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COMBINED EFFECT OF INERTIA AND A
SPANWISE PRESSURE GRADIENT ON FREE
CONVECTION FROM A VERTICAL SURFACE
IN POROUS MEDIA
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The free convective boundary layer flow induced by a uniform temperature semi-infinite

vertical surface embedded in a porous medium is considered. Particular attention is paid to
( )how inertial effects form drag or Forchheimer combine with a spanwise pressure gradient

to affect the otherwise two-dimensional flow. The resulting flow is three-dimensional but

self-similar. The boundary layer equations are supplemented by an algebraic equation

governing the magnitude of the spanwise velocity field. The modifications required to solve

this problem using the Keller box method are described. It is found that inertial effects serve

to inhibit the spanwise flow near the heated surface.

INTRODUCTION

In recent years, interest has developed in the study of natural convection flow

in porous media from the surface of various configurations. The first studies were

w xby Cheng and Minkowycz 1 for a vertical heated surface and by Cheng and Chang

w x2 for a horizontal surface; in both cases the boundary layer flow is self-similar

when the surface has a power law surface temperature distribution. Later,

w xMinkowycz and Cheng 3 studied the nonsimilar natural convection flow induced
by a vertical heated cylinder embedded in a saturated porous medium using a local

w xsimilarity method. Subsequently, Merkin 4 reinvestigated the problem posed by

w xMinkowycz and Cheng 3 using an implicit finite difference method, a series

expansion method near the leading edge, and an asymptotic analysis far down-

stream; their analysis was extended to power law surface temperature distributions

w xby Bassom and Rees 5 . However, all these studies were confined to the Darcy
flow case only. Extensions to non-Darcy flow using the Forchheimer model of form

drag have been undertaken for all of the above configurations. Plumb and

w x w xHuenefeld 6 considered vertical boundary layer flow, while Rees 7 and Hossain

w x w xand Rees 8 studied a horizontal surface, and Ingham 9 investigated boundary

layer flow over axisymmetric and two-dimensional bodies of arbitrary shape.

Received 22 July 1998; accepted 15 May 1999.

The authors would like to thank one of the referees for comments that improved the presenta-

tion of this work.

Address correspondence to Dr. D. A. S. Rees., Department of Mechanical Engineering, Univer-

sity of Bath, Claverton Down, Bath, BA2 7AY UK.

725



D. A. S. REES AND M. A. HOSSAIN726

NOMENCLATURE

s .A, B, C, D,E coefficients defined in Eq. 15 x vertical coordinate

f, F scaled stream function y horizontal cross-stream coordinate

g, G temperature z horizontal spanwise coordinate

g gravity a effective thermal diffusivityÄ
Gr Grashof number b volumetric coefficient of isobaric

K permeability thermal expansion
Ä s .K inertia parameter D T temperature drop s T y T1 0

L representative length scale z scaled similarity variable

p pressure h similarity variable

q fluid flux speed u temperature

Ra Darcy-Rayleigh number m viscosity

S scaled spanwise pressure gradient r density

T temperature c stream function

T temperature of ambient medium0

T temperature of heated surface1

u vertical flux velocity

v horizontal cross-stream flux Superscripts

velocity

w horizontal spanwise flux velocity boundary layer variables

W scaled horizontal spanwise ) dimensional variable s

flux velocity

For a more complete understanding of transport phenomena in a porous

medium, the influence of surface mass flux on Darcian free convection boundary

layer flow along both vertical and horizontal surfaces was studied by Minkowycz et

w x w x w xal. 10 . Lai and Kulacki 11 and Kumari et al. 12 investigated the self-similar and

nonsimilar solutions, respectively, for non-Darcy mixed convection flow on a

horizontal surface with power law surface temperature with the further influence

w xof surface mass flux. On the other hand, Hossain and Nakayam a 13 investigated

the combined effects of the surface mass flux, variable wall temperature, and

porous inertia on heat transfer from a vertical cylindrical surface due to non-Darcy

w xfree convective flow. Hossain et al. 14 investigated non-Darcy forced convection

boundary layer flow over a wedge placed in a saturated porous medium. In Ref.

w x14 , three separate methodologies were employed to solve the governing equa-
tions, namely, a series expansion method, the local nonsimilarity method, and an

implicit finite difference scheme. All of these papers dealt with the effects of

w xsurface suction, but Merkin 15 also considered how the vertical boundary layer is

modified by surface blowing.

