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We examine theoretically the steady free convection from a vertical isothermal flat plate 
immersed in a micropolar fluid. The governing non-similar boundary-layer equations are 
derived and are found to involve two material parameters, K and n, These equations are 
solved numerically using the Keller-box method for a range of values of both parameters. 
A novel feature of the numerical solution is that the boundary layer develops a two-layer 
structure far from the leading edge. This structure is analysed using asymptotic methods 
and it is shown that there are two different cases to be considered, namely when n # i and 
whenn = i. The agreement between the numerical results and the asymptotic analysis is 
found to be excellent in both cases. The present paper enables a complete description of 
the flow to be made for all values of K and n, and for all distances from the leading edge 
for which the boundary-layer approximation is valid. 

1. Introduction 

It is well known that the classical Navier-Stokes theory does not describe adequately the 
flow properties of polymeric fluids, fluids containing certain additives, and some naturally 
occurring fluids such as animal blood. Micropolar fluid theory has been used to describe in 
detail the effect of the presence of dirt in journal bearings (Allen & Kline, 1971; Prakash 
& Sinha, 1975; Tipei, 1979; Khonsari, 1990). Straughan (1992) also points out that the 
presence of dust or smoke particles in a gas may also be modelled using micropolar fluid 
dynamics. The theory of micropolar fluids, first proposed by Eringen (1966), is capable 
of describing such fluids. In this theory the local effects arising from the microstructure 
and the intrinsic motion of the fluid elements are taken into account. Physically, the micro- 
polar fluid can consist of a suspension of small, rigid, cylindrical elements such as large 
dumbbell-shaped molecules. The theory of micropolar fluids is generating a very much 
increased interest and many classical flows are being re-examined to determine the effects 
of the fluid microstructure. Early studies along these lines may be found in the review 
article by Ariman et al (1973). 

Peddiesen and McNitt (1970) applied the micropolar boundary-layer theory to the prob- 
lems of steady stagnation point flow, steady flow over a semi-infinite flat plate, and im- 
pulsive flow past an infinite flat plate. Gorla (1983) investigated the steady boundary-layer 
flow of a micropolar fluid at a two-dimensional stagnation point on a moving wall and 
claimed that the micropolar fluid model is capable of predicting results which exhibit 
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turbulent flow characteristics, although it is difficult to see how a steady laminar boundary- 
layer flow could ‘appear’ to be turbulent. 

Thermal boundary-layer flows along a flat plate immersed in a micropolar fluid form 
a fundamental problem which has attracted significant attention since the early studies of 
Eringen (1966, 1972). Results for this generic problem have been reported by several inves- 
tigators, including Jena & Mathur (198 1, 1982), Gorla (1988, 1992), Arafa & Gorla (1992) 
and Chiu & Chou (1993, 1994). However, a very recent work by Rees & Bassom (1996) 
on the Blasius boundary-layer flow over a flat plate suggests that much more information 
about the solution of boundary-layer flows of a micropolar fluid can be obtained. In that 
paper the authors found that a two-layer structure develops as the distance downstream of 
the leading edge increases, and an asymptotic analysis of the structure was presented. The 
existence of an inner, near-wall, layer arises because the presence of the wall restricts the 
rotation of the microelements in the fluid. In the present paper we show that this qualitative 
behaviour also occurs for the relatively straightforward vertical free convective boundary- 
layer flow from an isothermal surface. We suspect that it could very well be a general 
phenomenon. 

The objective of this paper, then, is to present numerical results for the problem of natu- 
ral convection from a vertical, isothermal flat plate immersed in a micropolar fluid, and to 
undertake a detailed asymptotic analysis which would be valid far downstream of the lead- 
ing edge. The latter analysis is necessary because the numerical results again reveal that a 
two-layer structure develops as the distance from the leading edge increases. Further, the 
inner, near-wall layer becomes increasingly thin compared with the boundary-layer thick- 
ness and therefore an asymptotic analysis is essential since it is within this very regime that 
accurate numerical results are increasingly difficult to obtain. 

We shall consider various values of the material parameters K and rz, which are the ratio 
of the gyroviscosity and the fluid viscosity, and the ratio of the gyration vector component 
and the fluid shear at a solid boundary, respectively. Hence this paper is an extension and 
generalization of previous work on this problem. The methods used for the numerical work 
and the asymptotic analysis are similar to those employed in (Rees & Bassom, 1996) for 
the Blasius boundary-layer flow over a flat plate. 

