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The e}ect of steady streamwise surface temperature
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Abstract

We examine how the steady free convective boundary!layer ~ow induced by a vertical heated surface is a}ected by
the presence of sinusoidal surface temperature variations about a constant mean value which is above the ambient ~uid
temperature[ The problem is studied using fully numerical techniques and an asymptotic analysis which is valid at large
distances from the leading edge[ The surface rate of heat transfer eventually alternates in sign with distance from the
leading edge\ but no separation occurs unless the amplitude of the thermal modulation is su.ciently high[ The agreement
between the numerical results and a two!term asymptotic analysis is excellent[ Þ 0888 Published by Elsevier Science
Ltd[ All rights reserved[

Nomenclature

a surface temperature wave amplitude
a1\ b0 constants
A9\ A0 inner layer functions of z

B9\ B0 inner layer functions of z

C9\ C0 inner layer functions of z

d half the dimensional thermal wavelength
f\ f9\ f0 coe.cient functions for the streamfunction in
the outer layer
F\ F9\ F0 coe.cient functions for the streamfunction in
the inner layer
`\ `9\ `0 coe.cient functions for the temperature in the
outer layer
`� gravity
G\ G9\ G0 coe.cient functions for the temperature in
the inner layer
Gr � `�bDT d2:n1 Grashof number
p pressure
T temperature
u\ v ~uid velocities in the x! and y!directions\ respect!
ively
x\ y streamwise and cross!stream Cartesian coor!
dinates[

� Tel[] 99 33 0114 715664^ fax] 99 33 0114 715817^ e!mail]
ensdasrÝbath[ac[uk

Greek symbols
a thermal di}usivity
b coe.cient of cubical expansion
DT mean temperature drop
z\ h similarity variable
u temperature
n viscosity
r reference density
s � n:a Prandtl number
c streamfunction[

Subscripts
x\ y di}erentiation with respect to x and y\ respectively
w refers to the wall
� ambient[

Superscript
? di}erentiation with respect to h or z[

0[ Introduction

This paper describes an investigation of the e}ects of
surface temperature variations on the steady boundary!
layer ~ow of a Newtonian ~uid from a heated vertical
surface[ It is well!known that power!law surface tem!
perature distributions "and also power!law surface heat
~uxes# give rise to self!similar boundary!layer ~ows ð0\
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1Ł[ But here we are interested in another form of surface
variation\ namely\ sinusoidal variations about a mean
temperature which is held above the ambient temperature
of the ~uid[ This type of surface distribution may be
taken to model the e}ects of a periodic array of heaters
behind or within the wall[ Although an accurate analysis
of such a con_guration would require a detailed exam!
ination of the e}ects of solid conduction within the heated
surface\ it is the aim of the present work to simplify the
problem by imposing a surface temperature distribution[
In this way we can determine a large amount of infor!
mation about the resulting ~ow using both numerical and
asymptotic methods[

Various papers have been published which deal with
the e}ects of surface variations[ For example\ Yao ð2Ł
and Moulic and Yao ð3\ 4Ł have sought to investigate
the e}ects of streamwise surface undulations of free and
mixed convection from vertical surfaces held at uniform
temperatures[ More recently\ Chiu and Chou ð5Ł\ Hossain
et al[ ð6Ł and Kim ð7Ł have extended these analyses to
micropolar ~uids\ magnetohydrodynamic convection
and non!Newtonian convection\ respectively[ In a series
of papers Rees and Pop ð8Ð02Ł and Rees ð03Ł have also
considered a large variety of analogous ~ows in porous
media[ Of these\ only ð03Ł has been concerned with the
e}ect of sinusoidal surface temperature variations\
although in that case the surface variations were span!
wise\ thereby giving rise to a three!dimensional ~ow!_eld[

The present paper considers in detail how sinusoidal
surface temperature pro_les in the streamwise direction
modify the otherwise self!similar boundary!layer ~ow[
We tackle this topic using both numerical and asymptotic
methods[ Solutions are presented in terms of the surface
rate of heat transfer and shear stress and detailed iso!
therms are also given[ An important feature of the ~ow
is that a near!wall layer develops at large distances down!
stream of the leading edge[ The numerical evidence
suggests and the asymptotic analysis shows\ that this
inner layer decreases in thickness with distance down!
stream[ In this regard it is quite unlike the analogous
problem with spanwise temperature variations ð04Ł\ or
the porous medium analogue problems with streamwise
ð05Ł or spanwise ð03Ł variations\ where the near!wall layer
has constant thickness[ We _nd that a two!term asymp!
totic analysis yields extremely good approximations to
the numerical simulations even at distances which are
relatively close to the leading edge[