In the present paper the free convective boundary layer flow induced by a

uniform temperature semi-infinite vertical surface embedded in a porous medium
sis considered. Particular attention is paid to how inertial form drag or Forch-

.heimer effects combine with the presence of a spanwise pressure gradient to affect

the otherwise two-dimensional flow. The resulting flow is three-dimensional but

self-similar and not dependent on the spanwise variable . The boundary layer

equations are supplemented by an algebraic equation governing the magnitude of

the spanwise velocity field. The modifications required to solve this problem using
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the Keller box method are described. It is found that inertial effects serve to inhibit

the spanwise flow near the heated surface.

EQUATIONS OF MOTION

A vertical semi-infinite surface is held at the uniform temperature T and is1

embedded in a fluid-saturated porous medium with ambient temperature T , where0

T ) T . The steady, three ] dimensional equations of motion and energy transport1 0

are given by

U U U s .u q v q w s 0 1ax* y* z*

UÄ s . w s . x s .u* 1 q K r r m q* s y K r m p y r g b T y T 1bÄs . x* 0

UÄ s . s .v* 1 q K r r m q* s y K r m p 1cs . y*

UÄ s . s .w* 1 q K r r m q* s y K r m p 1ds . z*

s . s .u*T q v*T q w*T s a T q T q T 1ex* y* z* x*x* y*y* z*z*

2 2 2X s . s . s .where subscripts denote partial derivatives and q* s x* q y* q z* . In
s .writing Eqs. 1 , it is assumed that the Boussinesq approximation is valid, that

boundary effects as modeled by the Brinkman terms are absent, and that the fluid

and porous matrix are everywhere in local thermodynamic equilibrium. In the

above, x* is the vertical coordinate, y* is the horizontal coordinate perpendicular
s .to the heated surface cross-stream , z* is the horizontal coordinate parallel to the

s .surface spanwise , and u*, v*, and w* are the corresponding fluid flux velocities
s i.e., macroscopic velocities resulting from averaging the detailed microscopic

.velocity field over a suitably small representative elementary volume . Other terms
Äare defined in the nomenclature, but it is necessary to point out that K is a

w xdimensional measure of the inertial impedance of the matrix; see Rees 7 and

w xErgun 16 .

The main fluid dynamical aim of this paper is to determine the combined
effect of inertia and a spanwise pressure gradient on the free convective boundary

layer flow induced by a heated surface, and given that r g b D T has the same

dimensions as that of a pressure gradient, we will assume that there also exists an

external pressure gradient of size

U s . s .p s y r g b D T S 2Äz*

where S is a dimensionless factor measuring the strength of the pressure gradient.

The following nondimensionalizations are introduced:

s . s . s .x*, y*, z* s L x, y, z 3a

a
s . s . s .u*, v*, w* s u , v , w 3b

L
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s . s . s .p* s r g b D TL p y Sz 3cÄ

s . s .T s T q D T u 3d0

a
s .q* s q 3e

L

s .where the external pressure gradient as been accounted for explicitly in Eq. 3c .
s .Eqs. 1 reduce to the form

