan and Li [12] investigate the effect of g-jitter on convective fluid motion 

for a viscous (non-porous) fluid. These studies showed that convection in microgavity is 

related to the magnitude of g-jitter and to the alignment of the gravity field with respect 

to the growth or the direction of the temperature gradient. Several numerical models have 

been used to estimate the adverse effects of time varying g-jitter. The obtained results 

have been used to study the effects associated with both idealized single- and multiple- fre- 

quency g-jitter modulations and realistic g-jitter data calculated by accelerometers during 

real flight experiments. It was found that the frequency, amplitude and spatial orientation 

of the residual gravity vector all play an important role in determining the convective flow 

behaviour of the system. 

However, there have been very limited efforts in the study of g-jitter effects on the con- 

vective flow in porous media. Malashetty and Padmavathi [13] have recently investigated 

the stability of free convection in a horizontal porous layer heated from below assuming 

that the gravitational field has a simple form of the following type: 

g_ ---- gmean (1 q- ~ cos(~t))k (1) 

where g_g_ denotes the time-dependent gravitational field, gmean is the mean gravitational 

field, t is the time, ~ is the frequency of the single-harmonic component of oscillation, e 

is the amplitude of the modulation and _k is the unit vector pointing vertically downward. 

The Brinkman-Forchheimer flow model with effective viscosity larger than the viscosity of 

the fluid has been considered to give a more general theoretical results. A method based 

on small amplitude of the modulation has been used to compute the critical values of the 

Rayleigh number and wave number. It was found that the low-frequency g-jitter can have 

a significant effect on the stability of the system. 

The scope of the present paper is to study the behaviour of the g-jitter induced free 

convection in the boundary-layer over a vertical flat plate embedded in a fluid-saturated 

porous medium. Our objective is to develop a basic understanding of the oscillating flow 

associated with a gravitational field given by Eq. (1) while considering the simple Darcy 

flow model. We use a small-amplitude modulation, e, by considering a regular perturbation 
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expansion of the solutions in e, up to fourth order, to determine the detailed effect of the 

g-jitter on the flow and heat transfer characteristics. 

Governing Equations and Analysis 

The nondimensional equations of motion for two-dimensional convective boundary-  

layer flow in a porous medium are given by 

Cyrt = 0y, ~t =/gy~ + ¢~ ~v - Cy 8~; (2a, b) 

where Darcy's law and the Boussinesq approximation are both assumed to be valid. All the 

variables in (2a) and (25) have been nondimensionalised as in Riley and aees [14]. Here, 

x is the coordinate along the upward-facing heated horizontal surface which is maintained 

at a nondimensional temperature 8 = 1. Far from the heated surface 8 ~ 0 and the 

nondimensional streamfunction is taken to be zero on the heated surface y = 0. The 

basic steady boundary layer flow was first given by Cheng & Minkowycz [15] in terms of a 

similarity solution. They found that 

¢ ,,~ xl/2f(rl) ,  0 ~ g(~), (3) 

where the similarity variable, r/, is defined as 7/= y / x  1/2. 

In this paper we assume that  the force due to gravity varies sinusoidally in time but 

with a small relative amplitude, as given by Eq. 1. Thus Eq. (2a) must be replaced by 

Cyy = (1 + ecos wt)lgy, (4) 

where w is a nondimensional frequency, and, given the t ime-dependent forcing, we set 

¢ ~ xl /2f(r l , t ) ,  t~ ~ g(rl, t), (5) 

where f and g satisfy the equations 

f " = g ' ( l + , c o s ( w t ) ) ,  g " +  l f g ' = x ( f ' g ~ - f z g ' ) + x g t .  (6a, b) 

Here primes denote derivatives with respect to r/ and the t and x subscripts represent 

derivatives with respect to those variables. The boundary conditions required to complete 

the specification of the mathematical problem are that 

f = 0 ,  g = l  a t r / = 0  and f * , g ~ O  as y ~ o o .  (7) 

We note that  Eq. (6a) may be integrated once with respect to 77 to reduce the system to 

third-order. 
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The solution of Eqs. (6) and (7) may be found by first using the t ransformations,  

= ~t, ~ = .~x, (8) 

which removes w from the governing equations. Now f is expanded in the following power 

series: 

f = f0 + e[flc cos r + f~s sin r] + e 2 [f2 + f2c cos 2r  + f2~ sin 2r] 

+e3[f3clCOST + faslsin~-+ f3caCOS3T + f 3 s 3 s i n 3 v ] + e 4 [ f 4 + . . . ] + .  , (9) 

together  with one of identical form for g. All the f - t e r m s  in (9) are functions of r~ and 

only. After subst i tut ion of this power series into the governing equations we obtain the 

following 

f ;  = g o  f ~ c = g l c - t - g o  f l s  = g l ,  ( lOa ,  b , c )  

1 1 1 (lOd, e , f )  f~ = g 2 + g g l c  )~c =g2c + gglc f£s=g2s  + ~gls 

1 1 (lOg, h) f~d  =g3~l  +g2  +7g2c  f ~ l  =g3~1 + ~g~s 

' (10i , j )  f~c3 = g3c3 + ~g2c f3s3 = g3s3 + 7g2~ 

' (lOk) f~ = g4 + 793cl 

In Eqs. 