The plan of the paper is as follows. In Section 2 the governing equations and bound- 
ary conditions are described and the non-similar boundary-layer equations are derived. It 
is shown that the flow reduces to the classical form when the parameter K is zero, and 
therefore the flow and temperature fields are unaffected by the microstructure of the fluid, 
and the microrotation component is a passive quantity. Numerical solutions of the full 
boundary-layer equations are presented in Section 3. These use the Keller-box method and 
results are given for a wide range of values of both K and n, where YI varies between 0 and 
1. The computations show the development of a two-layer structure as the scaled stream- 
wise distance, X, increases. In Section 4 asymptotic results are presented for large values 
of X and it is shown that that the agreement between the numerical and asymptotic results 
is very good. It is also shown that the strength of the inner, near-wall layer depends on 
the value of n: when n = i it has a very much weaker effect on the main boundary-layer 
flow than when n # i. This qualitative result is different from that given in (Rees & Bas- 
som, 1996) where Blasius boundary-layer flow of a micropolar fluid is found to reduce to 
a self-similar form when n = i. 
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2. Governing equations 

Consider a semi-infinite vertical heated plate with a constant wall temperature 7’.., im- 
mersed in a micropolar fluid of temperature Tco, where Tw > Tm. The governing equations 
for steady laminar free convection flow of an incompressible micropolar 
Boussinesq approximation may be written in the form 

fluid subject to the 

(1) 
(2) 

(3) 

(4) 

(5) 

where x and jj are the coordinates parallel with and perpendicular to the flat surface, re- 
spectively; U and V are the corresponding fluid velocities; T, p and N are the temperature, 
pressure and the component of the gyration vector normal to the (x, y)-plane; g is the ac- 
celeration due to gravity; p, p, a and /? are the density, viscosity, thermal diffusivity and 
coefficient of cubical expansion of the fluid; and j, K and y are the microinertia density, 
vortex viscosity and spin gradient viscosity. Here, the spin gradient viscosity is assumed to 
be a constant and given by 

This latter relation is invoked to allow the field equations to predict the correct behaviour in 
the limiting case when microstructure effects become negligible, and the microrotation, N, 
reduces to the angular velocity; see Ahmadi (1976). The boundary conditions to be applied 
are 

js =o: ii=iko, &-n$, T=T,, 

~--NO: u + 0, 21 + 0, N + 0, T + Too. 
(7) 

Equations (1) to (5) may be rendered dimensionless by writing 

(4 f9 = (gBAWf (u, v), cc j9 = Rx, y>, 

p = (g/YATl)p, T = Too + AT& N = (g/lAT/l)tN, 

where j = 1* defines the lengthscale I, and AT = Tw - Too. We obtain the following 
equations: 

u, + vy = 0, (9) 

uv, + vvy = -py -(~)N,+(~)~vxx+vyy). 

(10) 

(11) 
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uNx + vNy = 

ue, + vey = (13) 

where Pr = u/a is the Prandtl number, Gr = gpA7’Z3/u2 is the Grashof number and 
K = K/P. Here Pr and Gr have been defined in the same way as for a standard Newtonian 
fluid; non-zero values of K cause coupling between the fluid flow and the gyration vector 
component N. 

We now invoke the boundary-layer approximation by formally letting the Grashof num- 
ber become asymptotically large. Hence we set, 

x = Grf, y = 9, u = GrflCrg, v = -Gr-f +$ and N = Grifi, 

(14) 

where @ is the streamfunction defined in such a way that equation (9) is identically sat- 
isfied. On substituting (14) into equations (10) to (13) and formally letting Gr + 00 we 
obtain the following set of equations at leading order: 

lcrllr i) aj - %wj9 = cl+ K)qjjj + K& +e, 
ll’pfig - @, = -K(2fi + qitc) + (1+ $K)&, 

+,e, - +$eg = Pr’%j+ 

The boundary conditions become, 

(1% 
(16) 

(17) 

E =0: * = ej =0, IQ = -q&j, 8 = 1 + 

y-+00: *y + 0, IV -+ 0, 
(18) 

8 -+ 0. 