s .u q v q w s 0 4 ax y z

w s . x s .u 1 q Gr rRa q s yp q Ra u 4bx

w s . x s .v 1 q Gr rRa q s yp 4cy

w s . x s .w 1 q Gr rRa q s yp q Ra S 4dz

s .u u q vu q wu s u q u q u 4 ex y z xx yy zz

The boundary conditions required to complete the specification of the

problem are

s .y s 0: v s 0 u s 1 yª ` : v , u ª 0 4 f

s .The two nondimensional numbers that appear in Eqs. 4 are

2s .r g b KL T y T rÄ
1 0 Ä s . s .Ra s Gr s KKg b T y T 5Ä 1 0t /m a m

which are the Darcy-Rayleigh number, which is assumed to be very large, and an
s . w xinertial parameter, which is assumed to take O 1 values. Plumb and Huenefeld 6 ,

in their pioneering work on the effects of inertia on boundary layer flows, term Gr

a Grashof number.

There is no reason to suppose that any z variation exists in physically
s .realizable solutions of Eqs. 4 , for although we have not proved that the resulting

boundary layer flow is stable, it seems very likely that it will be so, given the recent

w x w xworks of Rees 17 and Lewis et al. 18 . Therefore we may set all these z
derivatives to zero. The boundary layer equations are found using the substitutions

1 r 2 y 1 r2u s Ra u v s Ra v w s Ra w q s Ra q x s x y s Ra y

s .6

and, given that the flow is two-dimensional, we also introduce the stream function

c , using

s .u s c v s y c 7y x
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sOn setting Ra ª ` and retaining leading order terms i.e., on applying the
.boundary layer approximation , we obtain

1 r 2
2 2 s .c 1 q Gr c q w s u 8at /y y

s .u s c u y c u 8byy y x x y

1 r 2
2 2 s .w 1 q Gr c q w s S 8ct /y

Note that the equation for w is algebraic, rather than partial differential, but that

w is a function of both x and y. It is also necessary to note that our assumptions
s .that Gr and S are O 1 quantities are essential in order to obtain a nontrivial

interaction between the effects of inertia and the cross-stream pressure gradient.
s w x.The usual similarity transformation may be used see Ref. 1 , and therefore

we substitute

1 r 2 1 r2s . s . s . s .c s x f h u s g h w s w h h s y rx 9

s .in Eqs. 8 to obtain

1 r 22s . s .f 9 1 q Gr f 9 f 9 q w s g 10 a

s . s .g 0 q 1 r2 f g 9 s 0 10b

1 r 22s . s .w 1 q Gr f 9 f 9 q w s S 10c

Therefore the flow remains self-similar, although the equation for w is algebraic.
s .Equations 10 form a two-parameter system of equations, which may be solved

using the Keller box method after suitable modification.

NUMERICAL METHOD

w xThe so-called Keller box method was introduced by Keller 19 and has

w xbecome widely known through the work of Cebeci and Bradshaw 20 . It was

originally devised as an efficient and general means of solving parabolic systems of

partial differential equations, such as those that arise in boundary layer theory, and

it remains in frequent use today. Generally, the system of partial differential

equations is reduced to first-order form, discretized using central differences based

at the center of a box formed by neighboring grid lines in both the streamwise and
cross-stream directions, and finally, solved using a multidimensional form of the

Newton-Raphson method. As the algebraic equations obtained from the discretiza-

tion process are nonlinear, the Newton-Raphson iteration matrix is the FrechetÂ
derivative of the algebraic equations, and it necessarily has a block tridiagonal

s .structure. Thus a block-matrix version of the tridiagonal matrix or Thomas

algorithm is used. In general, rows need to be interchanged in order to ensure that
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the diagonal blocks are nonsingular. The full algorithm is usually implemented by

encoding explicitly the entries in the iteration matrix. For small-scale problems,
such as the present one, which is a fourth-orde r system of equations, the program-

ming effort to encode the iteration matrix is not great, although any inaccuracies in

coding may be noticed by a poor rate of convergence, or even divergence, since the

