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DARCY-BRINKMAN FREE CONVECTION FROM
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The free convection boundary layer flow of a Darcy-Brinkman fluid that is induced by a
constant-temperature horizontal semi-infinite surface embedded in a fluid-saturated porous
medium is investigated in this work. It is shown that both the Darcy and Rayleigh numbers
may be scaled out of the boundary layer equations, leaving a parabolic system of equations
with no parameters to vary. The equations are studied using both numerical and asymptotic
methods. Near the leading edge the boundary layer has a double-layer structure: a near-wall
layer, where the temperature adjusts from the wall temperature to the ambient and where
Brinkman effects dominate, and an outer layer of uniform thickness that is a momentum-
adjustment layer. Further downstream, these layers merge, but the boundary layer eventually
regains a two-layer structure; in this case, a growing outer layer exists, which is identical to
the Darcy-flow case for the leading order term, and an inner layer of constant thickness
resides near the surface, where the Brinkman term is important.

INTRODUCTION

Heat transfer in a saturated porous medium has received considerable
attention over the past decades due to its significance in various practical applica-
tions. Its application is seen in many geophysical and energy-related problems.
Although Darcy’s law is commonly used in the calculation of flow and heat transfer
features in a saturated porous medium, its validity has been questioned for a wide
range of flow regimes and geometries. The objective of this work is to analyze the
free convective flow and heat transfer from a heated horizontal surface embedded
in a fluid-saturated porous material using the Darcy-Brinkman formulation of the
governing equations.

Although the buoyancy-induced flow above a heated horizontal surface has
been extensively investigated, the corresponding problem of flow in a saturated
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192 D. A. S. REES AND K. VAFAI

NOMENCLATURE

a constant A coefficient
b constant u dynamic viscosity
Da Darcy number £ scaled streamwise coordinate
f reduced stream function P reference fluid density
F reduced stream function o unknown coefficient
¥ reduced stream function ¢ porosity
g scaled temperature W stream function
g gravitational acceleration
G scaled temperature
g scaled temperature Subscripts
K permeability
L macroscopic length scale max maximum value for numerical
o(Xx™ 1) asymptotically smaller than solution

X 'as X 2w L logarithmic term
p pressure X differentiation with respect to x
R porous medium Rayleigh number X differentiation with respect to X
u streamwise flux velocity y differentiation with respect to y
v cross-stream flux velocity ¢ differentiation with respect to ¢
X horizontal or streamwise coordinate n differentiation with respect to n
X scaled x variable £ differentiation with respect to &
y vertical or cross-stre am coordinate 0,1,... terms in series expansion
a constant given in Eq. (7)
B coefficient of thermal expansion Superscripts
AT temperature range between the

wall and the ambient nondime nsional (unscaled with
4 similarity variable respect to o)
n similarity variable ) dimensional
0 temperature ! differentiation with respect to
K effective thermal diffusivity »norg

porous medium adjacent to an impermeable wall has received relatively little
attention. Boundary layer approximations similar to those of the classical boundary
layer theory have been used because of the existence of a thin thermal boundary
layer. However, this boundary layer approximation is a first-order approximation
for natural convection at high Rayleigh numbers. The boundary layer analysis
neglects higher order effects, such as the entrainments from the edge of the
thermal boundary layer, the axial heat conduction, and the normal pressure
gradient. Cheng and co-workers [1, 2] used the method of matched asymptotic
expansions for the problems of natural convection in a porous medium adjacent to
a semi-infinite vertical or horizontal plate with a power law variation of wall
temperature. They found that the effects of entrainment from the edge of the
thermal boundary layer are of second order, while the axial heat conduction and
normal pressure gradient are of third order. The effect of a higher order boundary
layer theory was found to be more pronounced on the velocity profiles as compared
with the temperature distribution. Cheng and Chang [3] performed a boundary
layer analysis for the buoyancy-induced flows in a saturated porous medium
adjacent to horizontal impermeable surfaces. They obtained similarity solutions for
the convective flow above a heated surface and below a cooled surface and
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obtained analytical expressions for the boundary layer thickness and the local and
overall surface heat flux. Kim and Vafai [4] analyzed in detail the buoyancy-driven
flow and heat transfer about a vertical flat plate embedded in a porous medium.
The governing equations were solved analytically using the method of matched
asymptotic expansions, and they also obtained a numerical solution based on the
similarity transformation. It was found that the heat transfer rate is proportional to
the Rayleigh number for the case when the thermal boundary layer thickness is
larger than that of the viscous boundary layer. On the other hand, the heat transfer
rate was found to be proportional to the product of the Rayleigh number and the
porosity when the thickness of the viscous boundary layer is larger.