It 1 ,' 
go +~ fgo  =0 ,  

tl ic 
g i ~ + £ % + C o  = ~ g ~  

,, +£% gls = --~glc 
tt 1 (plc l s  2 

H + £ 0  c .~_ l { r l c  ls  2c 
g2c 7 ~ 1 c  - £1~) + £ o  = 2~g2~, 

II + f__O s + 1 (Flc Is £ 2 s  

It _{_ £30cl _~_ 1 { F l c  I s  lc 1 {F2c 

II 1 { F l c  
g3sl  + £Osl  + ~t,~'2s 

tt 1 ( r lc  
g3c3 + £0c3 + 7 \ ~ 2 c  

tt 1 ( t i c  

tt  _~ £ 0  4 ~_ 1 (r lc  
g4 ~ 3 ~ 1  + 

l s  is  1 { r2c  

- + £ } ;  - + 

2s + + + £,¢) + 

ls  1 { f'2c £3~1) + f~ + ~ - 2 c  + 

2s £3cl 
+ £ , s )  + £~c + = ~g3.,,  

2s ~03sl + £ , c )  + £21. + = -~g3c , ,  

£0 a~3 = 3~g3~3, 

£0 3~3 ---- -3~g3~3, 
r 3 c l  r 3 s l  ~ £ 2 s  ~_ ~ ' lc  -+- ~ l s  ] '+ £1~ O. 

(10) and (11) the notat ion £ is defined according to 

c =lSog;- (s :°gb 0Sog;) 
o~ a~ ' 

( l l a )  

( l l b )  

(11c) 
( l l d )  

(l ie) 

(11f)  

(11g) 
(11h) 
(11i) 

( l l j )  
(11k) 

(12) 

and we note tha t  Eq. ( l l a )  may also be wri t ten in the form, g~' + £0 = 0, al though the 

solutions at O(1) are independent  of ~. 
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Of most interest to engineers is the t ime-averaged rate of heat transfer, and therefore 

the sinusoidal components of the solution for g are not relevant for this purpose. Thus the 

t ime-averaged rate of heat transfer may be obtained from 

= go(O) + + + (13) 

From this expression we can determine by how much the g-j i t ter  effect has changed the 

overall rate of heat transfer. 

according to 

If we define Q(~) as a sealed global rate of heat transfer 

~l/2f0'0~y0 = ° Q(~) = T dx (14a) 

then it may be shown that 

1 foo¢(g~o +e2g~ +e4g~) dx -Oo(~)+e:O2(()+e4Q4(~), Q(~) = 2 x 1/2 / ,~-0 
(14b) 

where the terms Q0, Q2 and Q4 are defined by comparing like coefficients of e. Clearly 

Q0 = -0.44376x 1/2, and both Q2 and Q4 need to be computed. 

Numer ica l  Resul ts  

The solutions of Eqs. (10a) and ( l l a )  are now very well known, and the solution 

curves may be found in [15]. The whole system (10) and (11) comprises a set of parabolic 

partial differential equations which were solved using the Keller-box method [16]. Details 

of the method may be found in many recent publications, and here we have used the 

semi-automatic procedure outlined in Rees [17]. All the results quoted here were obtained 

using uniform grids in both the f and y directions; we took 400 intervals to cover both 

0 < x < 40 and 0 < q < 20. We found that the accuracy of the solutions at increasing 

powers of e became poorer and therefore this level of grid refinement was essential to be 

able to compute the solutions correctly to at least four significant figures. 

As expected, the leading order solutions are independent of ~ and we obtain the leading 

order rate of surface heat transfer g~(0) = -0.44376, which is in error only in the fifth 

decimal place. The variation of the O(e) rates of heat transfer, g~c(0) and g~(0),  are given 

in Fig. 1. We see quite a marked variation in heat transfer with ( at positions fairly close 

to the leading edge, but the heat transfer decays in an oscillatory fashion as ( increases. 

This situation is similar to that described by Hossain et al [18] where forced convection 

with an temporally oscillating free stream was shown to yield solution curves exhibiting 

decaying spatial oscillations. A detailed examination of the O(e) profiles (not shown for 

the sake of brevity) indicates that the main contribution to the temperature field takes 
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FIG. i. 
The computed O(~) rates of heat of transfer, ~L(0) and ~L(0), as 
functions of ~, together with the corresponding asymptotic solutions. 

place within a narrow region close to the surface as ~ becomes large; this observation forms 

the basis of the asymptotic analysis summarised in the next section. 

