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1. INTRODUCTION

RECENT years have seen a rapid increase of interest in the
influence of non-Darcy effects on convection in fluid-satur-
ated porous media (see, e.g. refs. [1-7]). These studies have
been motivated by a desire to model realistic effects such as
inertial drag which are assumed to be absent in the usual
Darcy formulation. Forchheimer [8] was the first to present
a correction to Darcy’s law for high flow rates ; this takes the
form of a quadratic velocity term and its effect becomes
significant when the microscopic Reynolds number is of
order unity or higher. A viscous-like term was proposed by
Brinkman [9] which allows the satisfaction of the no-slip
condition. A third modification, which is the subject of this
note, is a time-dependent velocity term. This corresponds to
the relaxing of the infinite Prandtl-Darcy number assump-
tion, and the presence of this term means that the flow
field no longer adjusts instantaneously to changes in the
temperature field or an externally applied pressure gradient.

In this note the stability of the flow generated by heating
a vertical layer of fluid-saturated porous material from the
side is considered. Such a configuration is of considerable
importance in insulation engineering, e.g. since the onset of
an instability will greatly enhance the heat transferred
through the layer. The layer is assumed to be infinite in extent
in order to simplify the analysis, but it should be noted that
the presence of endwalls in a finite cavity could modify the
present results. The infinite layer Darcy-flow case was treated
by Gill [10] who showed that the basic flow profiles are stable
to all infinitesimal disturbances. In a recent paper Georgiadis
and Catton [6] sought to investigate the effects of the above
three modifications to Darcy’s law. Their conclusion was
that a finite value of the Prandtl-Darcy number is sufficient
to guarantee the linear instability of the basic flow. However,
there is an error in their analysis which renders this con-
clusion invalid, as shown later. It is the task of this note,
therefore, to consider the effect of a finite Prandtl-Darcy
number on Gill’s result. Although the Forchheimer and
Brinkman terms are neglected here, one has been unable
to furnish an analytical proof of stability/instability.
One has therefore resorted to numerical methods to
solve the perturbation equations arising from a simple
linear stability analysis. Although every possible combi-
nation of Rayleigh number, wave number and Prandtl-Darcy
number cannot be considered, the results presented here
indicate that the basic flow is stable for all Prandtl-Darcy
numbers.

2. EQUATIONS OF MOTIONS
AND LINEAR STABILITY ANALYSIS

The flow field confined between two isothermal, imper-
meable, vertical walls is considered, as shown in Fig. 1. The
governing non-dimensional Boussinesq equations are given
by

u.+v,+w, =0 €))

eu,+u= —p, (2a)
&, +v= —p, (2b)
ew,+w= —p,+ RO (2¢c)
6, +ub,+v0,+wl, = V?0 3)
which are to be solved subject to the boundary conditions
u=0, #=+1 onx=+1 4

together with the appropriate periodicity conditions in the
y- and z-directions. For the purposes of this note the equa-
tions have been nondimensionalized as in Gupta and Joseph
[11] except that the reference length and temperature are half
the channel width and temperature drop, respectively. In
equations (2) the inverse Prandtl-Darcy number is given by
& = 3(x/v)(K/d?), typical values of which are fluid and
medium dependent but are usually considered to be negli-
gibly small. Equations (1)—(3) are readily solved to give the
basic flow profile

u=v=0, w=Rx, p=0, 6=x. (5)

In order to analyse the linear stability of this flow infini-
tesimal disturbances are introduced by setting

p=p* O=x+0* (6)

in equations (1)-(4). After linearization the equations
governing the evolution of the perturbations become

u=u* v=0v* w= Rx+w*

uf+of+wr =0 0]
euf +u* = —p¥ (8a)
ef +v* = —p¥ (8b)

ewr+w* = —p¥*+ RO* (8c)
0¥ = V20* —u* — Rx6¥ )

which are to be solved subject to the boundary conditions
(10)

where the solutions are assumed periodic in y and z. On
eliminating »*, w* and p* from equations (7) to (10) and
setting

w*=0F=p¥=0 onx= %1

u* — iaf(x)ei(1))+kz)+.lr
6* = g(x) ei(}y+kz)+/l/

one obtains

(1+e)(f” —a*)+8Sg’ =0 an
g’ — (@ +A)g—ia(f+Sxg) =0 (12)