A primary objective of this paper is to determine how boundary friction
affects the free convective flow pattern in a porous medium. The evolution of the
structure of the boundary layer along the edge of the heated horizontal surface will
be studied. An analytical solution is obtained by scaling both the Darcy and
Rayleigh numbers out of the boundary layer equations. The importance of the
Brinkman term at different axial locations along the plate is also investigated.

EQUATIONS OF MOTION AND BOUNDARY LAYER ANALYSIS

Consider the free convective boundary layer flow induced by a constant-tem-
perature-heated horizontal surface embedded in a fluid-saturated porous medium.
In this paper we will assume that the surface is upward facing, that the Oberbeck-
Boussinesq approximation is valid, that the solid matrix and the saturating fluid are
in local thermal equilibrium, and that the flow is governed by the Darcy-Brinkman
equations supplemented by the energy transport equation. The resulting flow is
two-dimensional and steady (in the absence of destabilizing disturbances) and is
therefore governed by the following set of nondimensional equations (see [4]):

ou ov
—+ =0 (la)
ox 0Oy
o
0= ——Ii+ DaV?i (15)
ox
R p - .
y=———=+ DaV-y+ RO (1¢)
oy
2 20 _ v (1d)
“o1 o5

Here x and p are Cartesian coordinates oriented along and perpendicular to the
heated surface (with x= 0 corresponding to the leading edge), u and v are the
corresponding fluid flux velocities, p is the pressure, and O is the temperature of
the saturated medium. On the heated surface, which is situated at y= 0 and
x> 0, the temperature is = 1, whereas @ = 0 far from the surface. The two
nondimensional parameters that appear in Eq. (1) are the Darcy and Rayleigh
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numbers, which are defined respectively as

K s BKL AT
A Ra~ DEBKLAT )
L uK

The various terms introduced in Eq. (2) have their usual meanings: K is the
permeability, L a macroscopic length scale, ¢ the porosity, p a reference fluid
density, g gravitational acceleration, B the volumetric expansion coefficient, AT
the temperature drop between the heated surface and the ambient fluid, p the
viscosity, and k the thermal diffusivity. A stream function may be introduced in the

usual way: u = v, vy = — ;, and we obtain the following pair of equations:
Vzl&= —Ra 9}+ DaVﬂﬁ (3a)
V0= ;0.— y.0; (3b)

which are to be solved subject to the boundary conditions:

Y=1;=0 6=1 F=0 £>0 Y. y;;,070 SO0 (4)

Vv

Both Ra and Da appear in Egs. (3a), and although it is possible to eliminate
both parameters at this stage by means of suitable resealings, it is preferable to set
the following analysis into the context of the well-known Darcy-flow study of
Cheng and Chang [3], where boundary frictional effects were assumed to be absent.
Thus we use the traditional scalings for horizontal free convection boundary layer
flow in a porous medium and set

lﬁ= Ra'/? v 0= 0 x=x j=1Ra '3 (5)

where we also take Ra to be asymptotically large. Substitution of Eq. (5) into Egs.
(3a) and (3b) yields the following equations:

= = 6+ ayss (6)

yy yyyy

05 = V56— U6 (65)
at leading order in Ra. Here we have a defined as
o= DaRa®’? @)
and if we can assume at this stage that this quantity is O(1) as Ra — oo, then it
implies that Da < | in magnitude, which is physically realistic.

When o= 0 in Eq. (6a), Egs. (6a) and (6b) comprise the boundary layer
equations for Darcy-free convection. But when a= 0, we can rescale again and
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eliminate o from the equations. This is done by substituting
w= a1/4 0= 0 Y= a3/4x ;= al/zy (8)
into Eqs. (6a) and (65), and therefore we obtain
V= — 0% ¥, (9a)
0,,= ¥,0,— .0, 90)

Finally, before the boundary layer analysis is undertaken, it is essential to check
that the boundary layer approximation has not been violated by imposing the
second transformation, Eq. (8). Thus we require x> » for the approximation to be
valid, and this implies that Ra > O(Da~'"?). It should be noted that in ref. [4] the
two physical cases in terms of the interplay between the momentum and thermal
boundaries are analyzed in detail and analytical solutions are obtained for both
constant temperature as well as constant heat flux boundary conditions.