The standard similarity form of Pohlhausen (1921) may be used to derive the non-similar 
boundary-layer equations; therefore we set 

and the governing equations for boundary-layer flows become 

(1 + K)f”‘+ i ff” - ;f’f’+ Kh’ + g = e(f’f; - ft f”), 
cl+;K)h”+$fh’-ihf’= Hf ‘h, - f$‘) + @ (2h + f ‘I), 

pr-‘g” + ifg’ = C(f’& - ftg’), 

where dashes represent derivatives with respect to q. The boundary conditions are 

rl =o: f = f’=O, h+nf”=O, g = 1, 

q/-00: f’ + 0, h + 0, g + 0. 
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FIG. 1. Profiles of the reduced angular velocity h as a function of q for different values of Pr when K = 0 and 
n 1 = 

Thus we have a set of parabolic partial differential equations which govern the development 
of the boundary layer. In general, these equations have to be solved numerically and this, 
together with an asymptotic analysis for large values of e, will form the substance of this 
paper. 

At this stage it is worthwhile to draw attention to the one case for which equations (20) to 
(23) are satisfied by a similarity solution. The final term in equation (21) may be regarded 
as the forcing term in this set of equations, for if it were absent then it is possible that the 
resulting equations would have a &independent solution. One possibility is that 2h + f It 
is identically zero; however, it is easily shown that even when n = i then h = -if/’ does 
not give a consistent set of equations. Therefore we do not obtain a self-similar solution in 
this way. The second possibility is that K = 0; in this case the equation for h is decoupled 
from the equations for f and g. The resulting similarity solutions satisfy the equations 

f"' + i ff" - ifrf'+g =o, 
h” + ;fh’ - ihf’ = 0, 

Pr-*g” + i fg’ = 0 

and hence the flow and temperature field are unaffected by the microstructure of the fluid, 
and the scaled component of the gyration vector h evolves passively in this case and is given 
by the solution of (25). The flow and temperature field are given precisely by the solution of 
Pohlhausen (1921) (but we note that there is a simple numerical scaling difference between 
Pohlhausen’s solution and that given here) and are well known. We have been unable to 
find a closed-form solution for h, but a selection of numerical solutions, obtained using 
a fourth-order Runge-Kutta/shooting method code, are presented in Fig. 1 for n = 1. 
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TABLE 1 
Variation of h(O), h’(0) and g’(0) with Pr for n =l 

Pr h(O) h’(O) g’(O) 

0.1 -1.21505 
o-2 -1.13288 
0.5 - 1.00855 
o-7 -0.96012 
l*O -0.90819 
2*0 -0.80789 
5.0 -0.68135 
6-7 -0.64312 

10.0 -0.59283 

0.71152 
0.63528 
0.52277 
0*48000 
o-43495 
0.35117 
O-25424 
0.22741 
0*19411 

-0.16274 
-0.21772 
-0.3 1195 
-0.35321 
-0*40103 
-0.50662 
-0.67458 
-0.73597 
-0-82684 

Solutions for other values of n are obtained by multiplying these ‘n = 1’ solutions by the 
required value of n. The variation of h with q is shown for various Prandtl numbers. For 
reference, Table 1 gives the numerical values of h(0) (which is precisely equal to -f “(0) 
when n = l), h’(O), and g’(0). 

3. Numerical solution 

An examination of equation (21) shows that the final term involves 6 3 as a factor. Numeri- 
cally, this gives rise to large errors near the beginning of the computation since it is difficult 
to resolve well a function with an infinite slope. Therefore we have deemed it necessary to 
introduce one further transformation to remove this singularity. On setting 

x+t (27) 

we obtain 

(1 + K)f"'+ fff"- if/f'+ Kh’+g = ;X(f’f(, - f,f”), (28) 

(1 + $K)h”+ ;fh’- ihf’= ;X(f’hx - f,h’) + KX(2h + f”), (29) 

Pr-lg” + $ fg' = iX(f’g, - f,g’). (30) 

