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Abstract. In this paper, we consider the unsteady free convection boundary layer flow which
is induced by time-periodic variations in the surface temperature of a vertical surface embedded
in a porous medium. The basic steady flow is that of a power-law distribution where the surface
temperature varies as thenth power of the distance from the leading edge. Small-amplitude time-
periodic disturbances are added to this basic distribution. Both the low- and high-frequency limits
are considered separately, and these are compared with a full numerical solution obtained by using
the Keller-box method. Attention is restricted to the casesn 6 1; whenn = 1, the flow is locally
self-similar for any prescribed frequency of modulation.
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Nomenclature

At amplitude.
g acceleration due to gravity.
i

√−1.
K permeability of the porous medium.
L characteristic length of the plate.
n surface temperature exponent.
Nu local Nusselt number.
Ra Rayleigh number.
Rax local Rayleigh number.
t nondimensional time.
T temperature of the fluid.
Tref reference temperature.
1T temperature difference.
u, v nondimensional velocity components alongx, y-axes.
x nondimensional vertical coordinate.
y nondimensional horizontal coordinate.

Greek letters
α effective thermal diffusivity.
β coefficient of thermal expansion.
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ε small constant.
η similarity variable.
ζ transformed coordinate.
θ dimensionless temperature.
ν kinematic viscosity.
ξ frequency variable or parameter.
σ ratio of heat capacity of saturated porous medium to that of fluid.
φ phase angle.
ψ nondimensional streamfunction.
ω nondimensional frequency.

Superscripts
− dimensional variables.
′ differentiation with respect to eitherη or ζ .

Subscripts
0 mean steady condition.
w wall condition.
∞ ambient condition.

1. Introduction

Convective heat transfer through porous media has been a subject of great interest
for the last three decades. An upsurge in research activities in this field has been
accelerated because of a broad range of applications in various disciplines, such as
geophysical, thermal and insulation engineering, the modelling of packed sphere
beds, the cooling of electronic systems, groundwater hydrology, chemical catalytic
reactors, grain storage devices, fiber and granular insulation, petroleum reservoirs,
coal combustors, and nuclear waste repositories.

Since the pioneering work of Cheng and Minkowycz (1977) on boundary-layer
free convection from a vertical flat plate embedded in a fluid-saturated porous
medium this configuration model has been progressively refined to incorporate
various boundary conditions, inertial effects, conjugate heat transfer effects, lay-
ering, etc. The work of Cheng and Minkowycz (1977) and Johnson and Cheng
(1978) were especially noteworthy as they introduced the mathematical technique
of boundary-layer theory into the subject and identified similarity solutions of the
governing equations. The existence and identification of similarity solutions have
been central to a number of further developments, particularly in the examination
of free convection resulting from the use of Darcy’s law. Several comprehensive
reviews and books of the literature pertinent to this area are due to Cheng (1978),
Bejan (1987), Tien and Vafai (1990), Nakayama (1995), Kimuraet al. (1996) and
Nield and Bejan (1998).

In unsteady free convection boundary-layer theory of a viscous (clear) fluid
along a vertical heated surface, one area of study which has received much at-
tention in the past is the response of the boundary-layer to imposed time-periodic
oscillations (Nanda and Sharma, 1963; Merkin, 1967; Kelleher and Yang, 1968;



TIME-PERIODIC SURFACE TEMPERATURE OSCILLATIONS ON FREE CONVECTION 121

and Yanget al., 1974). Since non-uniform surface temperature variations are more
likely to occur physically than are steady surface temperatures, it is important
to determine the extent to which unsteady mean surface temperatures affect the
boundary-layer flow. In the present paper, a linearized theory is used to study how
the porous medium vertical free convection boundary-layer responds to small-
amplitude time-dependent surface temperature oscillations. We use a power-law
distribution of surface temperature as the basic steady temperature profile about
which we introduce time-dependent perturbations. Detailed numerical solutions
are presented for cases with a power-law exponent,n < 1; in these cases the flow
is non-similar and numerical solutions are obtained using the Keller-box method.
These solutions are supplemented by asymptotic solutions for both small and large
distances from the leading edge (which are equivalent to low and high frequency
limits, respectively). Whenn = 1 the unsteady response is locally self-similar and
solutions in this case are obtained from solving the governing ordinary differential
equations with the distance from the leading edge (or frequency) as a parameter.