1[ Governing equations and boundary!layer analysis

We consider the boundary layer induced by a heated
semi!in_nite surface immersed in an incompressible New!
tonian ~uid[ In particular\ the heated surface is main!
tained at the steady temperature\

T � T�¦"Tw−T�#"0¦a sin"px¼:d## "0#

where T� is the ambient ~uid temperature\ Tw is the
mean surface temperature with Tw × T�\ a is the relative
amplitude of the surface temperature variations and 1d
is the wavelength of the variations[ After a suitable non!
dimensionalisation the steady two!dimensional equations
of motion are given by

ux¦vy � 9 "1a#

uux¦vuy � −px¦Gr−0:1"uxx¦uyy#¦u "1b#

uvx¦vvy � −py¦Gr−0:1"vxx¦vyy# "1c#

uux¦vuy � s−0Gr−0:1"uxx¦uyy# "1d#

where Gr is the Grashof number and s is the Prandtl
number[ In the derivation of equations "1# the Boussinesq
approximation has been assumed[ We note that the
Grashof number has been based on d\ half the dimen!
sional wavelength of the thermal waves[

When the surface temperature is uniform and the
Grashof number is very large\ the resulting boundary!
layer ~ow is self!similar[ But the presence of sinusoidal
surface temperature distributions\ such as that given by
"0#\ renders the boundary!layer ~ow nonsimilar[ The
boundary!layer equations are obtained by introducing
the scalings

u � u�\ v � Gr−0:3v�\ x � x�\

y � Gr−0:3y�\ p � Gr−0:1p�\ u � u� "2#

into equations "1#\ formally letting Gr become asymp!
totically large and retaining only the leading order terms[
Thus\ we obtain

ux¦vy � 9 "3a#

uux¦vuy � uyy¦u "3b#

uvx¦vvy � −py¦vyy "3c#

uux¦vuy � s−0uyy "3d#

where the asterisk superscripts have been omitted for
clarity of presentation[ Equation "3c# serves to de_ne the
pressure _eld in terms of the two velocity components
and is decoupled from the other three equations[ There!
fore\ we shall not consider it further[ As the equations
are two!dimensional we de_ne a streamfunction\ c\ in
the usual way\

u �cy\ v � −cx "4#

and therefore\ "3a# is satis_ed automatically[ Guided by
the familiar self!similar form corresponding to a uniform
surface temperature\ we use the substitution

c � x2:3f"h\ x#\ u � `"h\ x# "5a\b#

where

h � y:x0:3 "5c#

is the pseudo!similarity variable[ Equations "3b# and "3d#
reduce to
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f1¦`¦2
3
ffý−0

1
f ?f ?¦x" fxfý−f?xf ?# � 9 "6a#

s−0`ý¦2
3
f`?¦x" fx`?−f ?`x# � 9 "6b#

and the boundary conditions are

f � 9\ f ? � 9\ ` � 0¦a sin px

at h � 9\ and f ?\ ` : 9 as h : �[ "6c#

In equations "6#\ primes denote derivatives with respect
to h[

2[ Numerical solutions

The parabolic system of equations "6#\ is nonsimilar
and its numerical solution must be obtained using a
marching method[ The results presented here were
obtained using the Keller box method\ introduced by
Keller and Cebeci ð06Ł and described in more detail in
Cebeci and Bradshaw ð07Ł[ After reduction of equations
"6# to _rst!order form in h\ the subsequent second!order
accurate discretisation based halfway between the grid
points in both the h! and x!directions yields a set of
nonlinear di}erence equations which are solved using a
multi!dimensional NewtonÐRaphson iteration scheme[
In the present methodology the di}erence equations are
de_ned within the Fortran code and the iteration matrix\
which is the Freche�t derivative of the di}erence equa!
tions\ is determined using numerical di}erentiation\
rather than being speci_ed explicitly within the code[
Such a methodology\ though slower in execution than
when the matrix is de_ned explicitly\ admits a much faster
code development[ This has been seen to be especially so
in relatively complicated parabolic systems such as that
considered in ð03Ł[

