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A B S T R A C T  
An analysis is made for the steady free convection boundary-layer flow near the 
stagnation point of  a two-dimensional body which is embedded in a porous medium 
by adopting a two-temperature model of  microscopic heat transfer. It is found that 
such a model modifies substantially the behaviour of  the flow characteristics, 
particularly those of  the heat transfer coefficients, and the region over which the 
thermal fields extend. © 1999 Elsevier Science Ltd 

Introduction 

Buoyancy-induced flows in fluid-saturated porous media is a branch of  research 

undergoing rapid growth in the fluid mechanics and heat transfer characteristics of many 

engineering problems. Such problems, whose performance depend on a better understanding of  

convective flows in porous media, include geothermal systems, nuclear reactors, thermal 

insulations, drying processes, food stuffs etc. The growing volume of work devoted to this area is 

amply documented by the most recent reviews of  Nield and Bejan [1], and Ingham and Pop [2]. 

However, most work on heat transfer in porous media has mainly been undertaken under the 

assumption that the convecting fluid and the porous medium are everywhere in local 

thermodynamic equilibrium, although in most practical applications the solid and fluid phases are 

not in equilibrium. Thermal nonequilibrinm effects have been considered only a few times in the 

case of  the Darcy-Benard problem; see Combamous [3] and Combamous and Bories [4]. The 

reviews by Kuznetsov [5], and Vafai and Amiri [6] give detailed information about the research of 

the thermal nonequilibrium effects of  the fluid flow through a porous packed bed. A very recent 

paper by Fees and Pop [7] discusses how the use of  a two-temperature model of  microscopic heat 
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transfer modifies the classical Cheng and Minkowycz [8] vertical free convection boundary-layer 

flOW. 

The scope of  the present is to discuss the effect of  a two-temperature model on the free 

convection boundary-layer flow from a two-dimensional body of  suitable shape immersed in a 

porous medium. We consider, for simplicity, the flow near a stagnation point, as this enables the 

governing equations to be much simplified and allows all the essential features to be clearly 

brought out. We follow the basic model for a vertical fiat surface considered in [7]. We begin by 

considering the steady states, which are possible which for the geometrical configuration, are 

given by ordinary differential equations. 

Basic Equations 

We consider an infinite cylinder, which is embedded in a porous medium and mounted 

with its generators horizontal so that the flow is two-dimensional round the cylinder. The co- 

ordinate £ measures distance round the cylinder and the coordinate ~ is in the perpendicular 

direction. It is assumed that the surface of the cylinder is held at the constant temperature T,,, 

while the ambient temperature is T~, where Tw > T~. If  we assume that Darcy's law holds, that the 

Boussinesq approximation is valid, but that the solid and fluid phases of the medium are not in 

equilibrium, then the equations governing the steady-state two-temperature flow model are, from 

Nield and Bejan [1] for example, 

+ ~ = o (1) 

OK o~_ 9fg~ K 07). S(Y) (2) 

~y ~ ~ ~Y 

+ o < . ' ]  = + , , o r ,  - ) 

0 = k~V2T, - h(T~- Tf) (4) 

Here K and ~ are the velocity components along the 2 and y -axes, T is the temperature (where 

the f and s subscripts denote the fluid and solid phases, respectively), K is the permeability, g is 

the acceleration due to gravity, ;z is the fluid viscosity, p is the density, c is the specific heat,/9 is 

the coefficient of  the thermal expansion, k is the thermal conductivity, h is a coefficient which is 

used to model the microscopic transfer of heat between the fluid and solid phases and S( 2 ) is the 

sine of the angle between the outward normal from the body surface and the downward vertical. 
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Equations (1)-(4) may be nondimensionalized using the following transformations 

(~, V) = L(~,)3), (if, V) = ~ (fi, ~), (Tf, T~) = (Tw- T~)(O, ~) + T~ (5) 
tP c)r L 

where L is some length scale for the body. Further, we introduce a stream function ~ according to 