2. Basic Equations

Consider a vertical heated surface with variable wall temperatureTw(x̄, t̄ ) em-
bedded in a fluid-saturated porous medium of uniform ambient temperatureT∞.
A rectangular Cartesian coordinate system is chosen with the origin fixed at the
leading edge of the surface, such that thex̄-axis is directed upwards along the wall
and theȳ-axis is measured normal to the surface into the porous medium. With the
usual boundary-layer and Darcy–Boussinesq approximations, the unsteady thermal
and velocity fields adjacent to the surface are described by the following equations
(see Inghamet al., 1982):

∂ū

∂x̄
+ ∂v̄
∂ȳ
= 0, (1)

ū = gKβ

ν
(T − T∞), (2)

∂ū

∂t̄
+ ū∂ū

∂x̄
+ v̄ ∂ū

∂ȳ
= α ∂

2ū

∂ȳ2
, (3)

whereū, v̄ are the Darcian velocity components along thex̄ and ȳ direction;g is
the acceleration due to gravity;K is the the permeability of the porous medium;
ν is the kinematic viscosity;β is the thermal expansion coefficient of the fluid;T
is the temperature of the fluid and the porous medium which are in local thermal
equilibrium andα is the thermal diffusivity.

The boundary conditions are given as below:

t = 0: v̄ = 0, T = T∞ for ȳ > 0,

y = 0: v̄ = 0, T = Tw(x̄, t̄ ),

y →∞ : u = 0, T = T∞.
(4)
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Now we introduce the following nondimensional variables:

t =
(
αRa

σL2

)
t̄ , x = x̄

L
, y = Ra1/2ȳ

L
,

ψ = ψ̄

αRa1/2, θ = T − T∞
1T

,

(5)

whereθ is the nondimensional temperature, andψ is the nondimensional stream-
function which is defined in the usual way, namely,u = ∂ψ/∂y andv = −∂ψ/∂x,
with u and v being the nondimensional velocity components along thex- and
y-axes, respectively;1T = Tref − T∞ is the temperature difference and Ra=
gKβ1T L/αν is the Rayleigh number for porous medium flows.

Introducing the above transformations into the Equations (1)–(3) we get

∂ψ

∂y
= θ, (6)

∂2ψ

∂t∂y
+ ∂ψ
∂y

∂2ψ

∂x∂y
− ∂ψ
∂x

∂2ψ

∂y2
= ∂3ψ

∂y3
. (7)

The corresponding boundary conditions given in (4) then become

y = 0: ψ = 0, θ(x, t) = ∂ψ

∂y
= θw(x)Re

[
1+ ε exp(iωt)

]
,

y →∞ :
∂ψ

∂y
→ 0, θ → 0,

(8)

whereθw(x) is an as yet unspecified real function ofx, ε is a small constant andω
is the nondimensional frequency.

Based on the linearized theory for smallε (i.e. a Taylor series expansion inε),
solutions to Equations (6) and (7) are taken to be of the form

ψ = ψ0(x, y) + εψ1(x, y)exp(iωt)+ · · · (9)

whereψ0 is the steady solution when the plate temperature is maintained atθw(x).
When (9) is substituted in Equation (7), and terms of O(1) and O(ε) collected
together, we obtain

∂ψ0

∂y

∂2ψ0

∂x∂y
− ∂ψ0

∂x

∂2ψ0

∂y2
= ∂3ψ0

∂y3
(10)

subject to

y = 0: ψ0 = 0,
∂ψ0

∂y
= θw(x)

y →∞ :
∂ψ0

∂y
→ 0.

(11)
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and

iω
∂ψ1

∂y
+ ∂ψ0

∂y

∂2ψ1

∂x∂y
− ∂ψ0

∂x

∂2ψ1

∂y2
+ ∂ψ1

∂y

∂2ψ0

∂x∂y
− ∂ψ1

∂x

∂2ψ

∂y2
= ∂3ψ1

∂y3
(12)

along with

y = 0: ψ1 = 0,
∂ψ1

∂y
= θw(x)

y →∞ :
∂ψ1

∂y
→ 0.