The results presented in Figs 0 and 1 are based on
uniform grids in both coordinate directions[ There were
190 gridpoints lying between h � 9 and h � 19 and 390
between x � 9 and x � 19[ Convergence at each x!station
was assumed when the maximum absolute correction was
less than 09−7[ We restrict the presentation of our results
to three values of the Prandtl number] s � 9[90\ which is
representative of liquid metals\ s � 9[6 for air and s � 6
for water[

Figure 0"a#Ð"c# shows the evolution with x of fý"h � 9#\
a scaled surface shear stress\ for various values of the
temperature wave amplitude\ a[ The corresponding rates
of surface heat transfer are shown in Figs 1"a#Ð"c#[ Some
aspects of the overall behaviour of these curves may be
explained by observing that the boundary layer is thinner
when the surface temperature is relatively high and
thicker when it is low[ This arises because relatively high
surface temperatures induce relatively large upward ~uid
velocities\ with the consequent increase in the rate
entrainment into the boundary layer[ This causes\ in turn\
a thinning of the boundary layer[ Thus\ we should expect
high shear stresses and rates of heat transfer at positions
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or perhaps just beyond where the surface temperature
attains its maximum values[ There is an obvious quali!
tative di}erence between the curves shown in Fig[ 0 and
those in Fig[ 1[ As x increases\ the amplitude of oscillation
of the shear stress curves decays slowly\ whereas the
amplitude of heat transfer curves increases with x[
Indeed\ the curves in Fig[ 1 suggest that\ whatever the
value of a\ there will always be a value of x beyond which
some part of the rate of the heat transfer curve between
successive surface temperature maxima will be positive[
This somewhat unusual phenomenon for boundary layer
~ows may be explained by noting that when relatively
hot ~uid encounters a relatively cold part of the heated
surface the overall heat transfer will be from the ~uid into
the surface\ rather than the other way around[ However\
physical arguments like these are insu.cient to account
for why the amplitude of oscillation of the curves in Fig[
0 decay\ or to give the rate of decay[ In the Appendix an
asymptotic analysis is presented which gives this quan!
titative information[ Indeed we shall see that the proper!
ties of these curves are bound up with the presence of a
developing near!wall layer embedded within the main
boundary layer[

In Fig[ 2 is shown the isotherms for s � 9[6 for a � 9[1\
9[4 and 0[9[ Here we see that the boundary layer main!
tains its overall thickness in terms of h when x is large\
although variations in thickness are clearly present when
x is small[ The thickness of the region in which strong\
surface!induced temperature variations are present
reduces slowly in size as x increases[ Both of these obser!
vations are accounted for in the asymptotic analysis\
below[ The development of a near!wall layer is most
clearly evident by considering the perturbation of the
temperature _eld from that given by a � 9[ Figure 3
displays such perturbation isotherms for a � 0[9 and the
presence of the developing near!wall layer is con_rmed[

It is necessary to comment on the fact that all the
results presented in Fig[ 0 have a positive shear stress[ It
is to be expected that the surface shear stress decreases
when the surface temperature is relatively low\ since the
cool surface is\ in e}ect\ slowing the upward progress of
the ~ow[ Indeed\ Fig[ 0 shows that no separation occurs
when a ¾ 0 for the range of Prandtl numbers considered[
When a × 0\ however\ it is possible to obtain negative
shear stresses[ We shall not present detailed results\ for
they depend not only on the value of s\ but also on the
phase of surface temperature modulation\ an aspect not
covered by the present work[ However\ when s � 9[6
incipient separation "i[e[ a zero shear stress# _rst occurs
when a ¹ 0[804[ When s � 6[9\ the critical value of a is
1[994[ This means that the minimum temperature of the
{heated| surface needs to be well below that of the ambient
medium before separation can occur[ We _nd that it is
not possible to continue numerical integration past the
point of separation\ a feature which the present problem
does not share with that of ð09Ł where integration with
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Fig[ 2[ Isotherms for s � 9[6 for "i# a � 9[1\ "ii# a � 9[4 and "iii# a � 0[9[