At O(e2), and at higher orders, the detailed rate of heat transfer curves exhibit the 

same type of behaviour in that they display an overall decay with decaying oscillations 

superimposed. As the functions g2c2, g2s2, and all the O(e 3) functions represent variations 

which average out to zero over time (see eq. (9)), we omit presentation of these for the 

sake of brevity. Therefore, in Figs. 2 and 3, we display the respective variations with 

of the time-independent terms, g~(0) and g~(0), as these provide the mean correction to 

rate of heat transfer in the absence of the g-jit ter effect. Once more, these values decay as 

increases, although the oscillatory component is more complicated for the fourth order 

term than those shown in Fig. 1 due to the nonlinear interaction of the O(e) and higher 

order solutions. 

A s y m p t o t i c  analys is  

Here we provide a brief analysis of the behaviour of the O(e) solutions at large distances 

from the leading edge. It proves convenient firstly to cast equations (10b), (10c), (11b) 

and ( l lc )  in complex form by setting f l  = f l c  -4- i f l~  and gl = glc  + ig ls .  We obtain 

i I I I I 
/~ gl "~- go, g~' "~- ~( /Ogl  AV f l g 0 )  = i~g l ,  : ~ ( fog l~  -- / l~gO)  --  (15a ,  b) 
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FIG. 2. 
The computed O(e 2) local rate of heat of transfer, g~(0) (solid line) 
and global rate of heat transfer, Q2 (dashed line), as functions of ~. 10"311 ~ 
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FIG. 3. 
The computed O(e 4) local rate of heat of transfer, g~(0) (solid line) 
and global rate of heat transfer, Q4 (dashed line), as functions of (. 
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subject to f l  = gl = 0 at 7? = 0 and gl --+ 0 as 7] ~ (~3. The presence of a thin near-wall 

layer reflects the increasing size of the final term in Eq. (15b) and the need to balance its 

magni tude with the second derivative term. Mathematically this leads to r / =  O(~-1/2) in 

the near-wall layer, which, given the definition of r], means that  y is the natural  variable 

to use and that  the near-wall layer is of uniform thickness. In the outer (i.e. main) and 

inner (near-wall) layers we expand the solutions using series of the form, 

f l  = E Fn(r/)~-n/2'  f l  = E ' T n ( Y ) ~ - ' ~ / 2 '  (16, 17) 
n ~ 0  n ~ 0  

respectively. Given constraints of space we omit the details of the analysis, which utilises 

the method of matched asymptotic  expansions and which is straightforward though lengthy. 

We obtain the following solutions for the outer region, 

FO = fo F 1 = 0 ['2 = i(a - f;') F3 = 0 

1 ! [ ~  a2 
F4 7a[f; - 1] - J0 I;'(¢)f;'(¢) de Fs = ~--~(1 + i) (18) 

/0 /0 • [ [ 3 I I I  I I I  I I  I I  I I I  I I  
F a = z  i a [ f ; - l l - f ; f ;  + ~ f ;  f ; ( ~ ) f ; ( ~ ) d ~ - 3  f ; ( ( ) f ; ( ( ) f ~ ( ( ) d ~  

and for the inner region, 

5Vo=O 9vl y .T2= 1 2 ai 2 a 4 = gay ,7:3 = 0 IT4 = --~y -- -~y  

,T~ = - - -~y  a2 + -~yia2 3 _ _~y~a2 + a2(12v~ "~ i).[1 --e -(1-i)y/x/~]. (19) 

ia 4 a 6 78 = - ~  + -6g-dy 

In (18) and (19) the constant a is defined as 

a = -0.44376 = g;(0). (20) 

The surface rate of heat transfer may now be obtained using the solutions given in (19) 

and we find that  

~--- ,! - - n / 2 + l  a// :-1 _ a2( 1 -- i)~-3/2 02fl ~=o ~ 27z~ y=0 ~ = a + 2 ~ 2 v ~  + O(~-5/2). (21) 
0r]2 ,=0 

Given that  g~(r] = 0) = f['(r] = 0) - a, then we obtain 

aiE-1 _ a2( 1 - i) ~-3/2 
Oglor] ,=0 = 2 "  2x/2 + O(~-~/~). (22) 

This formula is compared with the numerical solutions shown in Fig. 1 and is found to be 

in excellent agreement if allowance is made for the decaying oscillations. 
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It is clear from Fig. 1 that further work should be undertaken to determine how 

the numerical solution at O(e) approaches the asymptotic solution. A careful numerical 

assessment of the difference between the numerical and the asymptotic solutions indicates 

that the waviness corresponds to the presence of an complex exponential solution of the 

homogeneous form of the O(e) equations; it is hoped to report on this aspect in further 

work. 

D i s c u s s i o n  

We have considered how vertical free convection in a porous medium is affected by 

small-amplitude variations in the force of gravity about its mean value. The nonsimilar 

boundary layer equations were solved to fourth order in e in order to determine the mean 

corrections to the surface rate of heat transfer. It was found that these corrections are 

significant relatively close to the leading edge, but that their effect wanes further down- 

stream. An asymptotic analysis was also provided which supplements the O(e) numerical 

solution. 
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