(13)

It is known from Cheng and Minkowycz (1977) that similarity solutions for Equa-
tion (6) are possible when the surface temperature takes the power-law form:

θw(x) = xn. (14)

The case,n = 0, corresponds to a uniform surface temperature andn = 1/3
represents the case of uniform surface heat flux. However, the case,n = 1/3, does
not correspond to uniform heat flux at O(ε). The leading order similarity solutions
are given by

ψ0 = 21/2x(n+1)/2F(η), η = 2−1/2x(n−1)/2y, (15)

whereF satisfies the ordinary differential equation

F ′′′ + (n+ 1)FF ′′ − 2nF ′2 = 0, for n > −1 (16)

with the boundary conditions

F(0) = 0, F ′(0) = 1, F ′(∞) = 0, (17)

and primes denote differentiation with respect toη. Solutions of Equation (16)
satisfying the boundary conditions (17) are entered in Table I for different values
of the exponentn.

The transformation (15) suggests that the most convenient form forψ1 is

ψ1 = 21/2x(n+1)/2f (ξ, η), (18)

where

ξ = (2ω)x1−n, (19)

Table I. Values of−F ′′(0) for different values ofn

n 0.0 0.25 0.5 0.75 1.0

−F ′′(0) 0.6277 0.8861 1.0894 1.2618 1.4142
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may be regarded either as a scaled frequency variable or as a scaled distance from
the leading edge. Thus, whenn < 1, small values ofξ correspond either to low
frequencies or small distances from the leading edge. Substituting (18) and (19)
into Equation (12), we obtain

f ′′′ + (n+ 1)Ff ′′ − (iξ + 4nF ′
)
f ′ + (n+ 1)F ′′f

= 2(1− n)ξ
(
F ′
∂f ′

∂ξ
− F ′′ ∂f

∂ξ

)
, (20)

subject to

f (ξ,0) = 0, f ′(ξ,0) = 1, f ′(ξ,∞) = 0. (21)

3. Solution for n = 1n = 1n = 1 at any Prescribed Frequency

In this case, the independent variableξ in (19) reduces to a constant which depends
only on the frequencyω. Thus, Equation (20) reduces to

f ′′′ + 2Ff ′′ − (iξ + 4F ′)f ′ + 2F ′′f = 0, (22)

subject to

f (0) = 0, f ′(0) = 1, f ′(∞) = 0, (23)

which is a complex ordinary differential equation with the real independent vari-
ableη. Also, forn = 1, Equation (16) has the solution

F(η) = 1√
2

(
1− e−

√
2η
)
, (24)

which givesF ′′(0) = −√2 and this agrees precisely with the numerical solution
of (12); see Table I.

Equation (22) appears not to have an analytical solution and it has therefore
been integrated numerically for a wide range of values ofξ . We note that when
ξ is large, the solutions of (18) decay exponentially with leading order behaviour
f ′ ∝ 1− exp[−(1+ i)2−1/2ξ1/2η] for fixed values ofξ . Thus, the leading order
time-dependent solution is confined to a thinning region near the heated surface as
ξ is increased.

4. Solutions forn < 1n < 1n < 1 at any Prescribed Frequency

The partial differential Equation (16) can be solved using the local nonsimilarity
methods which have been employed successfully in a similar oscillating flow prob-
lem presented by Hossainet al. (1998). However, the convergence of this method
usually becomes increasingly difficult for larger values ofξ . Therefore, we have
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integrated Equation (16) forn = 0,1 and 0.5 using the Keller-box method (Keller,
1978), a method that has been shown to be particularly useful for a wide variety of
parabolic equations.

4.1. SERIES SOLUTION FOR LOW FREQUENCIES ANDn < 1

In this case, we assume thatf can be described in terms of a power series inξ of
the form

f (ξ, η) =
∞∑
m=0

(2iξ)mfm(η). (25)

Substituting (25) into (20) and equating coefficients of like powers of (2iξ ), we
get the following ordinary differential equations:

f ′′′0 + (n+ 1)Ff ′′0 − 4nF ′f ′0+ (n+ 1)F ′′f0 = 0,

f0(0) = 0, f ′0(0) = 1, f ′0(∞) = 0
(26)

and

f ′′′m + (n+ 1)Ff ′′m + [2m(n − 1)− 4n]F ′f ′m +
+ [(n+ 1)− 2m(n− 1)]F ′′fm = 1

2f
′
m−1,

fm(0) = f ′m(0) = f ′m(∞) = 0, (27)

wherem = 1,2,3, . . . . Solutions of the above set are obtained using the Runge–
Kutta method and terms up tom = 6 have been used. The resulting solutions are
shown in Figures 1 and 2 in terms of amplitude and phase of rate of the heat transfer
(defined in (41), below) at the surface of the plate.