Fig[ 3[ Perturbation isotherms for s � 9[6 and a � 0[9[ This _gure demonstrates the development of a thin near!wall layer as x increases[

ease through successive recirculation bubbles was
reported[

The usefulness of the asymptotic analysis contained in
the Appendix lies in the facts that "i# it shows that it is
impossible to continue the numerical simulations as far
as one would wish due to the thinning near!wall layer\
"ii# it allows one to terminate the numerical work at a

suitable point where the numerical and asymptotic results
agree to a high degree of accuracy and "iii# it accounts
for the reasons why the ~ow evolves as it does[ For the
present ~ow\ the detailed mathematical analysis has been
relegated to the Appendix\ where it may serve as a model
for more complicated ~ows\ such as that of a micropolar
~uid under identical circumstances[ The results may be
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summarised in terms of the surface shear stress and rate
of heat transfer]

11f

1h1bh�9

� a1−x−0:2aðAý0"9# cos px

¦Bý0"9# sin pxŁ¦O"x−1:2# "7#

1`
1hbh�9

� x0:2aðA?9"9# cos px¦B?9"9# sin pxŁ

¦a1G?01s"9# sin 1px¦aG?00c"9# cos px

¦b0¦O"x−0:2#[ "8#

In equations "7# and "8# the terms A9\ A0\ B9\ B0\ G01s

and G00c refer to functions introduced in the asymptotic
analysis[ The values of those derivatives given in "7# and
"8# may be found in Tables 0 and 1[ In Fig[ 4 we show
comparisons between these asymptotic values and the
fully numerical results[ Here we take s � 9[6 and choose
a � 0\ a very large surface temperature wave amplitude[
However\ despite the size of a\ we see that the curves are
in virtually perfect agreement with excellent agreement
even for values of x as low as 9[4[

3[ Conclusions

A combined numerical and asymptotic analysis of free
convection ~ow from a vertical heated surface with stream!

Table 0
Values of f ý"9#\ `?"9#\ A?9 and B?9"9#

s a1 � fý9"9# b0 � `?9"9# A?9"9# B?9"9#

9[90 0[2858 −9[9469 −9[0175 −9[1116
9[91 0[2451 −9[9678 −9[0594 −9[1668
9[94 0[1733 −9[0199 −9[1028 −9[2693
9[09 0[1049 −9[0516 −9[1536 −9[3470
9[19 0[0218 −9[1066 −9[2147 −9[4528
9[49 0[9975 −9[2019 −9[3144 −9[6252
9[69 9[8590 −9[2421 −9[3573 −9[7093
0[99 9[8971 −9[3909 −9[4068 −9[7859
0[49 9[7381 −9[3596 −9[4688 −0[9929
1[99 9[7968 −9[4955 −9[5167 −0[9747
2[99 9[6497 −9[4656 −9[6904 −0[1029
3[99 9[6002 −9[5293 −9[6473 −0[2003
4[99 9[5703 −9[5635 −9[7944 −0[2815
5[99 9[5463 −9[6012 −9[7359 −0[3513
6[99 9[5264 −9[6344 −9[7705 −0[4128
7[99 9[5195 −9[6641 −9[8025 −0[4689

09[99 9[4817 −9[7157 −9[8583 −0[5643
19[99 9[4008 −0[9941 −0[0527 −1[9094
39[99 9[3281 −0[1035 −0[2834 −1[3965
69[99 9[2755 −0[3093 −0[5006 −1[6702

099[99 9[2448 −0[4384 −0[6557 −2[9367

Table 1
Values of Aý0"9#\ Bý0"9#\ G?01s"9# and G?00c"9#

s Aý0"9# Bý0"9# G?01s"9# G?00c"9#

9[90 9[2477 −9[5196 9[96051 9[996646
9[91 9[2366 −9[5904 9[96267 9[900019
9[94 9[2185 −9[4691 9[96681 9[906351
9[09 9[2021 −9[4306 9[97127 9[913976
9[19 9[1831 −9[4989 9[97726 9[921527
9[49 9[1545 −9[3484 9[98829 9[936306
9[69 9[1431 −9[3287 9[09321 9[942827
0[99 9[1307 −9[3072 9[00920 9[950413
0[49 9[1162 −9[2820 9[00688 9[960997
1[99 9[1057 −9[2640 9[01394 9[967290
2[99 9[1919 −9[2384 9[02241 9[978399
3[99 9[0805 −9[2204 9[03985 9[986768
4[99 9[0725 −9[2066 9[03607 9[093706
5[99 9[0661 −9[2954 9[04145 9[009617
6[99 9[0607 −9[1861 9[04623 9[004894
7[99 9[0561 −9[1781 9[05055 9[019414