= 8 ~  / @ and ~3 = - 0~ / o~. Equations (1)-(4) now become 

vy,  =R-O~ s(;o,v2o=i,(o-¢)~ o¢, 8o 8¢, 8o 
8 ~ -  0x @ '  V2~ =/~Y(0 - 0)  (6) 

where /~ and ~, are dimensionless constants and R is the Darcy-Rayleigh number; these constants 

are defined as 

ft= hL2/e kf , "/=Icy~k,, R = (,oC)fgfl('T,~ - T~)K/p kf (7) 

Let us now introduce the usual boundary-layer scaling 

= x, P = R"aY, 0 =R'a V (8) 

into Eqs. (6) to obtain 

8¢, 8 0  &0, 80  824 
82VOy 2 - S(x) ,  ~020 = H(O-qk)4 Oy iSc i~x Oy '  ~yZ - Hy(qk -O)  (9a, b, c) 

where we have omitted terms, which are asymptotically small, compared with the retained terms 

as R ~ oo. In (9) H is defined according to 

= RH (10) 

where H = O(1) as R ~ oe. The boundary conditions are 

~ = 0 ,  0 = 1 ,  dp=l at y = 0  and ~ ,0 ,~b - - -~0  as y--~oo (11) 

We note that these boundary conditions allow (9a) to be integrated once to yield 

8 ~  
- 0 S(x)  (12)  

0y 

For stagnation-point flow we take 

S(x) = x (13) 

and write 

V = x fly), 0 = 0(y), d~ = t~(y) (14) 

Using (14) in Eqs. (9b), (9c) and (12) leads to the following set of ordinary differential equations 

f ' = 0 ,  0" + f0 '  = H (0-  dp), ~b" = Hy (dp - 0) (15a, b, c) 

subject to the boundary conditions 

frO) = 0, f(0) = 1, ~b(0) = 1 and f', ~b --~ 0 as y --~ oo (16) 

where primes denote differentiation with respect to y, 
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The physical quantities of  most interest are the fluid and solid phase Nusselt numbers, 

which are defined as 

L q l  L q s  
N u t  - kJ  ( T w  _ T,~)' Nu.~ - k ( T  - L , )  (17) 

where q~,-= - kj-(cTTt/ O~) ~, o and qs ~ - k s ( t ~ J  cf f )~ o . After some algebra, we obtain 

Nuf/R 1'2 = - 0'(0), Nus/R v2 = - dp'(0). (18) 

Numerical Solution 

Equations (15) form an ordinary differential system with H and 7 as the parameters. The 

easiest way to solve these equations for a wide range of  values o f / / ,  say, is to use the Keller-box 

method. Although this method is normally used for parabolic systems of  partial differential 

equations, we can adapt it by using H as the 'streamwise' variable and march forward for 

increasing or decreasing values of H to perform a parameter sweep. Other details of  the method 

are well-known and the implementation used here has been described in detail in references [7] 

and [9]. In our computations we took 51 unequally spaced points in the y-direction with 0 _< y _< 

1000, and 201 values of  H lying in the range 0.001 _< H _<10. Our numerical results are 

summarised in Fig. 1 where we display values of 0'(0) and ~b'(0). When H is small there is a very 

substantial difference between the surface rates of heat transfer of  the fluid and solid phases, 

indicating that nonequilibrium effects are strongest when H is small (this is consistent with the 

findings of  [7] at small distances from the leading edge) which is not surprising since H is a 

measure of  the ease with which heat is transferred between the phases. The numerical solutions 

also indicate that the thickness of  the solid-phase temperature field increases as H decreases, 

which is consistent with the decreasing rate of heat transfer in that limit. Fig. 1 also shows that the 

same qualitative effects are obtained as 7 decreases. For larger values of H and as H increases, the 

inter-phase local heat transfer becomes more effective and this means that the difference between 

the solid and fluid temperature fields also decreases in magnitude. In the next section we show 

that this difference is proportional t o / T  ~. 

Asymptotic Solution for Large Values of H 

When H is large the form of  Eqs. (15) suggests that the asymptotic analysis in this limit 

could very well be a singular perturbation problem. However, the numerical evidence suggests 

otherwise, for the magnitude of  ( 0 -  d~) decreases as H increases, so that all terms in those 
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where 

equations remain of the same order of magnitude. The present problem is a regular perturbation 

problem and its analysis commences by solving for d~ in terms of  0 using Eq. (15c) recursively: 
~, • ~ .... ~ . . . . .  ~ ....... 