Figure 1. Amplitude of rate of heat transfer for different values ofn.
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Figure 2. Phase angle of rate of heat transfer for different values ofn.

We note that the solution of Equation (26) is given by

f0 = 1
2(F + ηF ′). (28)

When the frequency of oscillation is small (ξ � 1) the flow is given quite accur-
ately by the quasi-steady-state theory. Indeed, it is straightforward to show that the
right-hand side of (28) is precisely the O(δ) part of the solution of (16) subject to
the boundary conditions,F(0) = 0, F ′(0) = 1+ δ, F ′(∞) = 0, when expanded
for smallδ.

4.2. ASYMPTOTIC SOLUTION FOR HIGH-FREQUENCY ANDn < 1

When the frequency of surface-temperature oscillation becomes very high, the
boundary-layer response should be confined to a very thin region adjacent to the
surface. Indeed, as the frequency approaches infinity, the solution tends to be inde-
pendent ofx similar to the shear-wave solution in the corresponding forced-flow
problem for a viscous (clear) fluid, and the thickness of the unsteady region is
approximately the same as the thermal penetration depth in a periodically heated
solid, that is the thermal equivalent to a Stokes layer. To obtain the asymptotic
solution for large frequencies we introduce the transformation

f = ξ−1/2G(ξ, ζ ), ζ = ξ1/2η. (29)

From (15) and (19) we can see thatζ is proportional toy for any fixed frequency.
Equation (16) thus becomes

G′′′ − iG′ + ξ−1/2 [(n+ 1)FG′′ − 4nF ′G′ + 2nF ′′G
]

= 2(n− 1)
[
ξ1/2

(
f ′G′ξ − F ′′Gξ

)+ 1
2ξ
−1/2ζ

(
f ′G′′ − F ′′G′)] , (30)
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subject to the boundary conditions

ζ = 0: G = 0, G′ = 1,

ζ →∞ : G′ → 0,
(31)

where primes now denote differentiation with respect toζ .
Since high frequencies are considered here, only the region immediately next

to the surface is affected. Consequently, the functionF can be represented in this
region as

F = η + a1η
2+ a2η

3+ a3η
4+ · · ·

= ξ−1/2ζ + a1ξ
−1ζ 2+ a2ξ

−3/2ζ 3+ a3ξ
−2ζ 4+ · · · , (32)

where according to Equations (16) and (17), the constantsa1, a2, . . . are given by

a1 = (1
2)F

′′(0), a2 = 1
3n, a3 = 1

12(3n− 1)F ′′(0). (33)

Based on the presence ofξ−1/2 terms in (30) and (32), the solution of Equation (30)
may be obtained in the form

G =
∞∑
m=0

ζ−m/2Gm(ζ ). (34)

On substituting (34) into Equation (30) and collecting terms of like powers ofξ ,
we obtain

G′′′0 − iG′0 = 0, G′′′1 − iG′1 = 0, G′′′2 − iG′2 = 4nG′0− 2nζG′′0,
G′′′3 − iG′3 = (1− 3n)a1ζ

2G′′0 − 2(1− 5n)a1ζG
′
0− 4na1G0−

−2nζG′′1 − (1− 5n)G′1

(35)

with the boundary conditions

G0(0) = 0, G′0(0) = 1, G′0(∞) = 0,

Gm(0) = G′m(0) = G′m(∞) = 0,
(36)

for m = 1,2,3 . . . . The closed-form solutions of these equations are

G′0 = exp

(
−1+ i√

2
ζ

)
,

G′1 = 0,

G′2 = −
1

2

[
5n(1− i)√

2
ζ + nζ 2

]
exp

(
−1+ i√

2
ζ

)
, (37)

G′3 =
a1

2

[
3(7n− 1)i

2
ζ − (13n − 3)(1− i)

2
√

2
ζ 2− 3n− 1

3
ζ 3

]
×

×exp

(
−1+ i√

2
ζ

)
.
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5. Results and Discussion

As previously indicated, numerical solutions forn = 1 of Equations (22) and (23)
have been obtained for a wide range of the frequency parameterξ . Also, numerical
solutions of Equations (16) and (20) have been obtained forn = 0, 0.5.

