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Summary. In the present paper, effects of combined buoyancy forces from mass and thermal diffusion by 
natural convection flow from a vertical wavy surface have been investigated using the implicit finite differ- 
ence method. Here we have focused our attention on the evolution of the surface shear stress, f"(0), rate 
of heat transfer, 9'(0), and surface concentration gradient, h'(0) with effect of different values of the 
governing parameters, such as the Schmidt number Sc ranging from 7 to 1500 which are appropriate for 
different species concentration in water (Pr = 7.0), the amplitude of the waviness of the surface ranging 
from 0.0 to 0.4 and the buoyancy parameter, w, ranging from 0.0 to 1. 
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species concentration in the boundary layer 
species concentration of the ambient fluid 
species concentration at the surface 
chemical molecular diffusivity 
dimensionless stream function 
acceleration due to gravity 
local modified Grashof number 
ratio of the buoyancy forces due to the temperature 
difference and the concentration difference 
pressure of the fluid 
temperature of the fluid in the boundary layer 
temperature of the ambient fluid 
temperature at the surface 
the x- and y-components of the velocity field 
axis in the direction along and normal to the plate 
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thermal diffusivity 
volumetric coefficient of thermal expansion 
volumetric coefficient of expansion with concentration 
stream function 
nondimensional similarity variable 
x/L 
density of the ambient fluid 
kinematic coefficient of viscosity 
stream function 
dimensionless skin friction 
fluid viscosity 
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1 Introduction 

In nature and in many engineering applications such as in oceanography, geophysics, metall- 
urgy and chemical engineering there are many transport processes which are governed by the 
joint action of the buoyancy forces from both thermal and mass diffusion. Representative 
applications of interest include: solidification of binary alloy and crystal growth, dispersion of 
dissolved materials or particulate water in flows drying and dehydration operation in chemi- 
cal and food processing plants, combustion of atomized liquid fuels, cyclone evaporation, 
drying and flash drying, to name a few. Because of the coupling between the velocity field and 
the diffusive scalar fields, the double diffusive convection is more complex than the convec- 
tion associated with a single diffusive scalar, and many different behaviors may be expected. 

Simultaneous heat and mass transfer in laminar free convection boundary layer flows for 
plates with various orientations has been extensively investigated in the past. More informa- 
tion on this subject can be found in the monograph by Gebhart et al. [1] and in the papers by 
Khair and Bejan [2], Lin and Wu [3], [4], and Mongruel et al. [5]. However, it appears that the 
effects of combined buoyancy forces from mass and thermal diffusion by mixed convection 
flows have not been studied yet. 

The objective of the present paper is to study the effects of combined buoyancy forces 
from mass and thermal diffusion by natural convection flow from a vertical wavy surface, 
since surfaces are sometimes roughened intentionally in order to enhance the heat transfer 

and mass transfer. Roughened surfaces are encountered in several heat transfer devices such 
as flat plate solar collectors and flat plate condensers in refrigerators. Large scale surface 
nonuniformities are encountered in cavity wall insulting systems and grains storage con- 
tainers. The only papers to date which study the effects of such nonuniformities, strictly on 

thermal boundary layer flow of Newtonian fluid and in the absence of species concentration 
are those of Moulic and Yao [6], and Yao [7]. Hossain and Pop [8] investigated the magneto- 
hydrodynamic boundary layer flow and heat transfer from a continuous moving wavy sur- 
face, and the problem of free convection from a wavy vertical surface in the presence of a 
transverse magnetic field has been studied by Hossain et al. [9]. On the other hand, Rees and 
Pop [10] investigated the free convection induced by a horizontal wavy surface in porous 
media. 

In this investigation the focus is on the boundary layer regime promoted by the combined 
events near the wavy surface when the surface is at a uniform temperature and a uniform 
mass diffusion which differ from those of the flowing fluid. The analysis is confined to mass 
diffusion processes with low concentration levels. The transformed boundary layer equations 
are solved numerically using the implicit finite difference method with the Keller-box techni- 
que (Keller [11]). Consideration is given to the situation where the buoyancy forces assist the 
natural convection flow for various combinations of the buoyancy ratio parameter ~ and 
Schmidt number Sc with the Prandtl number Pr : 7.0. The results allow us to predict the dif- 
ferent behavior that can be observed when the relevant parameters are varied. 