09[99 9[0486 −9[1651 9[05814 9[017428
19[99 9[0264 −9[1267 9[08503 9[044861
39[99 9[0064 −9[1921 9[11768 9[076719
69[99 9[0920 −9[0672 9[15997 9[106245

099[99 9[9837 −9[0527 9[17155 9[127128

wise temperature variations has been undertaken[ The
numerical results indicate "i# that the e}ect of sinusoidal
thermal modulations is to vary the boundary layer thick!
ness\ "ii# that this e}ect wanes with distance downstream\
"iii# that the ~ow recovers to that of the unmodulated
case save for a thin region immediately next to the heated
surface where most of the thermal adjustment takes place
and "iv# that the rate of heat transfer will eventually
alternate in sign with distance irrespective of the ampli!
tude of the thermal modulation[ These e}ects were ex!
plained by performing a two!term asymptotic analysis of
the governing equations and the existence of a thinning
near!wall layer was con_rmed and quanti_ed[ Detailed
comparison between the numerical and asymptotic
analyses gave astonishingly good agreement[ In addition\
it was found that separation did not occur unless a × 0\
although the precise value of a for incipient separation
depends on the value of s[
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Fig[ 4[ Comparisons between the fully numerical solution and the asymptotic solutions given by "7# and "8#[ Here s � 9[6 and a � 0[9
and comparisons are made between "i# the surface shear stresses and "ii# rates of heat transfer[ The solid lines represent the numerical
solutions and the dashed lines\ the asymptotic solution[

University of Exeter\ U[K[\ for useful comments on the
asymptotic analysis[

Appendix] asymptotic analysis

Here we will examine in detail the evolution of the ~ow
at large distances from the leading edge[ The main aims
are to discover the structure of the ~ow\ to explain all the
above!noted observations from the numerical work and
to provide correlations for the surface shear stress and
rate of heat transfer[

The _rst task is to determine the thickness of the
developing inner "near!wall# layer in terms of h[ We begin
by following the numerical evidence that the main bound!
ary layer look increasingly like the self!similar a � 9 case
at large values of x[ Thus\ we set f ½ f9"h# and ` ½ `9"h#
in "6# where f9 and `9 satisfy the equations

f 19¦`9¦
2
3
f9 f ý9−

0
1
f ?9 f ?9 � 9 "A0a#

s−0`ý9¦
2
3
f9`?9 � 9 "A0b#

and are subject to the conditions

f9"9# � 9\ f ?9"9# � 9\ `9"9# � 0\

and f ?\ ` : 9 as h : �[ "A0c#

For small values of h we can expand the solutions of "A0#
in the power series]

f9 ½ 0
1
a1h

1−0
5
h2− 0

13
b0h

3¦ 0
379

a1
1h

4 "A1a#

`9 ½ 0¦b0h− 0
21

sa1b0h
3¦ 0

059
sb0h

4 "A1b#

where a1 � f ý"9# and b0 � `?"9# de_ne the {constants| a1

and b0\ and we note that they are both functions of s[ In
the inner layer we must balance the order of magnitude
of the following terms in equation "6a#] the buoyancy
term\ `\ the highest derivative\ f 1 and the nonlinear terms
involving x!derivatives\ x" fx f ý−f ?x f ?#[ Given the form
of the surface temperature variation\ fx values will vary
over an O"0# distance in the x!direction even when x Ł 0[
Thus\ the other nonlinear terms in "6a# are negligible[
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Equation "A1a# shows that f ý � O"0# when h is small and
this leads us to the scalings\ h � O"x−0:2# and f � O"x−0#
when x is large[ However\ this size of h\ taken together
with the leading behaviour of f9 in "A1a#\ shows that
f � O"x−1:2# in the inner layer[ This apparent error in
the order!of!magnitude analysis simply indicates that the
leading term in the inner layer passively transmits the
main layer shear stress to the boundary and it will be
independent of x^ this is con_rmed below[ Therefore\ the
power series expansion in the inner layer must re~ect this
order!of!magnitude for f[

We shall denote f and ` by F and G\ respectively\ in the
inner layer and de_ne a new pseudo!similarity variable z\
according to

z � hx0:2[ "A2#

When z is rewritten in terms of x and y\ z � yx0:01\ we
can deduce that the inner layer has a physical thickness
which is O"x−0:01# as x becomes large[ Equations "6# are
transformed to