These equations subject to the boundary conditions (23) were solved numerically using the 
Keller-box method. A non-uniform grid of 78 points was used in the q-direction with the 
grid points concentrated towards q = 0 in order to resolve well the developing near-wall 
layer mentioned earlier; the maximum value of q used was 100. In the X-direction a non- 
uniform grid of 133 points was used with the maximum value of X being 10000. Newton- 
Raphson iteration at each streamwise station was used to solve the nonlinear difference 
equations, and convergence was deemed to have taken place when the maximum absolute 
pointwise change between successive iterates was 10 -lo Double precision arithmetic was . 
used throughout. In all the computations presented here the Prandtl numbers corresponding 
to water, 6.7, and air, 0.7, were taken. 
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FIG. 2. Evolution with Xi of the shear stress, f” at q = 0 for Pr = 6.7. Also shown are the asymptotic solutions 

obtained from either (68a) or (84a); these curves lie in the range X i 2 10. (a) n =O;(b)n = $;(c)n = l;(d)a 
close-up view of (c) near X = 0 

Our detailed numerical computations are shown in Figs 2 to 5. Figures 2a, 2b and 2c 
depict the variation of shear stress with X for Pr = 6*7 and K = 0,0=25,05,0075 and LO, 
for the respective cases n = 0, n = 0.5 and n = 1. The corresponding rates of heat transfer 
are given in Figs 3a, 3b and 3c. Note that all these curves are plotted against Xi in order 
to resolve easily the quick variations near X = 0 and the slow approach to the asymptotic 
solutions developed in the next section. 

For all the three values of n used in Figs 2 and 3 it is readily seen that the curve corre- 
sponding to K = 0 is a straight line, a result which is in accord with our earlier observation 
that K = 0 represents the only self-similar case. When K is non-zero the form of the shear 
stress variation depends very much on the values of n and K. It is always less than the 



186 D. A. REES AND I. POP 

do?= 0) 

-“*62q (a) 

466 - -0*66- 
K= 1 K=l 

-o-68- K = 0.25 -on68-W 

-0*70- 
K= 03 

V 

-070-L 

K= 0*75 
-o-72- -O-72-L 

K=O K=O 
-0-74 I I I I 1 -0-74 I I I I 1 

0 20 40 60 80 100 0 20 40 60 80 100 

Xi Xi 

-0-62 

-0.66 

-0.74 

K=l K=l 

K=O K=O 
I I 6 6 I I i0 i0 I I 4b 4b I I 6b 6b I I ii ii 100 l-O*740 100 l-O*740 0 0 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 5 1 6 1 6 1 7 , 7 , 8 1 8 1 9 1 9 1 10 1 10 1 

FIG. 3. Evolution with X 3. of the rate of heat transfer, g’ at q = 0 for Pr = 6.7. Also shown are the asymptotic 

solutions obtained from either (68b) or (84b); these curves lie in the range X 3 2 10. (a) n = O;(b)n = 3; 
(c) n = 1; (d) a close-up view of (c) near X = 0 

K= 0 value for sufficiently small X, but when YI = 0 its value decreases further as X 
increases, whereas when n = 1 it eventually attains an asymptotic value above the K = 0 
result. For low values of n the spread of the curves for different values of K is much greater 
than when n = l- Figs 2a, 2b and 2c were plotted using the same ordinate scale in order 
to emphasize this point. 

The detailed evolution of the rate of heat transfer shown in Figs 3a, 3b and 3c are a little 
more complicated than the shear stress curves. If we refer to the rate of heat transfer in 
terms of its absolute value, then the K # 0 values are always less than the K = 0 value 
and increase monotonically when n = 0, implying that the presence of microstructure 
reduces the rate of heat transfer. When n = 1 the variation is not monotonic; the rate of 
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FIG. 4. Evolution with X 3 of the shear stress, f” at q = 0 for Pr = 0.7. Also shown are the asymptotic solutions 

obtained from either (68a) or (84a); these curves lie in the range X i > 10. (a) n =O;(b)n = $;(c)n = l;(d)a 
close-up view of (c) near X = 0 

heat transfer generally remains below the uniform K = 0 rate, but can become slightly 
greater locally when K is sufficiently small. 

Figures 4 and 5 display the corresponding curves for air where Pr = 0.7. There is 
little qualitative difference between the results for water and for air, although the detailed 
quantitative results are quite different. 

