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Summary. The interaction of free convection with thermal radiation in boundary layer flow from an inclined 
isothermal plate is studied numerically. Introducing appropriate transformations the equations governing 
the flow are expressed in the form of local nonsimilarity equations valid near the leading edge as well as in the 
downstream region. A group of transformations is also introduced such that the flow near the leading edge 
and far downstream can be described. Heated upward facing plates with positive and negative inclination 
angles are investigated. When the inclination is negative the boundary layer separates from the surface and 
the numerical solutions can be extended downstream past the point of separation. From the present 
investigation it may be concluded that the position of the separation point moves away from the leading edge 
with the increase of either of the thermal radiation parameter or the surface temperature parameter of the 
heated surface. 

1 Introduction 

Heat  transfer by natural  convection in laminar boundary  layer flows has been analyzed 
extensively for semi-infinite flat plates in vertical, horizontal, and inclined orientations. 
Typical studies can be found, for example in the works of Ostrach [1], Pera and Gebhar t  [2], 
Hasan  and Eichhorn [3], and Chen and Tzuoo [4]. On the other hand, heat transfer by 
simultaneous natural  convection and thermal radiation in a participating fluid has not been 
received much attention; this is required since thermal radiation plays significant role in the 
overall surface heat transfer in a situation where convective heat transfer coefficients are 
small, as is the case in natural  convection confined to the case of vertical semi-infinite plate 
(see e.g., Cess [5], Arpaci [6], Cheng and Ozisik [7], Hasegawa et al. [8], Bankston et al. [9], 
Sparrow and Cess [10], Viskanta and Grosh [11] and Cess [12]). Ali et al. [13] first investiga- 
ted the boundary  layer flow over a semi-infinite horizontal plate considering gray-gas that  
emit and absorb but do not scatter thermal radiation. Recently, Hossain and Takhar  [14] 
have analyzed the effect of radiation using the Rosseland diffusion approximat ion which 
leads to nonsimilarity solutions for the forced and free convection flow of an optically dense 
viscous incompressible fluid past  a heated vertical plate with uniform free stream velocity 
and surface temperature.  Using a group of transformations, the boundary  layer equations 
governing the flow were reduced to local nonsimilarity equations valid both in the forced 
convection and free convection regimes. The resulting equations were solved using the 
implicit finite difference method. 
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On the other hand, very recently, an attempt has been made by Hossain et al. [15] to predict 
heat transfer in the boundary layer free convection flow of an electrically conducting fluid 
without thermal radiation effect over an upper surface of a semi-infinite heated plate which is 
inclined at a small angle q5 = O(Gr- 1/5) to the horizontal, where Gr is suitably defined Grashof 
number, in the presence of a uniform magnetic field. 

In the present paper it is proposed to investigate the effect of free convection-radiation 
interaction on the boundary layer flow of an optically dense viscous incompressible fluid along 
the heated surface which is inclined at a small angle to the horizontal. In fact the problem 
that was considered by Jones [16] for viscous incompressible fluid in absence of thermal 
radiation showed that the problem can be formulated in terms of a regular and inverse series 
expansion of a characterizing coordinate that essentially provides a link between the similarity 
states appropriate at the leading edge and far downstream. In particular, it was noted that 
the correct form of expansions required the introduction of logarithmic terms if consistency 
is to be maintained. Accordingly, an estimate of indeterminacy could be obtained via 
a reconciliation of the asymptotic expansions and the numerical integration of the governing 
boundary layer equations using the 'selected points' technique of Lanczos [17], for which 
solutions were presented by series of Chebychev polynomials. But here we introduce a significant 
improvement of the numerical solutions employed to solve the problem considered in [16]. 
The known limiting forms of the boundary layer equations are linked via a continuous 
transformation in the characterizing coordinate as proposed by Hunt and Wilks [18]. 
Accordingly, a complete integration is achieved in the context of a single set of equations. This 
set of equations is solved numerically using the implicit finite difference method together with 
the Keller box elimination technique of Keller [19]. Both the positive and negative inclinations 
of the plate are considered. When the inclination of the plate is negative, the numerical 
integrations are continued through the point at which the boundary layer separation takes 
place at the surface of the plate. 

2 Basic equations 

Consider the steady free convection boundary layer flow of a viscous incompressible fluid over 
a semi-infinite flat plate inclined at an angle q~ to the horizontal. The surface temperature of the 
plate is maintained at a uniform temperature Tw which is greater than the ambient fluid 
temperature, T~. The fluid is assumed to be a gray, emitting and absorbing, but non-scattering 
medium. The physical coordinates (~, ~) are chosen such that 2 is measured from the leading edge 
along the surface of the plate and )7 is measured normal to the surface of the plate. Further 
assumptions are made: 

!t 

1 
Fig. 1. Co-ordinate system and physical model 
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(i) that the radiative heat flux in the Y direction is considered negligible in comparison with 
that in the y direction, 

(ii) the viscous dissipation and axial heat conduction effects are negligible and 
(iii) that the variation of fluid properties are limited to density variation which affects the 

buoyancy terms only. 