~ = / 9 +  = o + ~ "  ~ - . . . - o +  + ~ ' ' '  + (19) 
Hr Hr (Hr) 2 Hr (HrY (-~r) ~+ .... 

Substitution for dp into (15b) yields 

.... o . . . . . .  1 

r j r L Hr + ~ + "J' (20) 

which, together v~th Eq. (15a), may be solved using a series expansion in inverse powers of/_/. 

The first two terms in this series may be written in the form, 

+ fo(¢)o (1+r)2 Hf'(¢) ~... , 0 = 0 o ( ¢ ) ~  (1+r)2 H + .... (21) 

y = 1 + - -  ( ,  (22) 

and where the coefficient functions in (21) satisfy 

/~ : 0o, O'o +/o0'o = 0, (23)  

/ o  =/9,, /91 +f0/9; +f f~o  =-/9o" : /90[  F3  -3F0/9o +go ' ] ,  (24) 

Solutions of these equations subject to the appropriate boundary conditions were undertaken using 

a fourth order Runge-Kutta shooting method code, and the resolution was such that more than 4- 

digit accuracy was obtained.Therefore the surface rates of heat transfer for the two phases are 

given by 

( , J (25) 

where 0'o(0) ~_ -0.62755 and 0'1(0) - -0.46360. These curves are plotted in Fig. 1 where excellent 

agreement with the fully numerical solution is seen. There is no a priori reason why the series 

expansions (21) should not continue as a regular perturbation expansion, but the computation of  

further terms becomes rapidly more complicated. 

Asymptotic Solution .for Small Values of H 

The structure of  the large-/-/ asymptotic analysis follows closely the boundary layer 

analysis of [7] at large distances from the leading edge, and therefore we will not preseut the full 
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details of  the present working. When H is small, the flow splits into two regimes, an inner layer 

where y = O(1), and an outer layer, where y = O(H -~/2). For ease of  presentation we set 

= H  1'2 and r I = y/~. (27) 

If  we denote f, 0 and qb by F, ® and • in the outer layer, then the inner layer equations are 

f ' = 0 ,  0" + f 0 '  = ~2(0 - ~b), qb' = E27 (~b - 0) (28) 

and the outer layer equations are 

® = ~ F ' ,  F ® ' = ~ ( ® - ~ - ® " ) ,  O"-7( I~=-7®,  (29) 

where primes denote derivatives with respect to y in the inner layer, and r/in the outer layer. The 

analysis proceeds by expanding the solutions off28) and (29) in power series in ~: 

0f, 0, ¢) ~ (f~ 0~ ¢0) + c6'}. 0,, ¢9+d( f~ ,  0~, ~ +  .... (30) 

(E, O , ~ )  - ( F ~  O~ ~0d +e(F1, O1, ~1)+ e~(F~, 02, @z)+ .... (31) 

solving each set of  equations in turn at increasing powers of ~, and using the method of matched 

asymptotic expansions. At O(1) in the inner layer we find that 

f0' = 00, 0o + fo00 = 0, ¢0 = 0, (32a, b, c) 

subject to fo(0) = 0, 0o(0) = 1, qbo(0) = 1 and 0o, ¢0 ~ 0 as y --~ ae. Clearly d~0 = 1 which implies the 

existence of  an outer layer, for we should recover dp--~ 0 at sufficiently large distances from the 

surface. Equations (32a) and (32b) may be reduced to those of  Cheng & Minkowycz [8] for the 

free convective boundary layer flow from a constant temperature vertical surface in a porous 

medium. The asymptotic value offo is 

limfo = 1.61612 / ~]2 = 1.14277 ~ Ao (33) 

and 0o becomes exponentially small at large values ofy. 