which are to be solved subject to
() =g(£1)=0 (13)

where o« = (/*+k?%" is the roll wave number and Rk = Sa.
Note that the number of parameters has been reduced from
four (R, 1k, ¢) to three (S, «, &) and hence Squire’s theorem
is valid. Another important point to note is that any incipient
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A, B, C, D N x N matrices as defined in the text
d half-width of the layer
f,g spatial forms of the disturbances u*, §*
f,g N-vectors containing the Fourier coefficients of
fand g
acceleration due to gravity
reie critical Grashof number (see ref. [6])
N x N identity matrix
permeability
k  wave numbers
truncation level of the Galerkin expansion
non-dimensional pressure
Rayleigh number, §fKdAT/vi
modified Rayleigh number, Rk/a
non-dimensional time
T half the temperature difference across the layer
u, v, w non-dimensional velocity components
x, ¥, z non-dimensional coordinates.

QQQ)

D>~ S =~

NOMENCLATURE

Greek symbols
o wave number
B coefficient of thermal expansion of the fluid
£ inverse Prandtl-Darcy number, jxK/vd>
0 non-dimensional temperature
K thermal diffusivity of the saturated medium
A exponential growth rate of the disturbances
v fluid viscosity
¢ N x N zero matrix.
Other symbol
0 zero vector of length N.
Superscripts
* infinitesimal disturbances
T transpose.

instability must take the form of two travelling modes cor-
responding to a complex pair of eigenvalues, 4, since setting
A =0 1in equations (11) and (12) gives identical equations to
the Darcy case.

In only one case can one proceed analytically, namely

X = -1 x =1

for vertically orientated rolls for which & = 0 and therefore
S = 0. From equation (11) it is easily deduced that f = 0 and
that 1 = —a?—in’n? for integer n. Hence disturbances of
the form of vertical rolls decay for all Rayleigh numbers,
wave numbers and values of . For all other roll orientations

FiG. 1. Flow regime and coordinate system.
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S # 0, and equations (11)-(13) must be solved numerically
since Gill’s method [11] cannot be applied here. To facilitate
the solution of equations (11)-(13) a simple Galerkin expan-
sion is used as follows::
N
(f.9) = Zl (f3»9n) sin (nm(x+ 1)) (14
where N is the truncation level. Since the single derivative in
equation (11) gives a cosine series each term is re-expanded
in a sine series. A sine series is also obtained for the xg term
in equation (12) by using a cosine series for x. Hence one
obtains the eigenvalue problem

—(1/e)f ~(1/e)A"'B I ¢ f
[( il —A+iC )"1(¢ 1>](g>=0 as

for the growth rate, A, where f=(fi,f5..../w)%
g=(9192.-.,.91)% I is the NxN identity matrix, ¢ the
Nx N zero matrix, 4 = o’/+in’diag(1%,2%...,N?) and

elements b, ¢,, of B and C are given by

_ )28pq/(*—4q*) (p+qodd)

by = { 0 (»p+q even) (16
_ 0680014 prgodd)

T 0 (p+geven).

When ¢ = 0 the numerical scheme breaks down, but for this
case it is straightforward to find f in terms of g and obtain
the simplified system of equations

[(—A+iC+iD)—Allg = 0 (18)

-Re(A)

100
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to replace equation (15), where elements d,, of D are given
by

i1 1
_ 8Sapq[p2n2+4a2 + o —pz] (p+q odd)

0 (p+q even).

Eigenvalue problems (15) and (18) were solved using the
NAG routine FO2AJF for various values of S, o and ¢, to find
the corresponding exponential growth rates, 1. The values
obtained in this way were checked against those found by
solving equations (11) and (12) using the boundary value
problem solver DO2HAF. It was found that they were
extremely accurate and required only a very small fraction
of the time taken by DO2HAF.

d,

rq

(19)

3. RESULTS AND DISCUSSION

The eigenvalue spectrum for the Darcy flow case, £ = 0, is
displayed in Fig. 2 which confirms the well-known result of
Gill [10] that the basic flow is linearly stable. It is interesting
to note that the decay rate of the most slowly decaying mode
increases as (S or R) increases. Note also that the vertical roll
(S = 0) constitutes the most unstable mode even though
the mode decays, and, in general, the most unstable mode
corresponds to the one with zero wave number.

