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Abstract

We determine the e}ect of radiation on the natural convection ~ow of an optically dense incompressible ~uid along
a uniformly heated vertical plate with a uniform suction[ The governing nonsimilar boundary!layer equations are
analyzed using "i# a series solution for small values of j "a scaled streamwise coordinate#^ "ii# an asymptotic solution for
large j ^ and "iii# a full numerical solution[ The solutions are expressed in terms of the local shear stress and local rate
of heat transfer[ The e}ects of varying the Prandtl number\ Pr\ the radiation parameter\ Rd\ and the surface temperature
parameter\ uw\ are determined[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a Rosseland mean absorption coe.cient
Cp speci_c heat at constant pressure
f dimensionless streamfunction
F dimensionless streamfunction in asymptotic
analysis
` acceleration due to gravity
Qw rate of heat transfer
Pr Prandtl number
Rd Planck number "radiationÐconduction parameter#
T temperature of the ~uid
Tw temperature of the heated surface
T� temperature of the ambient ~uid
u velocity in the x!direction
v velocity in the y!direction
V wall suction velocity
x streamwise coordinate measuring distance along the
surface
y cross!stream coordinate measuring distance normal
to the surface[
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Greek symbols
a equal to 3:2Rd

b coe.cient of cubical expansion
D equal to uw−0
DT equal to Tw−T�

z similarity variable
h similarity variable
u dimensionless temperature function
uw surface temperature ratio to the ambient ~uid
k coe.cient of thermal di}usivity
m the dynamic viscosity
n the kinematic viscosity
j a scaled streamwise coordinate
r density of the ~uid
s StefanÐBoltzmann constant
ss scattering coe.cient
t coe.cient of skin friction[

0[ Introduction

Radiation e}ects on free convection ~ow are important
in the context of space technology and processes involv!
ing high temperatures\ and very little is known about
the e}ects of radiation on the boundary!layer ~ow of a
radiating ~uid past a body[ The inclusion of radiation
e}ects in the energy equation\ however\ leads to a highly
nonlinear partial di}erential equation[ Soundalgekar and
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Takhar ð0Ł have studied radiation e}ects on free con!
vection ~ow of a gas past a semi!in_nite ~at plate using
the CogleyÐVincentiÐGiles equilibrium model "Cogley
et al[ ð1Ł#[ Very recently\ Hossain and Takhar ð2Ł have
analyzed the e}ect of radiation using the Rosseland
di}usion approximation which leads to nonsimilar solu!
tions for the forced and free convection ~ow of an
optically dense viscous incompressible ~uid past a heated
vertical plate with uniform free stream velocity and sur!
face temperature[ In this analysis consideration had been
given to grey gases that emit and absorb but do not
scatter thermal radiation[ We note that the Rosseland
di}usion approximation provides one of the most
straightforward simpli_cations of the full integro:partial
di}erential equations governing such ~ows[ Limitations
of this approximation are discussed brie~y in OÝzisžik ð13Ł[
Using a suitable set of transformations\ the boundary!
layer equations governing the ~ow in ð2Ł were reduced to
a locally nonsimilar form from which may be recovered
both the forced convection and free convection limits[
The resulting nonsimilar equations were solved using an
implicit _nite di}erence method[

Convective boundary!layer ~ows are often controlled
by injecting or withdrawing ~uid through a porous
bounding heated surface[ This can lead to enhanced heat!
ing or cooling of the system and can help to delay the
transition from laminar to turbulent ~ow[ Previous work
on the e}ects of blowing and suction on free convection
boundary!layers without radiative e}ects have been
con_ned to cases with a prescribed wall temperature[
Eichhorn ð3Ł\ for example\ obtained those power!law
variations in surface temperature and transpiration
velocity which give rise to a similarity solution for the
~ow from a vertical surface[