Under these assumptions along with the Boussinesq approximation, the conservation equations 
for the steady two-dimensional flow problem under consideration can be written as 

c3u c3v 
8x+~yy 0 (1) 

8 gu ~p 
u ~x + v 3y Ox + V2u + (Gr tan ~b) 0 (2) 

8v c3v #p 
. + v Vy = - + v 2 v  + G r0  (3) 

(4) 

where V 2 is the two-dimensional Laplacian and Gr = gilA TL 3 cos O/v 2 is the appropriately 
defined Grashof number, Rd = 4aT~/kas is inverse of radiation-conduction parameter and 
Ow = Tw/T~ is the surface temperature parameter for heated surface (i.e. Tw > T~). Equations 
(1)-(4) are subject to the boundary conditions 

u = v = 0 ,  0 = 1  at 

u,O,p-*O as y ~ o o .  

y = 0  
(5) 

In these equations the non-dimensional variables are defined as 

37 tiL OL 
x=z-, y=~-, u=--,v V=--v 

g 2 

p Qv 2 {App + Lg(x sin q~ + y cos q~)} (6) 

O = \ ~ j ,  A T = ~ - ~ , A p = f i - p ~  

where L is the streamwise length of the plate, g is the gravitational acceleration, Pr is the Prandtl 
number, ~, fl and v are, respectively, the density, thermal expansion coefficient, and the kinematic 
viscosity of the fluid. 

We now introduce the following transformations into the above equations: 

= Grl/Sy, ff = Gr-2/5u, g = Gr-1/Sv, ~ = Gr-4/Sp (7) 
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and ignoring the terms which are of the order Gr -z/5 relative to those retaining in the limit 
Gr --, c~, Eqs. (1)-(4) take the form: 

3~p c32~ c3~ ~2~ _ Op 0p 03~p 

~y ~?x3y dx @2 3x = - - ~  + --3y3 + AO, (8) 

~p 
0 = -~yy + 0, (9) 

Oy 8x ~y Oy - Pr ~y 1 +  l + ~ Ra(Ow-1) O OYJ 

where ~p is the stream function which satisfies the equation of continuity (1), and A is the 
inclination parameter defined by 

A = Gr 1/5 tan ~b. 

The boundary conditions (5) now take the form 

0~ 
tp = - - = 0 ,  0 =  1 at y = 0 ,  

8y 
(11) 

- - - -~0 ,  0 ~ 0 ,  p--+0 as y ~ .  
0y 

It should be noted that the range of inclination angle q~ considered here is that A is O(1) so that the 
buoyancy force term is formally comparable with induced pressure gradient along the plate. It 
may further be noted that the horizontal plate problem corresponds to A = 0, while the vertical 
flat plate problem corresponds to A ~ 0% in which case the scalling (7) becomes inappropriate. 

In the situation, where the wall temperature Tw is not very much different from the free stream 
temperature T~o the energy equation (10) takes the following form (see Ali [13]): 

3 ~ 0  ~1p30 1 f l  +4Ra'~c~20 
(12) 

3y ~x ~?y ~y P r \  -3 )~y2" 

3 Solutions 

We first transform Eqs. (8)-(10) into the equations valid near the leading edge of the plate (small 
x) and far downstream (large x), respectively. However, to obtain a solution which is valid for all 
x, equations (8)-(10) are solved numerically using the implicit finite difference method along with 
Keller box scheme of Keller [19], in combination with the method of continuous transformation 
devised by Hunt and Wilks [18]. 

Solution for small x 

We expect that, near the leading edge of the plate, the structure of the boundary layer to be similar 
to that associated with non-radiative flow along a semi-infinite horizontal plate. Consequently, 
we employ following transformation (used by Stewartson [20]): 

= x3/Sf(x, rl), p = x2/Sh(x, it), 
(13) 

0 = O(x, ~), ~ = y/x 2/5. 
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This gives 0 = h', from Eq. (9), and then substituting (13) into (8) and (10) we obtain 

f,,, 3 ,, 1 ,2 2 ( f ,  c3f' f , ,c3f  Oh) + ~ f f  - ~ f  - ~ ( h - r l h '  )+  Ax3 /Sh '=x  ~x ~x + ~ x  (14) 

_ _ [ {  ( 4 )3} 1' ( f  ) 1 1 +  1 +  Ra(O~-l) h' + ~ f h  = x  ~x ~x " Pr 3 h" 3 ,, , ~?h' _ h" af  (15) 

Corresponding boundary conditions (11) become 

f (x ,  O) =i f (x ,  0), h'(x, O) = 1, 
(16) 

i f(x,  oo) = h(x, oo) = h'(x, oo) = O, 

where primes denote differentiations with respect to t/. 
In the situation where the difference between the surface temperature and the free stream 

temperature is very small, i.e., 0~ ~ 1 the energy equation reduces to 

Pr I + 3 R a  + f h " =  ' a h ' -  h" c3f (17) 

Solution for  large x when 0 > 0 

At the distance from the leading edge, since the development of the boundary layer is chiefly 
influenced by the component of the buoyancy force parallel to the plate, the approximate 
transformation for the asymptotic form of the solution when the plate is at the positive angle of 
inclination is suggested by Bejan [21] 