F1 � x−0:2"2
3
FFý−4

5
F?F?#

¦x−0G¦x1:2"FxFý−F?xF?# � 9 "A3a#

s−0Gý¦2
3
x−0:2FG?¦x1:2"FxG?−F?Gx# � 9 "A3b#

where primes denote derivatives with respect to z when
used on inner variables[ These equations are sup!
plemented by the initial conditions\

F"9# � F?"9# � 9\ G"9# � 0¦a sin px "A3c#

but the boundary conditions as z : � have to be
obtained by matching with the outer ~ow solutions of
"6a# and "b#[ Guided by the above scaling arguments we
expand the solution of "A3# in the form

F � x−1:2F9¦x−0F0¦O"x−3:2# "A4a#

G � G9¦x−0:2G0¦O"x−1:2# "A4b#

and the solution of "6a\b# in the form

f � f9¦x−0:2f0¦O"x−1:2# "A5a#

` � `9¦x−0:2`0¦O"x−1:2#[ "A5b#

The equations governing the leading!order inner solu!
tions are

F19 � 9\ s−0Gý9¦F9xG?9−F?9G9x � 9[ "A6a\b#

The solution of "A6a# which satis_es the appropriate
matching condition obtained from "A1a# is

F9 � 0
1
a1z

1 "A7#

thus\ the surface shear stress term has indeed been trans!
mitted unchanged from the outer region[ Given that
G9 � 0¦a sin px at z � 9\ we need to substitute

G9 � 0¦aðA9"z# cos px¦B9"z# sin pxŁ "A8#

into equation "A6b# in order to _nd the leading!order
inner temperature _eld[ Thus\ we obtain

Aý9−"a1sp#zB9 � 9\ Bý9¦"a1sp#zA9 � 9 "A09a\b#

subject to the boundary conditions\

A9"9# � 9\ B9"9# � 0\ and A9\ B9 : 9 as z : �[

"A09c#

We note that C9 � A9¦iB9 may be regarded as a complex
form of Airy|s equation for which the only physically
acceptable large!z asymptotic behaviour is

C9 � z−0:3 exp $
1
2 0

−0¦i

z1 1 z2:1"a1sp#0:1% "A00#

the other solution having superexponential growth[ This
result has been used to provide the large!z boundary
conditions in "A09c#[ We also note that it is possible to
reduce equations "A09a\b# to a canonical form using
the substitution z½ �"a1sp#0:2z[ Although no advantage is
gained at higher!order in the x expansion\ it is easy to
show that

A?9"9# � −9[25340"a1sp#0:2\

B?"9# � −9[52024"a1sp#0:2 "A01a\b#

by using the substitution together with the classical
fourth!order RungeÐKutta scheme allied to the shooting
method[ The solution of equations "A01# is shown in
Fig[ 5[

The solutions for A9 and B9 and hence G9\ see "A8#\
decay superexponentially in z and therefore\ do not a}ect
the main layer\ at least to algebraic orders[ Therefore\ we
need now to consider the second!order inner equations\

F10¦G9 � 9\ s−0Gý0¦F0xG?9−F?9G0x−F?0G9x � 9

"A02a\b#

subject to

F0 � F?0 � G0 � 9 at z � 9[ "A02c#

In view of "A8# and the appropriate matching condition
obtained from "A1a# we need to set

F0 � −0
5
z2−aðA0"z# cos px¦B0"z# sin pxŁ "A03#

into "A02a# to obtain

A10¦a1p"B0−zB?0# � A9\ B10−a1p"A0−zA?0# � B9[

"A04a\b#

The boundary conditions at z � 9 are

A0 � B0 � A?0 � B?0 � 9[ "A04c#

The complementary functions of "A03#\ written in com!
plex form have the following large!z asymptotic forms\

C0 � A0¦iB0 � z\ z−2:3 exp $
1
2 0

−0¦i

z1 1 z2:1"a1p#0:1%
and

z−2:3 exp $
1
2 0

0−i

z1 1 z2:1"a1p#0:1% "A04d#

given that the superexponentially growing function is
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Fig[ A0[ Solution of equations "A09a# and "A09b#[

physically unacceptable\ we see that the appropriate
boundary conditions for A0 and B0 for large z are that

Aý0\ Bý0 : 9 as z : �[ "A04e#

In general then\ these inner solutions exhibit linear
growth as z : � and this will a}ect and force further
outer ~ow solutions[ Indeed\ given the form of "A03#\
this e}ect will be x!dependent due to the presence of the
sin px and cos px terms[ If we denote by A�

0 and B�
0 the

asymptotic values of A?0 and B?0 as z : �\ then

F0 ½ −0
5
z2−az"A�

0 cos px¦B�
0 sin px# as z : �[

"A05a#

Therefore\ the inner solution obtained so far yields

F ½ ð0
1
a1z

1Łx−1:2¦ð−z2−az"A�
0 cos px

¦B�
0 sin px#Łx−0 "A05b#

which\ when written in outer variables\ gives the fol!
lowing matching condition for small values of h\

f ½"0
1
h1−0

5
h2#¦ðah"A�

0 cos px¦B�
0 sin px#Łx−1:2[

"A06#

As this matching condition has no term at O"x−0:2# and
as the equations for f0 and `0 are homogeneous\ we con!
clude that both f0 and `0 are zero[ The equation for f1 is
now

f1x f ý9−f ?1x f ?9 � 9 "A07#

which may be solved easily to obtain

f1 � −"a:a1#ðA�
0 cos px¦B�

0 sin pxŁ f?9"h#[ "A08#

Returning to the second!order inner solution\ the sub!
stitution of "A7#\ "A8# and "A03# into "A02b# yields

s−0Gý0−a1zG0x¦
0
1
a1pðB?0A9−B0A?9¦A?0B9

−A0B?9Ł cos 1px¦0
1
a1pðB?0B9−B0B?9−A?0A9

¦A0A?9Ł sin 1px¦0
1
a1pð"A0B9#?−"B0A9#?Ł

¦0
1
apðB9 cos px−A9 sin pxŁz1 � 9[ "A19#

The solution of "A19# is e}ected by _rst substituting the
expression

G0 � a1 ðG09¦G01c cos 1px¦G01s sin 1pxŁ

¦aðG00c cos px¦G00s sin pxŁ¦b0z "A10#
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but we omit the presentation of the equations for these
_ve functions of z and we note that the very last term in
"A10# is required in order to match with the second term
of "A1b#[

The accurate numerical solution of equations "A04#
and those arising from the substitution of "A10# into
"A19# prove to be quite di.cult to perform using the
shooting method due to the presence of unwanted comp!
lementary functions with superexponential growth[ Thus\
these sets of sti} equations were solved using a suitably
modi_ed form of the Keller box code described earlier*
a direct method[ This technique is ideal for such a set of
equations\ for although the Keller box method was
devised originally for solving parabolic marching prob!
lems\ it is equally well!suited for solving sets of ordinary
di}erential equations[ In fact\ if the streamwise variable
used in the code is taken to be the Prandtl number\ then
it is very straightforward to obtain solutions over a wide
range of values of s by taking a parameter sweep[ A
nonuniform grid of 090 points lying between z � 9 and
z � 099 was used for these computations[ Richardson|s
extrapolation was used on results obtained by successive
interval!halving of the basic grid to obtain highly accu!
rate solutions[

The shear stresses and rates of heat transfer are of
physical interest\ but in this section we are also interested
in the cross!validation between the asymptotic analysis
and the previously described numerical work[ Com!
parison between the numerical and asymptotic requires
that the expressions for the asymptotic shear stress and
heat transfer are expressed in terms of h!derivatives[
Hence\ the surface shear stress is

11f

1h1bh�9

� Fý9"z � 9#¦x−0:2Fý0"z � 9#¦O"x−1:2#

� a1−x−0:2aðAý0"9# cos px

¦Bý0"9# sin pxŁ¦O"x−1:2# "A11#

and the rate of heat transfer is

1`
1hbh�9

�x0:2G?9"z�9#¦G?0"z�9#¦O"x−0:2#

�x0:2aðA?9"9# cospx¦B?9"9# sinpxŁ

¦a1 ðG?09"9#¦G?01c"9# cos 1px¦G?01s"9# sin 1pxŁ

¦aðG?00c"9# cospx¦G?00s"9# sinpxŁ

¦b0¦O"x−0:2#[ "A12#

Numerically\ we _nd that G?09"9# � 9\ G?01c"9# � 9 and
G?00s"9# � 9 for all values of s\ which simpli_es "A12#
slightly\ although the functions G09\ G01c and G00s are not
identically zero[ The comparison between the asymptotic
results and the numerical simulations has already been
presented[
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