The case of uniform suction and blowing through an
isothermal vertical wall was treated _rst by Sparrow and
Cess ð4Ł^ they obtained a series solution which is valid
near the leading edge[ This problem was considered in
more detail by Merkin ð5Ł\ who obtained asymptotic solu!
tions\ valid at large distances from the leading edge\ for
both the suction and blowing[ Using the method of
matched asymptotic expansions\ the next order cor!
rections to the boundary!layer solution for this problem
were obtained by Clarke ð6Ł\ who extended the range of
applicability of the analyses by not invoking the usual
Boussinesq approximation[ The e}ect of strong suction
and blowing from general body shapes which admit a
similarity solution has been given by Merkin ð7Ł[ A trans!
formation of the equations for general blowing and wall
temperature variations has been given by Vedhanayagam
et al[ ð8Ł[ The case of a heated isothermal horizontal
surface with transpiration has been discussed in some
detail _rst by Clarke and Riley ð09\ 00Ł\ and then more
recently by Lin and Yu ð01Ł[ In the present paper we
determine the e}ect of radiation on natural convection
~ow of an optically thick viscous incompressible ~ow

past a heated vertical porous plate with a uniform surface
temperature and a uniform rate of suction where radi!
ation is included by assuming the Rosseland di}usion
approximation[ Asymptotic solutions are obtained both
near to and far from the leading edge and numerical
solutions at intermediate locations are obtained using
the Keller!box method "Keller ð02Ł#[ It is found that the
presence of suction serves to thin the boundary!layer at
large distances from the leading edge when compared
with the analogous solution for an impermeable heated
surface[ Radiation e}ects are found not to modify this
qualitative behaviour\ but they do a}ect the quantitative
results[

1[ Mathematical formulation

Consider a semi!_nite porous plate at a uniform tem!
perature Tw which is played vertical in a quiescent ~uid
of in_nite extent at constant temperature T�[ The ~uid
is assumed to be a grey\ emitting and absorbing\ but non!
scattering medium[ In the present paper the following
assumptions are made] "i# variations in ~uid properties
are limited only to those density variations which a}ect
the buoyancy terms\ "ii# viscous dissipation e}ects are
negligible\ and "iii# the radiative heat ~ux in the x!direc!
tion is considered negligible in comparison with that in
the y!direction\ where the physical coordinates "x\ y# are
chosen such that x is measured from the leading edge in
the streamwise direction and y is measured normal to the
surface of the plate[ The coordinates system and the ~ow
con_guration are shown in Fig[ 0[

Under the usual Boussinesq approximation\ the con!

Fig[ 0[ The coordinate system and the physical model[
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servation equations for the steady\ laminar\ two!dimen!
sional boundary!layer ~ow problem under consideration
can be written as

1u
1x

¦
1v
1y

� 9 "0#

r 0u
1u
1x

¦v
1u
1y1� m

11u

1y1
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where\ u and v are the velocity components in the x and
y\ directions\ respectively\ n is the coe.cient of viscosity\
r is the density of ambient ~uid\ ` is the acceleration due
to gravity\ b is the coe.cient of cubical expansion\ k is
the coe.cient of thermal di}usivity and T is the tem!
perature of the ~uid and qr is the component of radiative
~ux[ The quantity qr on the right!hand side of equation
"2# represents the radiative heat ~ux in the y direction[ In
order to reduce the complexity of the problem and to
provide a means of comparison with future studies which
will employ a more detailed representation for the radi!
ative heat ~ux\ the optically thick radiation limit is con!
sidered in the present analysis[ Thus\ the radiative heat
~ux term is simpli_ed by using the Rosseland di}usion
approximation "Sparrow and Cess ð4Ł# for an optically
thick ~uid according to\

qr � −
05sT2

2aR

1T
1y

"3#

where s is the StefanÐBoltzmann constant\ aR is the Ros!
seland mean absorption coe.cient[ This approximation
is valid at points optically far from the bounding surface\
and is good only for intensive absorption\ that is\ for an
optically thick boundary!layer[ Despite these short!
comings\ the Rosseland approximation has been used
with success in a variety of problems ranging from the
transport of radiation through gases at low density to the
study of the e}ects of radiation on blast waves by nuclear
explosion "Ali et al[ ð04Ł#[

The boundary conditions for the present problem are]

x � 9\ y × 9] u � 9\ T � T�

y � 9\ x × 9] u � 9\ v � −V\ T � Tw

y : �\ x × 9] u � 9\ T � T�[ "4#

In equation "4# V represents the suction velocity of ~uid
through the surface of the plate[ In this paper we shall
consider only the suction case "rather than blowing# and\
therefore\ V is taken as positive throughout[