For non-zero values of &, the general behaviour of A
increases in complexity since there is now available the third
parameter, ¢. In Fig. 3 a plot of —Re (1) is displayed as a
function of ¢ for the case o = 0.25, $ = 10. For small values

200

150

FIG. 2. Values of —Re (4) for Darcy flow, ¢ = 0, as a function of R for wave numbers « = 0, /10, n/5,
37/10. The values were calculated with N = 10: ——, stationary modes (Im (%) =0); ----- , travelling
modes (Im (1) # 0). This convention also applies to Figs. 3 and 4.
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Fig. 3. Values of —Re (4) for « = /4, S = 10 as a function of ¢ (using N = 18).
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FIG. 4. Graph of —¢Re (1) as a function of & for & = 7/4: (2) S = 10; (b) S = 50; (c) S'= 200. The results

were calculated using N = 16 which is sufficient to ensure that the first ten modes are accurate as drawn

for § = 10, and the first six for S = 200. The ‘first” mode is defined to correspond to the curve closest to
the bottom right of the figure and the curve closest to the top right.
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of ¢ the values of 4 deviate only slightly from those for the
Darcy case. As ¢ increases, these curves approach the line
1+ &4 = 0 which corresponds to singular points of equations
(11) and (12). This critical line arises because the time-
dependent term introduced into the Darcy equations
causes the term with the highest order spatial derivative
to have a coefficient which varies and which is zero on the
critical line if A is real. In this sense the present problem is
similar to the inviscid Orr~Sommerfeld problem. Here, how-
ever, one has no need to resort to a critical layer analysis
as A becomes complex in order to pass ‘around’ the critical
line.

On fixing S and «, there are only two possible ways for 4
(for the most unstable mode) to evolve as ¢ increases: either
J asymptotes to the curve e = negative constant, or two
stationary modes (Im (1) = 0) coalesce to form a pair of
travelling modes (Im (2) 5 0), which can then pass around
the critical line, followed by a decoupling of the modes which
both eventually asymptote to A = constant. The former
possibility is not evident in Fig. 3 and therefore, for a clearer
representation, one rescales the ordinate by plotting
—&Re (4). On using a log-log scaling, both asymptotic forms
are shown as straight lines, the former having unit slope and
the latter being horizontal as is the critical line. These may
be seen clearly in Fig. 4.

In Fig. 4 the decrement spectrum is displayed for the three
cases, o = 0.257, S = 10, 50 and 200. These figures are typical
of all those calculated for different values of « and S. Itisa
universal feature of the results that when ¢ is small the effect
of increasing either a, S or both is to decrease Re (1) still
further, at least for the most unstable mode ; this is similar
to the Darcy case as shown in Fig. 2. As ¢ increases the slope
of In (—& Re (1)) for the most unstable mode usually remains
positive and Re (/) is always negative.

To conclude, one has demonstrated that non-zero values
of the inverse Prandtl-Darcy number do not induce insta-
bilities of the form of rolls of any orientation. This is also
true for unphysically large values of &. The question which
immediately arises is to ask why the results are at variance
with those of Georgiadis and Catton [6], who gave an
expression for the critical Grashof number (Gr.;, ; equivalent
to our critical Rayleigh number) for instability. A careful
examination of that expression and the preceding analysis
shows that the defining integrals for Gr.; contain the
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Grashof number itself, and therefore their expression de-
fines the critical Grashof number implicitly. The results
indicate that such a value does not exist and that the flow is
linearly stable,
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1. INTRODUCTION

WiTH THE advent of sustained space flight, studies related
to chemical processes in a micro-gravity environment have
become important. At low gravity fluid motion is often
governed by forces which are often negligible in the earth’s
gravitational field. One of these forces which is expected
to be important in a micro-gravity environment is surface
tension. When a gradient in surface tension exists at the
interface between two fluid phases, a surface tension driven

(Marangoni) flow field may result. The surface tension
between two fluids is a function of the temperature and the
concentration level of any solute present at the fluid interface.
Thus, in the presence of a gradient in the solute concentration
or the temperature near a fluid interface, surface tension
driven flows may be present. Surface tension (Marangoni)
effects on droplets have been studied in several works includ-
ing: Levan [1], Thompson et al. [2], and Rivkind and
Sigovtsev [3].

The intent of this work is to demonstrate that irradiant