In Fig. 6 we display a contour plot of the function h + if” for the case Pr = O-7, K = 1 
and n = 1. The qualitative nature of this plot is very significant in that it demonstrates the 
gradual development as X increases of a thin, near-wall layer embedded within the main 
boundary layer. Indeed, for the Blasius boundary-layer flow discussed in (Rees & Bassom, 



188 D. A. REES AND I. POP 

K=l 

0 20 40 60 80 20 40 60 80 10 

X: Xi 

K=O 

-0-346 
K=l 

1 w I / 

K=O 

-0.360 1 I I I I i--0*354* 
0 20 40 60 80 100 0 1 2 3 4 5 

Xi 
6 7 8 9 10 

Xi 

FIG. 5. Evolution with X 3 of the rate of heat transfer, g’ at q = 0 for Pr = 0.7. Also shown are the asymptotic 

solutions obtained from either (68b) or (84b); these curves lie in the range Xi 2 10. (a) n = O;(b)n = 4; 
(c) n = I ; (d) a close-up view of(c) near X = 0 

1996), it was shown that the function h + i f” is precisely zero when n = i, and that 
the same function is zero except in a thin layer near the flat plate when n # i. For the 
present problem h # -if” even when n = i, but Fig. 6 shows a similar development of 
a near-wall layer as X increases. As shall be seen below, the presence of such a sublayer 
has its origins in the fact that the boundary condition h - nf” = 0 at q = 0 forces h - $ f” 

to be non-zero near the heated surface. When n = 3 the same observation applies, but not 
at leading order. These matters motivate the detailed asymptotic analysis presented in the 
next section. It is essential to consider the near-wall layer in order to get good agreement 
between the numerical computations and the asymptotic results. 
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FIG. 6. Contour plot of the function h + if” for Pr = 0.7, K = 1 and n = 1, showing the development of the 
near-wall layer as X increases 

4. Asymptotic solution 

In this section we present an analysis of the boundary layer at asymptotically large dis- 
tances from the leading edge. In particular we shall determine the thickness of the develop- 
ing near-wall layer, and compare the theoretical results with the above numerical analysis. 
In this way we are assured of obtaining a complete description of the flow for all values 
of X for which the boundary-layer approximation is valid. We shall use the terms ‘main 
layer’ and ‘inner layer’ to refer respectively to the main boundary layer where q = 0( 1) 
and the near-wall layer where q is asymptotically small. 

Given the central role played by the function h + if” in the analysis of (Rees & Bassom, 
1996), we begin by introducing the substitution 

#=h+;f” (31) 

into equations (28) to (30). The modified equations are 

(l+~K)f”‘+g+K@‘=~f’f’-$ff”+iX(f’f((- f,f”), 

(l+K)@‘+;g’-2KX~=~~f’-~f@+;x(f’~,-f#), 

Pr-lg” + t fg’ = iX(flg, - f,g’), 

and the boundary conditions become, 

(32) 

(3% 

(34 

?-j=o: f = f’= 0, q5 = ($ -n)f”, g = 1, 
(35) 

v+OO: f’ + 0, Ql + 0, g + 0. 

For large values of X it is readily seen that the third term in (33) dominates that equation 
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unless # is small since g’ = O(1) as X + 00. Therefore equations (32) to (34) are solved, 
at least to leading order and for large values of X, by the expressions, 

where FO and Go are given by 

3 (1 + ;K)F;‘+ ,FoF; - ~F;F; + Go = 0, 
3 Pr-r Gg + Z FOG; = 0, 

(37) 
(38) 

subject to 

q=O: Fo=F;=O, Go=l, 
(3% 

7j+OO: FA + 0, Go -+ 0. 

These latter equations are easily written in terms of the classical vertical free 
equations using the transformation 

convection 

Fe(v) = (1 + ;K)fP(@, Go(q) = G(q), q = (1 + ;K)&j; (40) 

F and G satisfy equations which are identical in form to (24) and (26), but where the 
Prandtl number in (26) is replaced by Pr( 1 + 3 K). 

An examination of the form of the solution for # in (36) shows that the boundary con- 
ditions for @ are not satisfied. Even without the numerical evidence presented earlier, it is 
clear that there must exist a thin layer embedded within the main boundary layer since the 
highest derivative in equation (33) was neglected when forming the solution for 4 in (36), 
and hence this is a singular perturbation problem. 