2 Formulation of the problem 

Consider the steady laminar boundary layer flow of a viscous incompressible fluid along a 
semi-infinite vertical plate with a wavy surface which is driven only by thermal and solutal 
buoyancy forces. The surface of the plate can be described by 

9 = a(:~). (1) 
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The characteristic length associated with the wavy surface is L. The temperature of  the surface 
is held uniform at Tw which is higher than the ambient temperature To~. The species concen- 
tration at the surface is also maintained uniform at C~, which is also higher or lower than the 
ambient concentration C~o. The analysis outlined below is of  arbitrary d-. 

The dimensionless governing equations are the Navier-Stokes equations, the energy equa- 
tion and the equation for the chemical diffusion of  species concentration in two-dimensional 
Cartesian coordinates (07, ?)) (see Fig. 1). 

Under  the usual Boussinesq approximat ion the flow is governed by the following bound- 
ary layer equations: 
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are, respectively, the Grashof number due to variations in temperature and species concen- 
tration, the modified Grashof number, and N measures the relative importance of chemical 
and thermal diffusion in causing the density difference which derives the flow. We may further 
observe that N is zero for no species diffusion, infinite for no thermal diffusion, positive for 
both effects combining to drive the flow and negative for the opposed flow (cooled plate). 

The (x, y) are not orthogonal, but a regular rectangular computational grid can be easily 
fitted in the transformed coordinates. It is also worthwhile to point out that (u, v) are the velo- 
city components parallel to (x, y) which are not parallel to the wavy surface. The convection 
induced by the wavy surface is described in Eq. (1). Equation (4) indicates that the pressure 
gradient along the y-direction is O(Gr-1/4), which implies that the lowest order pressure gra- 
dient along x-direction can be determined from the inviscid-flow solution. For the present 
problem this pressure gradient is zero. Equation (4) also shows that Or -1/4 Op/Oy is O(1) and 
is determined by the left-hand side of the equation. Elimination of Op/cqy between the Eqs. (3) 
and (4) leads to 

6qU OqU (1 _+_ fix2) Oq2u ( 1 ) 0-}- Ng5 o-x O'xx u2 
u ~ + v ~ :  cgy 2+ l+cr:c2 I + N  I-(1+o-=2) (9) 

Now we introduce the further transformations into the Eqs. (9) and (5), (6) as described 
below: 

tff ~- X 3 / 4 f ( x ,  f/) ,  ?'/ = X-1/4y, 0 = O(X, 7]), r ~- ~(X, ~) ( 1 0 )  

to get 

~ + [(1 - ~ )  o + ~ <  = x ,  
7 7 ~ )  1-I or= 2 

1 2 0" ~fO'= (f, 00 ) FTr(l+~= ) § x \  ax 0 ' ~  , 

scl (l + ~2)r +~ fr = x(  f'or " (13) 

In Eq. (l 1), w is termed as the conjugate buoyancy parameter and is defined by 
w = N/(1 + N). We also see that for N = 0, w = 0 and as N --~ eo, w = 1. 

The boundary conditions to be satisfied are 

f(x,O)= f'(x,O)=O, O(O,x)=r l, f'(x, oc)=O(O, oc)=r oc)=O, (14) 

The quantities of physical interest are surface shear stress, the rate of heat transfer and the 
rate of transfer of species concentration at the surface which may be obtained in terms of the 
local skin friction, Cf~, the local Nusselt number, Nu~, and the local Sherwood number, Shx, 
respectively, from the relations given below: 

CfzGrz -1/4 = (1 q- a~2)f"(0, ~), (15) 

N ,~ -1/4 ~/1 + ~x~ n~,~r~, T = - 0'(0,~), (16 )  

[ f'~x'-- f,,Of 
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Fig, l.  a Skin friction coefficient, b Heat transfer coefficient, r Mass transfer coefficients for dffferem c~ 
while Sc = 150 and w = 0.5 

and 

ShxGr2~/4 = _ 1 V/1 + Crx2 0'(0, ~). (17) 
' W 

In the present investigation we have considered the form of  ~ = c~ sin (Trz). It should be 

noted here that, in absence of  the species concentration in the flow field (i.e., _N = 0), solutions 
of  Eqs. (24)-(28) were obtained by Yao [7] considering the form of  ~r = a sin (~rz). And for 
the flat plate (a  = 0) the problem has been discussed by Gebhard and Pera [l] for different 
values of  the Schmidt number  Sc, while Pr  = 0.71 and 7.0 whict~ represent air and water at 

20~ and 1 atmosphere. 
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3 Results and discussions 

In this Section we describe briefly the numerical results obtained from Eqs. (11)-(14) gover- 

ning the flow using the implicit finite difference method together with Keller box scheme, 

which has most recently been applied successfully by Hossain et al. [8], [9]. 