Near the leading edge\ the boundary!layer is much like
that of the free convection boundary!layer in the absence
of suction\ although much further downstream suction it

will be found to dominate the ~ow[ Therefore\ the fol!
lowing group of transformations are introduced]

h �
Vy
nj

\ j � V 6
3x

n1`b"Tw−T�#7
0:3

c � V−2n1`b"Tw−T�#j2"f "j\ h#20
3
j#

T−T�

Tw−T�

� u"j\ h#\
Tw

T�

� uw\ Rd �
kaR

3sT2
�

"5#

where c is the stream function satisfying equation "0#
"i[e[ u � cy and v � −cx#\ uw is the surface temperature
parameter and Rd is the radiation parameter[ In equation
"5# the plus sign corresponds to suction and the minus
sign for blowing or injection[ In this paper we restrict
attention to suction only[

It should be mentioned that\ the optically thick
approximation should be valid for relatively low values
of conductionÐradiation parameter\ Rd[ According to Ali
et al[ ð04Ł\ some gases with their Rd!values are] Rd � 09Ð
29] carbon dioxide "099Ð549>F# with corresponding
Prandtl number range 9[65Ð9[5\ ammonia vapour "019Ð
399>F# with corresponding Prandtl number range 9[77Ð
9[73\ Rd � 29Ð199] water vapour "119Ð899>F# with cor!
responding Prandtl number Pr � 0 the Rd values lies
between 29Ð199[

Equations "1# and "2# together with "3# thus become

f1¦2ff ý−1f ?1¦u¦jf ý � j 6f ?
1f ?
1j

−f ý
1f
1j7 "6#

0
Pr $60¦

3
2Rd
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?

¦2fu?¦ju? � j 0f ?
1u

1j
−u?

1f
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and the corresponding boundary conditions transform
to

f � 9\ f ? � 9\ u � 0 at h � 9

f ? � 9\ u � 9 as h : � "8#

where Pr � n:k is the Prandtl number[ Equations "6#Ð"7#
are the locally nonsimilar equations governing the ~ow
under consideration[

The solutions of equations "6#Ð"7# enable us to cal!
culate the nondimensional velocity components\ u¹\ and
v¹\ from the following expressions]

u¹ � 0
V

`b"Tw−T�#1 u

� j1f?"j\ h# "09#
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v¹ � v:V

� j−0 62f¦j−hf?¦j
1f
1j7 "00#

and the shear stress tw\ and the rate of heat transfer Qw\
at the surface of the plate from

tw � 0
V

`bDT1 0
1u
1y1y�9

� jfý"j\ 9# "01#

Qw � −0
n

VDT1 0
1T
1y1y�9

� 00¦
3

2Rd

u2
w1 j−0u?"j\ 9# "02#

where DT � Tw−T�[ The set of partial di}erential equa!
tions "6# and "7# governing the ~ow could be integrated
by reducing to sets of nonlinear ordinary di}erential
equations by the local similarity method "Sparrow and
Yu ð05Ł^ Chen ð06Ł Hossain et al[ ð07Ł#[ Generally\ the
convergence of this solution method becomes increas!
ingly di.cult for large values of j[ It is important to
investigate in detail the ~ow at both large and small
values of j[ At intermediate values of j we employ in
Keller!box method\ a scheme designed especially for
parabolic partial di}erential equations "Cebeci and
Keller ð08Ł#[ In this method\ the present system of equa!
tions are reduced to a system consisting of equations
which are _rst order in h[ Central di}erence approxi!
mations based halfway along the both h and j intervals
are made and the resulting set of nonlinear di}erence
equations are solved by using the NewtonÐRaphson
quasi!linearization method[ The Jacobian matrix has a
block!tridiagonal structure and the di}erence equations
are solved using a block!matrix version of the Thomas
algorithm ^ the details of the computational procedure
have been discussed further by Hossain et al[ ð07\ 19Ł[ A
wide range of numerical results have been obtained using
this method\ but we present here just a small selection[
Finally\ the computed solutions obtained above are vali!
dated by a series expansion method for small j and by
an asymptotic analysis for large values of j[