The value of 12 now plays an important role in determining the size of @ in the inner 
layer. When n = i we have 4 = 0 at Q = 0, and therefore 4 = 0(X-*) in this layer in 
order to match with the form given in (36). But when n # i the boundary condition for $I 
states that @ = 0( 1) at q = 0. We therefore have to treat the two cases separately. 

Given that the non-satisfaction of the q = 0 boundary condition for 4 is what generates 
the present singular perturbation problem, it is necessary to determine the asymptotic size 
of 1;7 in the inner layer as X + 00. On balancing the 2K X$ and #” terms in (33) we are 
led to take q = 0 (X-i), and hence the inner-layer variable < is introduced: 

{ = 7jxf. (41) 
Comparison of the definition of C with the definitions of q and X given in (19) and (27) 
shows that < = y, and therefore the inner layer has a constant thickness. The full boundary- 
layer equations, (32) to (34), become 

(1 + lK)f”‘+ X-t, + KX-‘qb’ = 2 
X-Q f’f’ - $ff”)+ fXf(f’fj: - f,f”), 

(42) 

(1 + K)@” + +X-)g’-2K# = X-f(ihf’- $fh’) + ;Xf(f’& - f#), 
(43 

pr-‘g” + $4 fg’ = $Xi(f’g, - f,g’), (44) 
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where dashes denote derivatives with respect to < whenever we are dealing with 
layer, and with respect to q otherwise . The boundary conditi ons at c = 0 are 

the inner 

f = 0, f’ = 0, g = 1 and 6 = (i - n)f”. (4% 

Matching conditions obtained from the small-q limit of the main-layer solutions will be 
used to complete the specification of the boundary conditions. The details of the matching 
conditions will depend on whether or not y1 = $. 

4.1 Case (i): n # i 

For this case we have found that a consistent expansion of the boundary-layer equations in 
the large X limit is given by setting 

in the main layer, and 

in the inner layer. The equations and boundary conditions for FO and Go are precisely those 
given by (37) to (39) whilst Fl and Gr satisfy, 

(1 + $)F,“‘+ G1 = ;(F;F,’ - FoF;) - #F;, (52) 
Pr-‘Gy + iFoG: + $F~G; + ~F;G~ = 0, (5% 

subject to 

Fl =0, G1 =0 at q=O, and F;,Gl-+O as ~+oo. (54) 

The boundary condition for F;(O), which is required to complete the solution of (52) and 
(53), is given by matching with the leading-order inner-layer solution given below. 

For large values of X and for small values of 1;7, f and g may be expanded as follows, 

f= Fo+X-iFl +... 

l/I 2 1 rrr 3 = [?F, (0)~ + gFo (Oh + l l l 
] + X-+[qF,‘(O) + ;F,"(0)q2 + . . .] + . . . 

=X-‘[~F~(O)y2+F~(O)~+...]+X-3[~F~(O)r3+~F~(O)r2+...]+... 9 

(55) 

where the final expression is obtained by rewriting the penultimate expression in terms of 
the inner-layer variables. Hence (55) gives the required large-c behaviour of the inner-layer 
solutions. 
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The inner-layer equations are 

(1 + $K) fd” + K& = 0, (1 + K)@;I - 2K&) = 0, g;1= 0, (56) 

and 

(1+ ;K)fl"+ K@', = -1, (1 + K)&' - 2K& = 0, gy= 9 0 (57) 

and the boundary conditions at c = 0 are given by 

fo = fi = go = fl = f{ = gl = 0, @O = ($ - rz)fd’ and @i = ($ - n>f;l. 

Equations (56) and (57) have the following solutions: 

fo = iC2F[(0) + CF,$‘(O)[l - A< - esAc], 

go = w;(o), 

C F:(O) e-'c, 

r 
3 

fl = - -t- z<2F[(0) + CF;‘(O)[l - A< - eWAt], 
X2+ K) b 

g1 = w;(o), 

$1 = 
2+K -C F,"(O) eBhT, 
l+K 

c=1 . ( - @Cl+ K) and h 
31 + K(1 - n)] 

For large values of < the above solutions for fo 
match with the expression given by (55). Hence 

f 1 9 when substituted into (49), should 

(58) 

(59) 
(60) 

(61) 

(62) 

(63) 

(64) 

(6% 

f = x-'[@"(0)y2 - ChF;(O)<+...]+X-+ -&5"+1F;'(0)<2+.e. 
I 

+.*a 
(66) 

for large values of C, which, on comparing with (55), yields 

F;(O) = -ChF;(O), (67) 

and therefore we now have all the boundary conditions to be able to solve (52) and (53). In 
turn, the solutions of (52) and (53) yield the values of F/(O) and G’, (0) needed to specify 
precisely the solutions given in (62) to (64). 