Once these results are known, it is then a simple matter to determine the re-
sponse characteristics of the laminar boundary-layer in the present problem. The
determination of surface rate of heat transfer is of primary importance and it may
be conveniently expressed in terms of the local Nusselt number as

Nu= − x̄

1T

(
∂T

∂ȳ

)
ȳ=0

(38)

Therefore, we obtain the expressions,

Nu

(2Rax)1/2
= −



F ′′(0)+ εf ′′(ξ,0)exp(iωt) n = 1, any ξ

F ′′(0)+ ε
[ ∞∑

0

(2iξ)mf ′′m(0)

]
exp(iωt), n < 1, small ξ

F ′′(0)− ε
[

1+ i√
2
ξ1/2+ 5n(1− i)

2
√

2
ξ−1/2−

−3(7n− 1)i

4
a1ξ
−1

]
exp(iωt), n < 1, large ξ,

(39)

where Rax = gκβ1T x̄n+1/αν is the local Rayleigh number.
It is convenient to rewrite expression (39) collectively as follows:

Nu

(2Rax)1/2
= −F ′′(0)+ ε {Ar(ξ)+ iAi(ξ)}exp(iωt), (40)

whereAr(ξ) andAi(ξ) are respectively the real and imaginary parts off ′′(ξ,0).
Thus, the amplitudeAt(ξ) and phase angleφt (ξ) of the rate of heat transfer can
easily be calculated from

At =
√
A2

r + A2
i , φt = tan−1

(
Ai

Ar

)
. (41)

Results are presented graphically in Figures 1 and 2. These figures display the
results for amplitude and phase obtained for both the low and high frequency ana-
lyses. These results compare very favourably with the numerical solutions obtained
using the Keller-box method. The results correspond to the following values of the
temperature exponent,n = 0, 0.5, 1. From Figure 1 we observe that the amplitude
of the local Nusselt number increases in the low frequency range asn increases.
The amplitude increases to a single asymptote for largeξ for all values of the
exponent.
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Figure 2 illustrates the variation of the phase angle of the local Nusselt number
for the different values ofn. It is seen that in the intermediate range of values ofξ ,
the phase angle of the local Nusselt number decreases due to increases in the value
of the temperature exponentn. We further observe that it reaches the asymptotic
valueπ/4 as the frequency parameterξ becomes asymptotically large.

6. Conclusions

In this paper, we have determined the heat transfer response of a laminar free
convection boundary-layer along a vertical heated surface embedded in a fluid
saturated porous medium to time-periodic surface temperature oscillations, when
the mean surface temperature varies as a powern of distance from the leading
edge. Detailed small-ξ and large-ξ analyses have been described and a full numer-
ical solution presented which covers the flow at intermediate values ofξ . When
n = 1 the leading order steady state solution is given analytically, whereas, for
other values ofξ the self-similar solutions have to be obtained numerically. We
can make the following general observations from the detailed results:

1. At intermediate values ofξ the amplitude of the local Nusselt number in-
creases as the surface temperature exponent increases, but the phase of the
Nusselt number decreases.

2. There is always a phase lead for all frequencies of oscillation. But the phase
lead always increases asξ increases and approaches the common asymptotic
value ofπ/4. The amplitudeAt becomes proportional toξ1/2.

Finally, we note that our analysis has been concerned with flow from a semi-
infinite surface and the characteristics described here are in some respects unlike
those found in cavity flows. Lage and Bejan (1993) discussed the effects of a
pulsating heat flux on a sidewall of a square cavity, and found that a resonance
effect arises which maximises the heat flux through the central part of the cavity
itself. This effect would seem to be dependant on having other bounding surfaces
in order to obtain a basic recirculating flow in the absence of pulsations. Such a
phenomenon is unlikely to arise in the present problem which describes flow in an
infinite domain.
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