It should be noted that\ in the absence of radiative
e}ects "0:Rd � 9#\ the present problem "6#Ð"7# has been
investigated by Merkin ð7Ł employing the method of series
solutions and asymptotic solutions\ respectively\ for
small j and large j[

2[ Series solution for small!j "SRS#

The series solution is valid for su.ciently small values
of j\ that is\ either for su.ciently small distances from the

leading edge or for small values of V*see the de_nition of
j in "4#[ Accordingly\ the functions f "j\ h# and u"j\ h# are
expanded in a power series in j\ that is\ we take

f "j\ h# � s
�

n�9

jnfn"h# and u"j\ h# � s
�

n�9

jnun"h#[ "03#

Substituting the above expansion into equations "6#Ð"7#
and equating the coe.cients of various powers of j\ we
get the following equations]

f19¦2f9fý9−1f?19¦u9 � 9 "04#

ð0¦a"0¦Du9#2Łuý9¦2aD"0¦Du9#1u1
9¦2 Pr f9u?9 � 9

"05#

where a � "3:2Rd# and D � uw−0\

f10¦2fý0f9¦3f0fý9−4f?0f?9¦u0¦fý9 � 9 "06#

ð0¦a"0¦Du9#2Łuý0¦2aD"0¦Du9#1"uý9u0¦1u?0u?9#
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¦u?9−f?9u0¦f0u?9Ł � 9 "07#
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� 1" f?1f?9−f1fý9#¦" f?0f?0−f0fý0# "08#
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¦2aDuý9ðu1¦D"1u1u9¦u1
0#¦D1u9"u1u9¦u1

0#Ł

¦2aDð"1u?1u?9¦u?10#"0¦Du9#1

¦3Du?0u0u9"0¦Du9#¦Du?19"1u1¦D"1u1u9¦u1
0##Ł

¦2Pr"u?1f9¦u?0f0¦u?9f1#¦Pr u?0 "19#

� Prð1"u1f?9−u?9f1#¦"u0f?0−u?0f0#Ł[

The corresponding boundary conditions are

fi"9# � f?i"9# � ui"9# � 9\ u9"9# � 0

f?i"�# � ui"�# � 9 "10#

for i � 9\ 0\ 1[ The coupled equations "04# and "05# are
nonlinear\ whereas "06#Ð"10# are linear\ and these may
be solved independently pairwise one after another[ The
implicit RungeÐKuttaÐButcher "Butcher ð10Ł# initial
value solver together with the NachtsheimÐSwigert iter!
ation scheme of ð11Ł is employed to solve the _rst pair
"04# and "05# and the other pairs up to O"j1# are solved
using the method of superposition "Na ð12Ł#[ The result!
ing solutions are expressed in terms of local skin!friction\
tw\ and the rate of heat transfer\ Q and compared with
the solutions obtained from the _nite di}erence method
for which the coe.cient of the series has been taken up
to O"j1#[
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3[ Asymptotic solution for large!j "ASY#

In this section attention shall be given to the behaviour
of the solution to equations "6# and "7# when j is large[
Given that we consider only the suction case\ for which
we take the positively signed terms in "6#Ð"7#\ an order!
of!magnitude analysis of the various terms in these equa!
tions shows that the largest are jfý in "6# and ju? in
"7#[ In their respective equations\ both terms have to be
balanced and the only way to do this is to assume that h

is small\ and hence h!derivatives are large[
Given that u � O"0# as j : �\ it is necessary to _nd

the appropriate scalings for f and h[ On balancing the f1\
u\ and jfý terms in "6#\ it is found that h � O"j−0# and
f � O"j−2# are j : �[ Therefore\ the following sub!
stitutions are made\

f � j−2F"j\ z#\ u � u"j\ z# and h � z:j[ "11#

Equations "6# and "7# together with "11# become

F1¦Fý¦u �
0

j2 6F?
1F?
1j

−Fý
1F
1j7 "12#

0
Pr $60¦

3
2Rd

"0¦"uw−0#u#27 u?%
?

¦u?

�
0

j2 0F?
1u

1j
−u?