ASYMPTOTIC ANALYSIS FOR SMALL VALUES OF x

A straightforward scale analysis shows that the appropriate similarity form
close to the leading edge is obtained by using

v=x"F(& X)  0=G(C x)  C=y/¥ x=x (0)

which, upon substitution in Egs. (9a) and (9b) leads to
Fyt 506G~ X Fy= TXG (11a)
Get TFGr= TX(F;Gy— FyGp) (115)

The boundary conditions at = 0 are that F= F,= 0 and G = 1, and we expect
that G = 0 as { — ». The ordinary differential system, which is obtained by
setting X = 0 in Egs. (11a@) and (11b) cannot be solved using the boundary
conditions Fy, F;y = 0 as { = o, which correspond to the large-y conditions on 1,
which are given in Eq. (4). However, a solution is easily found if the large-§
conditions are replaced by Fy, Fx 7 0. In this case, we find that F varies linearly
at sufficiently large values of £, rather than being a constant. Thus the requirement
that F, = 0 is violated. We will see, however, that this is accounted for by invoking
the presence of an outer, “momentum-adjustment” layer.

This outer layer corresponds to where y= O(1) as x — 0 (noting that
y= 0(x* %) in the main thermal boundary layer). Given that F; 7 a,, a constant,
as § > o, it is clear from Eq. (115) that G exhibits superexponential decay for
large values of { when X = 0, for G becomes proportional to exp(— 3/ IO)aOCZ).
Therefore the temperature field is negligible in the outer layer, and we can
introduce the following transformation for i in the outer layer:

V= xl/s.?('y, x) (12)
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Equation (9a) reduces to

F o= F =0 (13)

yyyy yy
where the matching conditions at {= 0 and the boundary conditions as { = o are

F=0 F=a, at y=0, F,F,70 as y > (14)

y > yy
The solution for #is
F=a,(1— ¢ ) (15)

The solution Eq. (15) is the leading term in the outer layer solution for small
values of x. It is possible to proceed to quite a large number of terms in both the
outer and main layers with the application of suitable matching conditions between
the layers. To summarize the result of this process, which is quite straightforward,
we can expand F and G in Egs. (11a) and (115) and % in Eq. (13) using the
following series:

(F,G)=Y X" F,({),G, ()] (16a)
n=20
F= 3 X'"#(y) (16b)
n=0

The equations for the various coefficient functions are
F"+ 3Gy=0 Gy+ TF,G,=0 (17)
F"+ (G, — G,)=10 G+ I(F,G,+ F,G,) = *(F,G,— F,G,) (18)

FH 3CG = nG) = Fiy G 1Y FG = X (B G- FG)

n—i
0 i=1

X
w

n=2,3,..., (19)
F—F=0 =01, (20)

The large-{ behavior of the F, functions in the inner layer is

Fy~ (agl+ by) 2la)
1
F, ~ —;aoé’2+ (a, &+ by) (21b)
1 1 ,
Fy~ ;ao— ;alé’ + (a, + by) (21¢)
1 1 1
Fyi~ — Zao-l- P ;a24’2+ (a; &+ by) (21d)
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and so on, with the constants «, and b, being found when solving the appropriate
equations for F, and G,. The outer solutions are, simply,

= a,(l— e 7) F=b,_+ a,(1—¢e") n=1,2,..., (22)

The values of a, and b, that appear in Eqgs. (21) and (22) are given in Table 1 for
the first six terms in the series solution. They were calculated using a fourth-order
Runge-Kutta scheme linked to the shooting method, where { ranged between 0
and 20 with 1600 equally spaced intervals; these solutions are accurate as shown in
the table, and comparisons were made with coarser grids and larger values of & ...
The inner solutions obtained are presented in Figure 1 in terms of the various
temperature profiles. The surface shear stress and rate of heat transfer may be
found by using

or = X"F'(0) ﬁ_G = X"G (0) (23)
agz =0 n§0 ! ﬁC =0 n§0 ’

together with the data in the final two columns of Table 1. The values of the
surface shear stress and rate of heat transfer given in Eq. (23) are plotted in Figure
2 together with the results of the full numerical simulation described below.