It is interesting to note that the solutions for go and gi given in (60) and (63) show that 
the temperature field is passive in the inner layer, at least to second order in the perturbation 
series. 
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TABLE 2 
Variation of F;(O), G;(O), F:(O) and G; (0) with K for Pr = 6.7 

O-00 0.64312 -0.73597 O-65886 0.97683 
0.25 O-59216 -0.71827 0*58101 0.90901 
0.50 0.54989 -0.70265 Oe51886 0.85253 
0.75 0*51418 -0.68868 O-46725 OdSO107 
l*OO 0.48355 -0.67608 O-42582 O-76234 

The shear stress and rate of heat transfer may now be computed from the above infor- 
mation. We obtain the formulae 

I c=o 
(2+K) - - 

2[1 + K(1 -n)] 
[F;(O) + X-4 F,“(O) + . . . ] 

1 I=0 = G;(O) + X-iG’,(O) + . . . . @W 
The form of these expressions suggests that the detailed values of the shear stress and 
the rate of heat transfer are functions of the three parameters K, n and Pr. However, it 
is possible to reduce the problem to one containing only two independent parameters, as 
follows. The functions, Fl and G 1, satisfy linear equations and the boundary condition (67) 
shows that they must be proportional to CA since all the remaining boundary conditions 
are homogeneous. Thus, for any pair of values of K and Pr, it is sufficient only to solve for 
Fl and G1 subject to the boundary condition 

F;(O) = -F;(O), (69) 

and then multiply the result by CA. Tables 2 and 3 give the values of FL(O) and G:(O) 
obtained in this way, together with the values of F:(O) and G;(O) for both the chosen 
values of Pr. 

The asymptotic solutions according to equations (68) were computed using the data 
given in Tables 2 and 3, and are plotted together with the numerically obtained solutions in 
Figs 2 to 5. In all cases the agreement between the numerical and asymptotic solutions is 
very good, although it should be noted that if we had presented only a l-term asymptotic 
solution, then the agreement would have been very considerably poorer. 
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TABLE 3 
Variation of F:(O), G;(O), F/‘(O) and Cl, (0) with K for Pr = O-7 

O*OO 0.96012 -0e35321 O-58312 0.17646 
0925 0.88908 -0-34745 0*52041 Od7419 
O-50 0.82973 -0-34223 0*47600 0.15778 
0.75 0.77926 -0-33746 0943505 Od5043 
l*OO 0*73573 -0-33306 0*40010 O+l436 

4.2 Case (ii): n = i 

When n = $ many of the terms in the above analysis become zero, and therefore this case 
must be considered separately. It may be shown that the appropriate expansions take the 
form 

f  = Fe(q) + x-fFi(q) + x-%2(q) + l l l 9 
(70) 

g 

= Go(q) + X-fGl(q) + X%(v) + .  l .  9 

(71) 

cp = X+&)(q) + x - t  @1 (q) + r2@2(77> + l l ’ 

(72) 

in the main layer, and 

f = x-‘fiA5‘) + &i(T) + x-2f2(() + l l l 9 
(73) 

g 
= I+ x -~ , , ( r )  + x-‘g&) + x-i,,(r) + l l l 9 

(74) 

4 = x-1qbo(<) + x-~~l(o + x-2#2(J) + ’ l l (73 

in the inner layer. On substituting (70) to (72) into (32) to (34) we find that Fo, Go and CDO 
satisfy equations (37), (38) and (36~) and boundary conditions (39); that Fi = G 1 = @i = 
0; and that F2, G2 and CD2 satisfy 

(1+$Y)F;“+G2+KQb=$F;F;-$FoF;-fF2F[, (76) 

Pr-‘Gg + $ FOG; + i FhG2 + a F2Gb = 0, (77) 

and 

(78) 

subject to the boundary conditions, 

Q = 0 : F2 = 0, F; = 0, G2 = 0, (7% 
v+OO: F; + 0, G + 0. wo 

Note that the boundary condition on Fi at q = 0 does not arise directly from the application 
of the no-slip condition, but is derived using the above asymptotic matching techniques 
from the behaviour of the inner-layer solutions. 