Given that there are four parameters to vary we have focussed attention on the values 

c~ = 0.2, w = 0.5, Pr  = 7 and Se = 7.0, 50, 150, 500 and 1500, and investigate the effects of 

separate variations of each parameter in turn. As the equations governing the diffusion of 
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Fig. 3. a Skin friction coefficient, b Heat transfer coefficient, e Mass transfer coefficients for different w 
while Se = 150 and c~ = 0.2 
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Fig. 4. a Skin friction coefficient, b Heat transfer coefficient, e Mass transfer coefficients for different Sc 
while w = 0.5 and c~ = 0.2 

heat  and mass are identical in form, we have not  sought to vary the Prandt l  number,  but  the 

chosen value corresponds to that  of  water. 

Figures 2 - 4  deal, respectively, with variat ions in c~, w and Sc. In each figure the resulting 

flow is represented by the evolution of  the surface shear stress, f"(O), rate of  heat  transfer, 

9/(0), and surface concentrat ion gradient,  h'(O). 
In these figures we see immediate ly  that  the flow settles very quickly indeed to a state 

which is per iodic  in space. In  this regard the flow is very much like that  described in Rees and 

Pop [10] which deals with the convection induced by a wavy surface with uniform heat  flux 

embedded in a porous  medium. The asymptot ic  behavior  of  the present  flow and of  that  

described in Rees and Pop seems to involve all the terms in the nonsimilar  governing equa- 
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tions, rather than only some of  them, and therefore an asymptotic analysis may not be possi- 
ble in either case. 

Figure 2 shows effect of variations in the surface amplitude, c~, for Pr  = 7. In general, 

increasing values of  c~ decrease the local values of  fn, -9 ' (0)  and -h~(0). This may be traced 
to the fact that the buoyancy forces along the surface decrease as the surface is increasingly 

misaligned with the vertical direction. At such points diffusion plays a greater role and there- 

fore the boundary layer thickens, thereby decreasing the gradients. 
Figure 3 shows how variations in w affect the flow. When w = 0 the flow is induced ent- 

irely by thermal effects and the concentration field is passive, whereas when w = 1 the roles 

are reversed. Given that Pr  < Sc, the respective boundary layers are of  substantially different 
thickness, the thicker being that corresponding to ~v = 1; this is reflected by the fact that the 

magnitude of  the concentration gradient when w =- 1 is smaller than the magnitude of  the 
temperature gradient when w -- 0. The increase in the values of  fn, _9/(0, z) and -h i (0 ,  z) as 

w increases cannot be explained with ease since, when w = 0, the detailed concentration field 
is computed as a forced convection problem, the basic flow being a thermally induced free 

convection boundary layer, whereas when ~v = 1, it is the concentration field which induces 

the boundary layer flow. 
Variations in the Schmidt number, Sc, are considered in Fig. 4. The surface concentration 

gradient, hi(0), increases with increasing values of  Sc, as expected. This is accompanied by 

a slight decrease in the rate of  heat transfer as the near-surface flowfield adjusts slightly to 

the changing value of  So. When Se = 7 (not shown) the values of  if(0, z) and h~(0, z) are iden- 

tical. 

4 Conclusions 

We have sought to discover the effect of  a wavy surface profile on double diffusive convection 
from a vertically-aligned uniform temperature surface in an otherwise still fluid. In general, 

the presence of  surface waves serves to thicken the boundary layer and reduce the surface rate 
of  heat transfer, concentration gradient and shear stress. Increasing values of  w give rise to 

increasing values of  the surface parameters, although a simple explanation of  the reason for 
this is difficult due to the changing qualitative nature of  the flow (by which we mean the 

change from free to forced convective regimes). Variations in the Schmidt number cause 
opposite changes in the values of  ff(O,z) and h'(O,z); the reason for this is due to the 
changing near-wall flow field. 
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