Go(()

Figure 1a. G(({) as obtained by solving Eq. (17).
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Go(¢)

Figure 1b. G,({) (n=1,...,5) as obtained by solving Eqs. (18) and (19).

ASYMPTOTIC ANALYSIS FOR LARGE VALUES OF x

Far from the leading edge, we revert to the Darcy-flow similarity form and
use

l//= X1/3f(n?§) 9= g(n’g) TI=J//X2/3 §= X4/3 (24)
in Egs. (9a) and (95b) to obtain
S~ ?ngn_ & Sommn = — Tég: (25a)

gt 3f2,= TE(Sy 8~ frgy) (25b)

Table 1. Values of a,, b,, F, (0), and G,(0)

n a, b, F, (0) G,(0)

0 1.1488 —1.0392 —0.97534 —0.45619

1 1.7233 —2.1230 —0.15296 1.0291 x 107!
2 2.4621 —3.2583 6.5140 x 10~ * —3.2358x 1073
3 3.3729 —4.5410 2.1878 x 1072 —3.6892x 104
4 4.5293 —6.1284 1.4068 x 1072 —5.9935x 104
5 6.0474 —8.2238 5.5784x 1074 —9.4625x 104




DARCY-BRINKMAN FREE CONVECTION FROM A SURFACE 199

Surface shear stress.

)

(i)

Rate of heat transfer

Figure 2. Surface shear stress and rate of heat transfer given by (i) Egs. (51a) and
(i) Eqgs. (515). Also shown are the corresponding results obtained from the small-x
asymptotic analysis.

subject to
/=0  f;=0 g=1 n=0  f.fy-870 n—o  (26)

A straightforward expansion of Egs. (25a4) and (255b) in an inverse power series in &
shows that the fourth derivative term in Eq. (254) is negligible at leading order and
therefore the large-£ analysis is a singular perturbation problem with two layers
appearing again. Therefore we need to install a relatively thin layer near the
surface, where 77 is very small. This inner layer must have y= O(1) in order to
balance the momentum terms in Eq. (254). Therefore we rewrite Eqgs. (25a) and
(25b) using the transformations

f(n, &)= Fp. &) g(n,&)=9%(y,¢&) 27)
and hence we obtain
'gy_ 'gyyy_'_ ?9’§= 0 (28a)

g, + 35wy, = VN (FY. - £ (285)
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We have used the same notation for this constant-thickness inner layer as we used
for the outer layer near x= 0; this is because these respective layers are of the
same uniform thickness. The presence of the 51/2 terms in Eqgs. (28a) and (28b)
suggests that the solutions of Eqgs. (25) and (28) proceed in inverse powers of 51/2.
However, the 0(5_1/2) equations in the expansion of Egs. (25a4) and (25b) admit
eigensolutions and are insoluble. Therefore logarithmic terms must be introduced:
let

=1+ L, mE P e+ fmE i+ (294)
g=go(m+ g, (& &+ g2 - (295)
in Eqgs. (25a) and (25b), where
fi—3ing=0 g+ 3/,g=0 (30)
fir= g+ a)=0 g, + (S~ firgt 2fig)=0 (1)

fi— 25(7781 + g) = ?glL gt é(fogi —figot 2f08) = i3‘-(1(‘('):‘>’1L — f1..80)

(32)
In the inner layer the expansion begins as follows,
F=FN+ ANE 2+ FLE st FE (33a)
g=9(»N+F9(NE'7+ 9,8 me+t 9,8+ - (33b)
and the boundary conditions are that
F0) = F(0)=0 %,(0) =1 (34a)
and
F(0)=#(0)=9,0)=0 n=1,2,... (34b)

with suitable matching conditions between the layers as y = o and n = 0.