1F
1j1 "13#

where primes denote di}erentiation with respect to z[
This convention will be used for the rest of this section[
The boundary conditions are simply

F � 9\ F? � 9\ u � 0 at z � 9

F? � 9\ u � 9 as z : �[ "14#

Equations "12# and "13# may be solved in terms of an
inverse power of series in j[

The solution is valid for su.ciently large values of j[
Accordingly\ the functions F"j\ z# and u"j\ z# are
expanded in a power series in negative powers of j\ that
is\ we take

F"j\ z# � s
�

n�9

j−nFn"z# and u"j\ z# � s
�

n�9

j−nun"z#[

"15#

Substituting the above expansion into equations "12# and
"13# and equating the coe.cients of various powers of j\
we get the following equations]

F19¦Fý9¦u9 � 9 "16#

ð0¦a"0¦Du9#2Łuý9¦2aD"0¦Du9#1u?19¦Pr u?9 � 9 "17#

where we recall once more that a � "3:2Rd# and
D � uw−0\

F10¦Fý0¦u0 � 9

ð0¦a"0¦Du9#2Łuý0¦2aD"0¦Du9#1"uý9u0¦1u?0u?9# "29#

¦5a"Du?9#1u0"0¦Du9#¦Pr u?0 � 9

F11¦Fý1¦u1 � 9 "20#

ð0¦a"0¦Du9#2Łuý1¦2aDuý0u0"0¦Du9#1

¦2aDuý9ðu1¦D"1u1u9¦u1
0#¦D1u9"u1u9¦u1

0#Ł

¦2að`kdEŁð1u?1u?9¦u?10#"0¦Du9#1

¦3Du?0u0u9"0¦Du9#¦Du1
9"1u1¦D"1u1u9¦u1

0##Ł "21#

¦Pr u?1 � 9[

The corresponding boundary conditions are

Fi"9# � F?i"9# � ui"9# � 9\ u9"9# � 0

F?i"�# � ui"�# � 9 "22#

for i � 9\ 0\ 1[ From these solutions the local skin friction\
tw\ and rate of heat transfer\ Qw\ are found to be

tw � Fý"j\ 9# "23#

and

Qw � 00¦
3

2Rd

u2
w1 u?"j\ 9# "24#

where these expressions are valid for all values of Pr[
For a � 9 as Rd : �\ solutions of the equations "16#Ð

"21# lead to the following form of the skin!friction\ tw\
and the rate of heat transfer\ Qw]

tw ¼
0
Pr

¦O"j−3# "25#

and

Qw ¼ Pr¦O"j−5#[ "26#

4[ Results and discussion

The results obtained by three distinct methods namely\
a series solution method for small values of j\ the Keller!
box method for j $ ð9\ �# and an asymptotic method for
large j\ have been employed to integrate the coupled
partial di}erential equations "6# and "7# which describe
the natural convection ~ow along a uniformly heated
vertical porous plate with the e}ect of radiation[

The results are obtained in terms of the local skin!
friction\ tw\ and the local rate of heat transfer\ Qw for
di}erent values of the aforementioned physical par!
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ameters and these are shown in tabular form in Table 0
and graphically in Figs 1Ð4[

The numerical results of tw and Qw obtained by the
series solution and the asymptotic solution for di}erent
values of uw are compared with those obtained by the
_nite di}erence solutions in Table 0 in the range of

Table 0
Numerical values of skin!friction and the rate of surface heat
transfer obtained by di}erent methods for di}erent values of uw

while Pr � 0[9 and rd � 19[9

Local skin friction Surface heat ~ux

tw Qw

j SRS and FDS SRS and FDS
ASY ASY

uw � 0[0
9[09 9[9544$ 9[9544 5[3022$ 5[3516
9[19 9[0219$ 9[0205 2[3241$ 2[3817
9[39 9[1560$ 9[1536 0[8442$ 1[9118
9[59 9[3930$ 9[2852 0[3690$ 0[4328
9[79 9[4305$ 9[4124 0[1224$ 0[2136
0[99 9[5672$ 9[5318 0[9853$ 0[0884
0[49 0[9676% 9[7763 0[9999% 0[9463
1[99 0[9676% 0[9167 0[9999% 0[9019
2[99 0[9676% 0[9658 0[9999% 0[9990
3[99 0[9676% 0[9660 0[9999% 0[9990
4[99 0[9676% 0[9661 0[9999% 0[9990