Newton-Raphson method is usually quadratically convergent. In two recent papers

w xby Rees 21, 22 , however, very large systems of equations have been solved, and for

those works it was essential to have an alternative means of specifying the iteration

w x w xmatrix. In 21 and 22 a numerical differentiation routine was incorporated into

the standard Keller box method so that the iteration matrix could be computed

directly from the discretized equations. Although this will necessarily make the

execution of the code slower in terms of CPU per case, the greatly reduced code

development time more than offsets the reduced speed. It is also noteworthy that

the numerical differentiation procedure allows the Keller box method to be
transformed very quickly from one based on central differences in the streamwise

direction, to one based on backward differences. This latter modification was

w xessential for Rees 22 for reasons of numerical stability but is also a necessary
s .modification for solving sets of ordinary differential equations ODEs while

performing a parameter sweep.

The present problem is not a set of parabolic partial differential equations
but is a third-order set of ODEs supplemented by an algebraic equation. The main

snumerical aim of this paper is to present the manner in which sets of ODEs and
.by implication, sets of partial differential equations subject to algebraic constraints

may be solved using the Keller box method.

But first we need to see why it is necessary to have the algebraic constraint. It
s . s .is possible to eliminate the square root term from between Eqs. 10 a and 10c to

obtain w explicitly in terms of f and g:

s .w s f 9 S rg 11

s .which, together with Eq. 10 a , yields

1 r 22 2 2s . < < s .f 9 g q Gr g q S f 9 s g 12

< <although f 9 s f 9 here, since f 9 G 0 everywhere. However, when attempting to
s .find a suitable row arrangement for the iteration matrix when solving Eqs. 10b

s .and 12 , it soon becomes apparent that there is no such arrangement for which all

the diagonal blocks are nonsingular and well-conditioned. Therefore this form of

the governing equations has to be discarded.
s .It is quite possible to solve Eqs. 10 as they stand, but for code validation

s .purposes, we differentiate Eq. 10 a once with respect to h to obtain

1 r 2 1 r22 2s . w x s .f 0 1 q Gr f 9 f 9 q w q Gr f 9 f 9 f 0 q w w 9 r f 9 f 9 q w y g 9 s 0

s .13
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s . s . s . s . s .Therefore we need to solve Eqs. 13 , 10b , and 10c subject to f 0 s 0, g 0 s 1,
s .and f 9 , g ª 0 as h ª ` . Equation 13 is very complicated, and the specification of

the corresponding entries in the iteration matrix would be much more complicated;

this again justifies the use of a numerical differentiation routine, as mentioned

above.

The equations are reduced to first-order form using

s .a s f b s f 9 c s g d s g 9 e s w 14

The resulting five equations may be written in the form,

s .A ’ a9 y b s 0 15a

1 r 2 1 r22 2 2 2s . s . s . s .B ’ b 9 1 q Gr b q e q Gr b bb 9 q ee 9 r b q e y d s 0 15b

s .C ’ c 9 y d s 0 15c

s . s .D ’ d 9 q 1 r2 ad s 0 15d

1 r 22 2s . s .E ’ e 1 q Gr b q e y S s 0 15e

and these equations define A, B, C, D, and E. The equations for A, B, C, and D

are discretized halfway between grid points, and E is approximated at the grid

points. The reason for the latter is that no boundary conditions are specified for w,

and therefore we must obtain exactly the same number of equations for this

variable as we have for any other variable if the modifications to the basic Keller
box scheme are to be minimized. The basic h grid ranges from h s 0 s h to1

h s h s h over N grid points, which are not necessarily equally spaced. Themax N

following notation is defined:

c y ci q1 i
s . s .C s y d q d r2 16i q1 r2 i q1 it /h y hi q1 i

and

1 r22 2s . s .E s e 1 q Gr b q e y S 17i i i i

sThe Keller box method is now implemented in the usual fashion but with the
.numerical differentiation procedure , choosing S to be the equivalent of the

marching variable . Clearly, for each value of S, the equations must be discretized
in a such a way that only those terms at the current value of S are involved; this is

equivalent to the backward differencing approach mentioned above , since no S

derivatives appear in the equations! A little effort is required to show that an

appropriate way of arranging the discretized equations for the iterative part of the

algorithm is to have the following subvectors placed on the first, ith, and last rows

of the right-hand side of the Newton-Raphson scheme:

T
s . s .a , c y 1, E , B , D 18 a1 1 1 3 r2 3 r2

T
s . s .A , C , E , B , D 18biy 1 r2 iy 1 r2 i i q1 r2 i q1 r2
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and

T
s . s .A , C , E , b , c 18cNy 1 r2 Ny 1 r2 N N N

This arrangement of rows avoids singular submatrix blocks on the diagonal.

NUMERICAL RESULTS, ANALYSIS, AND DISCUSSION

Most of the computations presented here were undertaken using a uniform

grid of 401 points lying in the range 0 F h F 40. The results were compared with
s .the analytical value of f 9 0 ,

2
s . s .f 9 0 s 19

1 r 21 r22s .1 q 1 q 4 Gr 1 q S

s .which was obtained from Eq. 12 , in order to test that the equations had been
s .encoded correctly and to assess the accuracy of the solutions. In all cases, Eq. 19

was obtained precisely, and grid refinement checks indicated at least four places of

accuracy.
s .It is clear from Eq. 19 that, as either Gr or S increases, the induced

s . y1 r2streamwise velocity at the surface decreases. In the former case, f 9 0 ; Gr =
s 2 .y1 r4 s . y1 r2 < < y1 r2
1 q S as Gr ª ` , whereas in the latter case, f 9 0 ; Gr S . This

reduction in the slip velocity is a consequence of the thickening of the boundary
layer and the decreasing ability of buoyancy effects to drive the fluid upward.

Indeed, for fixed values of S and asymptoticall y large values of Gr, it may be shown
s .1 r 4that h s O Gr is the boundary layer thickness, while for fixed values of Gr and

s 1 r 4.asymptotically large values of S, we have h s O S . It is important to note that

nonzero values of S have no effect on the streamwise and cross-stream velocities

when Gr s 0; in such cases, the spanwise velocity is entirely decoupled from the
rest of the flow field.

s .No analytical expression is available for g 9 0 , which is proportional to the

surface rate of heat transfer, and therefore we present our numerical solutions for

this quantity in Figure 1. The same general trend may be observed there, namely,
s .that the magnitude of g 9 0 decreases as either S or Gr increases.

1 r 2s . s .For large values of S a scale analysis of Eqs. 10 shows that w s O S ,
s y1 r2 . s 1 r 4 .f s O S , and h s O S . From this it is possible to show that

y1 r4
s . s . s .g 9 0 ; y0.44375 Gr S S ª ` 20

s .where the numerical coefficient is that value of g 9 0 that is obtained by solving
s . s . s .Eqs. 10 a and 10b with Gr s 0. The asymptotic values given by Eq. 20 are also

displayed in Figure 1, and the agreement is good, especially when Gr is large. For
s .small values of Gr the approach to the asymptotic state given by Eq. 20 is slow

compared with that for larger values of Gr.

For large values of Gr it is not possible to produce as simple a formula as Eq.
s .20 for the rate of heat transfer because the asymptoti c problem reduces to a
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Figure 1. Variation of the surface rate of heat transfer

with S for various values of Gr. Heavy curves depict the

asymptotic solutions for large values of S.