The solution of Egs. (30) subject to f,(0) = 0, g,(0)= 1, and f;, g, — 0 as
1 = ©is well-known and was first presented by Cheng and Chang [3]. The small-n
behavior of f, and g, must be examined to provide matching conditions for the
inner layer solutions:

fop) = an+ by’ + g () = 1+ bn— Frabn’ + - (35)

where a = 1.055748 and b= —0.430213 to six decimal places. Therefore we
deduce that the first two terms in the inner layer solution are

F(y)=20 Zo(») =1 (36)
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and
F(y)=ale’— 1+ y) (37a)
g(y)= by (37b)

The “— 17 term in Eq. (37a) provides a forcing term for the 0(5_1/2) outer layer
solution via the matching conditions. Therefore Eqgs. (31) and (32) must be solved
subject to the boundary conditions

J1.0) =10 £1.(0)=0 Sir-&L 70 n—® (38)
fil0)=—a  g0)=0 1.8 70 n—® (39)

The solution of Eqs. (31) subject to Eqs. (38) is the eigensolution
fir=Mnfo— fo) &= Ang (40)

where A is presently unknown but its value is determined by insisting that Eqgs. (32)
have a solution. The solution to Eqs. (32) may be written in the form

fhi=ofo=f) = fot by &= ong,— g+ bgy (41)
where fj; and g, satisfy the equations
fir= sgnt ) = 3Ang, gt sUog = gt 2figi) = SAg (42)
subject to the boundary conditions
f1;(0) =0 g1+(0) =1 Siss &1 70 n—® (43)

We note that Eqgs. (42) cannot be solved with A set to zero, i.e., in the absence of
logarithmic terms in Egs. (29a) and (29b). Now o is an arbitrary constant in Eq.
(41), and its precise value may only be found by comparing the boundary layer
solution with a solution of the full elliptic equations of motion. Numerically, it is
necessary to choose an arbitrary value for o in order to obtain a solution of Eqs.
(41), and therefore we shall set g'l,r(O) = 0. This fifth boundary condition for Eqs.
(42) enables us to evaluate A, but the choice of the fifth boundary condition does
not affect the computed value of A. We find that

A= —0.149516 f”(O) = —0.469567 (44)
The 0(5_1 In &) and 0(5_1) solutions in the inner layer are now

F,=0  9,,= by (45)

= bfi;(0)y ¢,= oby (46)
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Therefore we may summarize these various results in terms of the surface shear
stress and rate of heat transfer:

.97.|y=0=a§_1/2+ 0(5_1) 47a)

yy
G lmo=bE 2+ Qg In &+ bo& '+ (&) (47b)
In terms of f, g, and n (see Eqs. (24)), the above translates into
fonln=0=a&"?+ o(1) (484a)

gn|n=o=b+ib§_l/2 1n§+ bG§_1/2+o(§_1/2) (48b)

NUMERICAL SOLUTIONS

Equations (11) (used for X < 1 or x< 1) and Egs. (25) (used for £> 1 or
x> 1) form a parabolic system of equations whose solution may be affected by
means of a marching scheme such as the Keller box method [5], which has been
used for boundary layer flows. The present system of equations poses a novel
difficulty for the application of the method, as the boundary layer has a double-layer
structure near the leading edge, where the computations must be initiated. Nor-
mally, a double-layer structure, should one exist, develops as x becomes large, but
this poses little difficulty (apart from resolution), as the development is gradual. It
is quite possible, however, to mimic the double-layer structure near the leading
edge in the present problem by a suitably modified set of boundary conditions. The
small-x outer flow solutions given by Eqs. (22) are all of the form #= B+ Ae 7,
and this may be rewritten in terms of { as #= B+ Ae” %, This exponential decay
to a constant value of the scaled stream function, together with the linear growth
of F, (see Eq. (21a)) at x= 0, may be combined by solving Eqs. (11a) and (115)
subject to the boundary conditions

F=0  E=0  6G=1¢=0 (494)
(Fgt EF), (Fypet EFy), G 0 s (495)

The imposition of the conditions in F in Eq. (495) means that Fg will not
necessarily be close to zero at {= {,,,, the maximum value of { used in the
computational work, but the exponential decay corresponding to the outer layer is
assured. As & increases, the rate of decay increases too, and eventually, F, at
§= Cnax Will be sufficiently small (say, 107°), that we can revert to the following
large-¢ conditions:

FeoFye s G 0 o (50)

It is necessary that the switch between the large-{ conditions given in Eq. (495)
and those in Eq. (50) be made as soon as possible as & increases, and therefore
quite a large value of {,, must be used. In the present computation, { ,, = 200
was used, which is well in excess of that essential for the accurate solution of F|
and G, (Eqs. (17)), and therefore the switch between the boundary conditions may
be made before & reaches 0.1. We note that this technique of using modified
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boundary conditions to account for an outer flow regime has also been used
successfully in the recent paper by Rees and Pop [6].