uw � 0[4
9[09 9[9553$ 9[9554 5[6089$ 5[6289
9[19 9[0239$ 9[0228 2[4830$ 2[5155
9[39 9[1606$ 9[1588 1[9308$ 1[9766
9[59 9[3005$ 9[3940 0[4225$ 0[4781
9[79 9[4415$ 9[4254 0[1751$ 0[2400
0[99 9[5823$ 9[5597 0[0322$ 0[1066
0[49 0[0247% 9[8085 9[8888% 0[9541
1[99 0[0247% 0[9634 0[9999% 0[9035
2[99 0[0247% 0[0249 0[9999% 0[9994
3[99 0[0247% 0[0244 0[9999% 0[9990
4[99 0[0247% 0[0247 0[9999% 0[9990

uw � 1[4
9[09 9[9697$ 9[9698 7[0011$ 7[9733
9[19 9[0321$ 9[0322 3[2295$ 3[1747
9[39 9[1805$ 9[1806 1[3380$ 1[3992
9[59 9[3336$ 9[3312 0[7292$ 0[6732
9[79 9[5993$ 9[4811 0[4161$ 0[3759
0[99 9[6467$ 9[6268 0[2492$ 0[0987
0[49 0[0403% 0[9502 0[9636% 0[0987
1[99 0[2018% 0[1760 0[9146% 0[9216
2[99 0[3078% 0[3198 0[9993% 0[9995
3[99 0[3119% 0[3125 0[9990% 0[9990
4[99 0[3133% 0[3133 0[9990% 0[9999

$For small j and % for large j[

j $ ð9\ 01Ł for Pr � 0 and Rd � 19 and for values of the
surface temperature parameters of 0[0\ 0[4 and 2[9[ From
this table it can be seen that the results for the series
solution method as well as the asymptotic method are in
good agreement with the Keller box solutions[ It can also
be noticed that the skin!friction and the rate of heat
transfer both increase as the surface temperature par!
ameter increases[ For all values of the surface tem!
perature parameter\ uw\ the heat transfer rate leads to the
asymptotic value Pr as j : �[

The e}ects of varying the radiation parameter\ Rd\ on
both the skin!friction and the local rate of heat transfer
are shown in Figs 1 and 2\ respectively[ In Figs 1 and 2
it can be seen that the match between the Keller!box
solution and the small!j and large!j analyses is very good
indeed[ Changes in Rd lead to changes in the asymptotic
value of the skin friction\ but not in the asymptotic rate
of heat transfer[ In general\ however\ both the skin!
friction and the rate of heat transfer decrease as Rd

increases[ In Figs 1"a# and 1"b# the curves corresponding
to 0:Rd � 9 "i[e[ where the conductionÐradiation e}ect is
absent# are in excellent agreement with those of Merkin
ð7Ł[

Figures 3 and 4 show how the results are a}ected by
changing the Prandtl number with both Rd and uw held
_xed[ Again the match between the various methods of
solution in their respective domains of validity is excel!
lent[ As the Prandtl increases\ the skin!friction decreases\
but the rate of heat transfer increases[ The asymptotic
limit of both these quantities is dependent on Pr*all
these observations are consistent with "25# and "26#\ as is
the fact that the approach to the asymptotic solutions is
very rapid[

The velocity and temperature distributions obtained
by the _nite di}erence method for various values of the
governing parameters\ are displayed in Figs 5Ð7[ The aim
of these _gures is to display how the pro_les vary in j\ the
scaled streamwise coordinate[ It is shown that\ relative to
constant values of h\ both the velocity and the tem!
perature decrease in magnitude as j increases[ Thus the
numerical results in Fig[ 5 indicate that both the momen!
tum and the thermal boundary!layer thickness decrease
in terms of h at increasing distances from the leading
edge[ This provides qualitative support of the form of the
asymptotic analysis where it is shown that suction e}ects
lead to a constant thickness boundary layer in terms of y[
In order that above results may be useful for experimental
veri_cation\ we can determine the percentage increase in
the maximum velocity in the boundary!layer[ Thus when
conductionÐradiation e}ects are present in a ~uid with
Pr � 0[9\ uw � 0[0[ and Rd � 09[9\ the velocity boundary!
layer decreases by 06[1\ 26[3 and 72[0) when j increases
from 9[9Ð0[9\ 1[9 and 4[9\ respectively[ The cor!
responding decreases in the thickness of the thermal
boundary!layer calculated at h � 0[91 are 06[8\ 24[2 and
66[7)[
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Fig[ 1[ Local skin!friction against j for di}erent Rd with uw � 0[0 and Pr � 0[9[ The curves for Rd � � represent those obtained by
Merkin ð7Ł[