The leading-order outer-layer equations are 

(90 = 0, F o e '  0 = 0, • o - 2<I9 o = - 7 0  o (34) 

from which we find that 

(90 = 0, Oo = e rL'2', (35 a, b) 

and Fo is unknown at present. At O(a) in the outer layer we have 

F o' = O , ,  FoOl = - ~ o ,  ~ - )~I~ = - 7 0 , .  (36a, b, c) 

Equations (36a) and (36b) may be combined to yield 

F o F  o = - e  -r~'~" (37) 

subject to Fo(0) = Ao and Fo'---> 0 as q ~ 0% where the rl = 0 boundary conditions was obtained 

using the asymptotic matching principle. Numerical solutions of  Eq. (37) are depicted in Fig. 2 for 
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various values of 7- The value of F0'(0) will be required later, and we denote its value by A,. 

Equation (36c) may be solved using the particular integral and complementary function method: 

let 

01 = dPl + C e - ? %  (38) 

where C is a constant to be found and where ~,  (0) and ~,--+ oo as rl --~ oo. We denote the 

resulting values of ~ ;  (0) by A2. At O(E) m the inner region the equations are 

f,'=01, O~+ f~Oo + foO~=O , ¢~"=0, (39a, b,c) 

subject to f,(0) = 0,(0) = d~,(0) = 0 and both O I ~ A, and ~b,---> _¢n as y ~ oo. 

Clearly 

dh = - ¢/2 y (40) 

and the solutions of (39a) and (39b) are obtained numerically. Asymptotic matching between d~ 

and • shows that C = 0 m (38). We define A3 as the value of limy_~(f, - Aly). As m the previous 

section all the ordinary differential equations were solved using the fourth order Runge-Kutta 

method. The surface rates of heat transfer for the two phases are now given by 

0 ' (0)  = 0o(0 ) + cOl(O) + .... (41) 

d~'(0) = + e[- yv2] + .... (42) 

where 00(0 ) = - 0.62756 and the coefficient o re  in Eq. (41) is given m Table 1. The asymptotic 

rates of heat transfer given by (41) and (42) tum out to be valid only for very small values of H, 

but further improvement by including the next terms m the asymptotic expansion cannot be given 

explicitly because the inner-layer equations yield eigensolutions at O(e2). 

TABLE 1. 

Values of 0~'(0) as a Function ofT. 

e;(o) 
0.1 0.5272 
0.2 0.4527 
0.5 0.3547 
1.0 0.2842 
2.0 0.2201 
5.0 0.1501 
10.0 0.1094 

Discussion 

We have considered in detail the free convective stagnation point flow in a porous 

medium using a thermal nonequilibrium model by undertaking a numerical study and performing 
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FIG. 1 
Variation of 0'(0) and #'(0) with H as obtained from solving Eqs. (15) 
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two asymptotic analysis. When H is small the inter-phase heat transfer is very poor allowing the 

solid phase temperature to conduct well away from the heated surface and to occupy a region 

which, at analysis. When H is small the inter-phase heat transfer is very poor allowing the solid 

phase temperature to conduct well away from the heated surface and to occupy a region which, at 

leading order is much larger than that of the fluid phase. Thus nonequilibrium effects are very 

strong when H is small. As H increases the heat transfer between the phases occurs more readily 

and this is reflected by the increasing similarity between the surface rates of  heat transfer of the 

phase. For large values of H we have almost recovered the thermal equilibrium case where the 

fluid and solid temperature fields are identical. Indeed we have shown that the difference between 

the detailed profiles is proportional to H ~. Variations in y have not been investigated as 

thoroughly, but they have the same qualitative effect as variations in H. This is seen clearly in (i) 

Fig. 1, where large values of  y reduce nonequilibrium effects, (ii) the results of  the large-H analysis 

given in (25) and (26) where the difference between the surface rates of heat transfer decreases as 

7 increases, and (iii) the small-H analysis where the thickness of  the outer region (which is 

proportional to 7 ~/2 - see Eq. (35b)), which is a measure ofnonequilibrium effects, decreases as y 

increases. 



Vol. 26, No. 7 FREE CONVECTIVE STAGNATION-POINT FLOW 953 

F0(~) 

4 .0  

3 .5  

3 .0  

1 . ,  

0 .5  

0 .0  

7 = 10.0 

i i i i 

2 4 6 8 i0 
7/ 

FIG. 2 
Profiles of F0(rl) as obtained by solving Eq.(37). 

The values of 7 axe: 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0 and 10.0 
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