The standard Keller box method was used to solve the governing parabolic
partial differential system. Briefly, Egs. (11) and (25) were reduced to first-order
form in either { or 7 and discretized using central differences based halfway
between the grid points on a nonuniform cross-stream grid of 97 points with
0 < §,n < 200. Grid points were concentrated toward the surface in order to
capture the developing near-wall layer far from the leading edge. The streamwise
discretization was based on central differences except at the leading edge, where
Eqgs. (11) result in an ordinary differential system. In the streamwise direction, we
used a nonuniform grid of 186 points between 0 and 100. The Newton-Raphson
iteration matrix, which forms the central part of the Keller box method was
computed numerically within the code, rather than specified by the programmer;
see also Refs. [6]-[8]. As Eqgs. (11) and (13) do not contain any nondimensional
parameters to vary, the code needed only to be run once to obtain all the required
information about the effects of boundary friction on horizontal free convection
flow.

The numerical results are presented in terms of the surface shear stress and
the rate of heat transfer, as shown in Figure 2. This information is presented in two
forms: (i)

Fgglg:() - Gél@:(} x< 1 and

_ i _ (51a)
X 4/5frm|n=0 —y 4/158n|n=0 x> 1

which is suitable for small values of x where the quantities are nonzero at x= 0,
and (i)

2/ 15F44|C= 0 —y 15G4|g= 0 ¥< 1 and
—2/3 ¢ (G10)
X 7 fanln=o0 — gnln=0 x> 1

which is suitable for large values of x where both quantities tend toward nonzero
constants as x becomes large. Cross-validation of the Keller box computation and
the small-x analysis is seen in Figure 2, where the agreement between the two
analyses is very good. At large values of x it is clear that the presence of the
unknown constant, ¢, in the asymptotic solution reduces substantially the useful-
ness of that solution in providing accurate values of the shear stress and rate of
heat transfer. Although we have determined two terms explicitly for the surface
rate of heat transfer, the third term, which involves o, has an order of magnitude
that is smaller than the second by a factor (In 5)_1, and therefore it decays very
slowly as & increases.

DISCUSSION

The primary purpose of this paper was to determine in detail how boundary
friction effects in the form of the Brinkman terms affect the classical Cheng and
Chang [3] horizontal free convective boundary layer flow in a porous medium. It
has been shown that the boundary layer consists of a double-layer structure very
near to the leading edge. The outer layer here may be regarded as a momentum
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adjustment layer, since the inner layer is dominated by boundary frictional effects.
These layers merge as x increases, and the numerical method had to be carefully
tailored to account for the presence of the outer layer very near the leading edge.
However, as x increases further, a double-layer structure is recovered, the outer
layer being identical to the Darcy-flow case given in Ref.[1], at least to the leading
order. The inner layer is dominated by boundary frictional effects that modify the
flow near the surface but not the rate of heat transfer.

It is of some interest to point out that the outer layer for small values of x
and the inner layer at large values of x are of the same uniform thickness, since
both are described in terms of the nondimensional cross-stream variable y. This
thickness, namely, y= O(1), corresponds to f= O(Dal/z), which corresponds
exactly to a balance of magnitudes between the velocity flux term and the
Brinkman term in Eqs. (15) and (I1¢). Clearly, y= O(Dal/z) is a natural length
scale in problems where boundary frictional effects occur. In terms of y, the
evolving thermal boundary layer is much thinner than O(1) at the leading edge (its
thickness is 0(x2/5) for small values of x) and is much thicker than O(1) far
downstream (where its thickness is 0(x2/3) for large values of x). It should be
noted that in this work, the inertial and dispersion effects as well as non-local
thermal equilibrium and variable porosity effects were neglected based on the
results presented in refs [9] to [11].
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