FLOW OF A MICROPOLAR FLUID 195 

TABLE 4 
Variation of F;(O) + Gb(0)/2(2 + K) and G;(O) with K for Pr = 6.7 

K F;‘(O) + G;,(O)/W + K) G; (0) 

0*25 -0.088844 -0.035136 
030 -0*076850 -0*033060 
0.75 -0.067388 -0eO31269 
l-00 -0.059763 -0-029704 

In the inner layer the solutions are 

fo = $ F$(o)r2, go = G#UC, 
G;,(O) 

$0 = --&l - e-‘0, 

fl = - r 
3(2+ K)’ ‘I 

= 0, #I = 0, 

(81) 

(82) 

and 

f2 = - 
54q)(o) 

12(2 + K) VW 

g2 = G;(QC, wb, c> 

From these solutions it can be seen that the leading-order inner-layer streamfunction and 
temperature terms, fo and go, are passive quantities in the sense that they are precisely the 
small-q versions of the leading-order main-layer solutions. However, $0 has to undergo an 
adjustment in order to match asymptotically with the main-layer solution and to satisfy the 
boundary condition at { = 0. Thus the effect of the inner-layer is considerably weaker 
when n = i thanwhenn # $. 

The shear stress and rate of heat transfer are now given by 

2 af = F;(O) + X-’ F;‘(O) + 
q)(O) 

av2 q=o 2(2 + K) > + ’ ’ ’ ’ 

Q 

a17 q=o 
= G;(O) + X-‘G;(O) + . . . . 

@W 

ww 

Tables 4 and 5 present values of F;(O) + Gb(0)/2(2 + K) and G;(O) needed to obtain the 
asymptotic shear stress and rate of heat transfer, for both values of the Prandtl number. The 
appropriate values of F;(O) and G;(O) are given in Tables 2 and 3. 

Asymptotic curves for n = $ are plotted in Figs 2b, 3b, 4b and 5b, but the agreement 
with the fully numerical solution is sufficiently close that they are virually indistinguishable 
for X > 100. - 
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TABLE 5 
Variation of F;(O) + Gb(0)/2(2 + K) and G;(O) with K for Pr = 0.7 

K F;‘(O) + G;(O)/W + K) G; (0) 

0.25 -0*059921 -000035284 
o-50 -0.05247 1 -0-0033916 
0.75 -0*046501 -000032687 
l*OO -0.041622 -0*0031576 

5. Conclusion 

In this paper we have sought to analyse in detail the micropolar analogue of the classical 
vertical free convection boundary-layer flow. The presence of micropolar effects serves to 
cause the boundary layer (i) to become non-similar, and (ii) to form a well-defined two- 
layer structure at large distances from the leading edge. An asymptotic analysis showed that 
the near-wall layer is of constant thickness, and it is the region where the microelements 
adjust from their natural free-stream orientation to that imposed by the presence of the 
solid boundary. Numerical results obtained using the Keller-box method were, in all cases, 
found to give very good comparisons with the asymptotic analysis. It was found that the 
detailed results depend very much on the values of K and Pr, and especially on whether or 
not n is equal to $. When n = i the inner layer is considerably weaker than when n # i. 

Finally it is of interest to query why the two-layer asymptotic structure was not found 
in the mixed convection analysis of Gorla, Lin & Yang (1990). In that paper the authors 
showed correctly that forced convection effects dominate near the leading edge, but that 
free convection dominates further downstream. In fact they show that the asymptotic profile 
is self-similar. This latter conclusion is seemingly at variance with the results of the present 
paper, but they may be reconciled by noting that the analysis of (Gorla et al., 1990), when 
translated into the present notation, is equivalent to having x = O( 1), see equation (14). 
Thus, their analysis is entirely correct as far as it goes, which is to consider large values of 
x within the 0 (1) regime. We have therefore extended their work by looking at x = 0 (Gr) 
distances where microinertia effects serve to stratify the boundary layer. 
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