Fig[ 2[ Local heat transfer against j for di}erent Rd with uw � 0[0 and Pr � 0[9[ The curves for Rd � � represent those obtained by
Merkin ð7Ł[

In Fig[ 6"a# and "b# we display the e}ect of varying the
conductionÐradiation parameter\ Rd\ on the velocity and
temperature distribution in the boundary layer[ It can be
seen that an increase of the conductionÐradiation par!
ameter decreases the local velocity as well as the tem!
perature[ Therefore increases in the value of Rd leads to
a decrease in both the momentum and thermal boundary!
layer thicknesses[ From the calculated values of the vel!
ocity when Pr � 0[9\ uw � 0[0 and j � 1[9\ the maximum
velocity increases by 26[30\ 41[9\ 52[10\ 64[6 and 68[4)
with the decrease in the value of the conductionÐradiation
parameter\ Rd from �Ð09\ 1[9\ 0[9\ 9[4 and 9[0[ The

corresponding increase of the local temperature cal!
culated at h � 0[91 are 21[6\ 38[6\ 52[6\ 68[5 and 091[4)[

In Fig[ 7"a# and "b# we see the e}ect of varying the
surface parameter\ ud\ on the velocity and the temperature
distributions[ One may observe that the both the velocity
and the temperature distribution and hence the momen!
tum thickness and the thermal boundary!layer thickness
increase due to increase in this parameter[ As before\
for Rd � 09[9 and Pr � 0[9 the value of the maximum
velocity increases by 09[4\ 20[0 and 48[95) as the value
of the surface temperature parameter uw is increased from
0[0Ð0[4\ 1[9 and 1[4[ Finally\ when the value of uw is
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Fig[ 3[ Local skin!friction against j for di}erent Pr for uw � 0[0 and Rd � 0[9[

Fig[ 4[ Local heat transfer against j for di}erent Pr for uw � 0[0 and Rd � 0[9[

increase from 0[0Ð0[4\ 1[9 and 1[4 the value of the local
temperature at h � 0[91 is found to be increased by 04[2\
36[4 and 099[9)[

For the sake of brevity we have not displayed isotherm
plots to indicate how the boundary!layer behaves\ _rstly
as a function of j\ and secondly how its thickness varies
at any one chosen value of j for di}erent values of the
governing parameters[ When the boundary!layer begins
to grow at the leading edge it resembles a free convection
layer and its thickness is proportional to x0:3[ Further
downstream the growth in thickness is halted and it
eventually becomes a constant thickness boundary!layer
because of the surface suction[ We also note that separate
increases in the value of Rd and uw cause the boundary!

layer to increase in relative thickness at any chosen value
of j[ However\ when the boundary!layer attains the
asymptotic uniform thickness\ any changes brought
about by variations in these parameters are negligible[

5[ Conclusions

In this paper we have sought to determine how the
presence of radiation e}ects alter the free convection
boundary!layer ~ow from a uniformly heated surface
with suction[ The presence of radiation serves to intro!
duce two extra parameters into the problem\ namely\ Rd

and uw[ The detailed e}ects of varying Pr\ and Rd and uw
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Fig[ 5[ "a# Velocity and "b# temperature distribution against h for di}erent j for Rd � 0[9\ uw � 0[0 and Pr � 0[9[

Fig[ 6[ "a# Velocity and "b# temperature distribution against h for di}erent Rd at j � 1\ uw � 0[0 and Pr � 0[9[

are complicated and a small selection have been presented
above[ In general\ an increase in Rd serves to thin the
layer and an increase in uw serves to thicken the layer[
The presence of suction ensures that its ultimate fate as
j increases is a layer of constant thickness[
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