1 r 4 s . y1 r4 s .one-parameter set of equations. On setting h s Gr z , f h s Gr F z ,
y1 r2s . s . s .g h s G z , and w s Gr W in Eqs. 10 , letting Gr ª ` , and retaining

leading order terms, we obtain the following equations:

1 r 2
2 2 s .F F q W s G 21as .z z

1 s .G q FG s 0 21bz z z2

1 r 22 2 s .W F q W s S 21cs .z

which were solved using the methodology described in the previous section. A list
s .of values of G 0 as a function of S is given in Table 1. The rate of heat transfer isz

now given by

s . y1 r4 s . s .g 9 0 ; Gr G 0 22z

for asymptotically large values of Gr. Again, good agreement with the computed
s .data is obtained, as confirmed by the entries in Table 1. The values of G 0 arez

also displayed in Figure 2, where we see that increasing inertia effects as S

increases causes a reduction in the surface rate of heat transfer.

s . s .Table 1. Values of G 0 and g 9 0 for selected values of S together with the respective asymptoticz
s .values given by Eq. 22

y 1 r 4s . s . s .S G 0 g 9 0 at Gr s 100 Gr G 0z z

0.1 y0.49033 y0.15019 y0.15506

0.2 y0.48399 y0.14843 y0.15305

0.5 y0.45955 y0.14144 y0.14532

1.0 y0.42033 y0.12996 y0.13292

2.0 y0.36705 y0.11410 y0.11607

5.0 y0.29592 y0.092542 y0.093578

10.0 y0.24937 y0.078236 y0.078858

20.0 y0.20980 y0.065980 y0.066345

50.0 y0.16687 y0.052612 y0.052769
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s .Figure 2. Variation of G 0 with S for asymptoticallyz

large values of Gr.

Finally, it is of interest to note how the vertical buoyancy-induced motion

affects the spanwise fluid velocity, which in the absence of convective effects, is
s .uniform. Equation 10 may be manipulated to yield

2S
s .w s 23

1 r 21 r22 2s .1 q 1 q 4 Gr S q g

from which we may deduce that

2S 2S
s . s . s .s w 0 F w h F w ` s1 r 2 1 r21 r2 w < <x2 1 q 1 q 4 Gr Ss .1 q 1 q 4 Gr S q 1

s .24

s s . s ..In Figure 3 we display how w ` y w 0 varies with Gr and S, since this value is a

measure of the retardation of the spanwise flow brought about by the combined
action of inertia and the buoyancy-induc ed flow. Note that this function of Gr and

S has a maximum value of 0.068605 when Gr s 1.599640 and S s 0.515538; these
s s .values were obtained by setting both the Gr and S partial derivatives of w ` y

s ..w 0 to zero and iterating using a two-dimensional Newton-Raphson scheme.

The relative retardation of the spanwise flow is shown in Figure 4, where the
s s . s .. s .variation with Gr and S of w ` y w 0 rw ` is displayed. The relative retarda-

tion is strongest when Gr is large and S is small, and it decreases monotonically as

either Gr decreases or S increases. We note that the relative retardation is, strictly

Figure 3. Variation with S of the spanwise velocity
s . s .retardation, w ` y w 0 , for various values of Gr.
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Figure 4. Variation with S of the relative retarda-

w s . s .x s .tion of the spanwise velocity, w ` y w 0 rw ` ,

for various values of Gr.

speaking, not defined when S s 0, for then w s 0, but it has a well-defined limit:

Xs . s .w ` y w 0 1 q 4 Gr y 1
s .lim s 25

s . Xw `Sª0 1 q 4 Gr q 1

CONCLUSION

When the flow in a porous medium is governed by Darcy’s law, the

buoyancy-induce d flow from a vertical surface and the spanwise drift induced by a

horizontal pressure gradient are entirely independent of one another. However,

when inertial effects are present, the mechanisms interact. The spanwise flow
serves to inhibit the effectiveness of the buoyancy forces, and the boundary layer

thereby thickens, and the rate of heat transfer decreases. The upward convection

also inhibits the spanwise fluid motion, and it is retarded within the thermal

boundary layer.

In this paper we have undertaken a mainly numerical analysis of this

self-similar boundary layer flow. The equations were of the form of an ordinary
differential system supplemented by an algebraic constraint. The means were

presented by which the Keller box method may be used to solve such systems and,

by implication, parabolic partial differential systems with an algebraic constraint.
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