~p = x3/~f(x, tl-), p = xl/4h(x, q), 
(18) 

o = O(x, 0), 0 = ylxl/L 

so that 0 =/~' and Eqs. (8)-(10) transform into 

f,,, + 3 ff , ,  1-,2 1 ( f  of' f,, a f )  (19) ~ f  ~- x-3/4(/~ - qh') + Ah' - x TM Oh , - - ~ -~=x  ~ 

[{ ( 4 )3} ] '  3 ( f  Oh' ~ , , O f )  1 1 +  1+  Re(Ow-1)/~' /~" + f / ~ " = x  ' (20) 
P-~ 3 ~x 

and the corresponding boundary conditions take the form 

f ( x ,  O) = f ' (x ,  O) = O, f((x, O) = 1, 
(21) 

f (x ,  ~ )  = ~(x, ~ )  = ~(x, ~ )  = 0. 

As before, when the difference between the surface temperature and the free stream 
temperature is very small, i.e., 0~ ~ 1 the energy equation reduces to 

( 4 ) / ~ , , ,  2 = ( f , )  (22, 1 1 +  R. + f k '  ok k' ~ /  
P5 3- x ~-x ~xx " 
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Solution for  all values o f  x 

Of the governing boundary layer equations (8)-(10), the original numerical algorithm 
involved a switch between the leading edge and far downstream transformed forms (14)-(15) 
and (20)-(21), respectively. Although, instrumental in providing a background for analytic 
investigation, transformations (13) and (16) need not necessarily be the most appropriate for 
numerical integration. In fact the switch feature of the algorithm may be avoided by the 
introduction of the continuous transformation in x, linking the limiting solutions (13) and (18) 
as follows: 

lp = X315(1 -]- X) 3/20 F(X, Y), p = x2/5(1 -t- x) -3/2~ H(x, Y) (23) 

where 

Y= y(1 + x)a/2~ 2Is (24) 

so that 0 = H' and Eqs. (8) and (10) transform into 

12 + 15x 2 + 5x 
F"' + FF"  

20(1 + x) 10(1 + x) 

X ~3/5 H '  

.v '~ + a \ i - T ~ }  

(1 + 
(25) 

[{(4 1 1 1 +  1 +  Ra(Ow-1)  H'  + PG ~ H" 
12 + 15x 

20(1 + x) 

OH' ~F) 
F H " = x  F' H"  (26) 

The boundary conditions are 

F(x, O) = F'(x, O) = O, H'(x, O) = 1, 

F'(x, o0) = H(x, oc) = H'(x, oo) = 0. 
(27) 

where, primes now denote differentiation with respect to Y. It is worth pointing out that in the 
limits x --* 0 and x ~ oo the governing equations (14)-(15) and (20)-(21) for (f, h) and (f,/~) can 
easily be recovered from (25)-(26). 

Finally, when 0,~ ~ 0 the energy equation reduces to 

4 ) H ' "  1 1 + Ra + 
e-7 

12 + 15x 

20(1 + x) 

OH' ,,OF\ 
F H " = x  F'  -- (28) 

The quantities of physical interest in this problem are the skin-friction, and the heat transfer 
coefficients defined as 

z~ Lqw 
Cy - o~(v/L)Z, Nu = - zA~  (29) 



Free convection-radiation interaction from an isothermal plate 69 

where, Zw and qw are the dimensional skin-friction and heat transfer at the plate which 
are given by 

(~u-~ , ( ~ T )  4or (aT3~ (30) 
% =/z  \a37/y=o qw = - k  ~ ~=0 3as \ O~]/~=o" 

Using Eqs. (24)-(25), we obtain 

Cy/Gr 3/5 = x-l/s(1 + x)9/2~ 13) (31) 

( 4 )  
Nu/Gr 1Is = -x-2/5(1 + x) 3/20 1 + ~ RaOw 3 H"(Z , 0). (32) 

At the two limiting conditions, x --* 0 and x ~ oo relations (31) and (32) take the forms 

Cf/Gr 3/5 = x - I / s f " ( x ,  0), (33) 

( 4 )  
Nu/Gr lls = - x  -2/s i + -~Ra0w 3 h"(x,O), (34) 

and 

Cf/Gr 3/5 = xl /4 f ' (x ,  0), (35) 

( 4 )  
Nu/Gr 1Is = - x  -1/4 1 + "~ RaOw 3 h"(x,O). (36) 

Throughout, when the thermal radiation parameter Ra = 0, there is no radiation interaction 
and the problem reduces to that investigated by Jones [16] for pure natural convection flow along 
an inclined surface with small angle of inclination to the horizontal. However, solutions thus 
obtained are discussed in the following section. The sets of Eqs. (14)-(16), (18)-(20), and 
(23)-(25) are coupled nonlinear partial differential equations involving the parameters Pr, Re, 

0w and A. Thus, these sets are to be solved simultaneously subjected to the given boundary 
conditions. In the present investigation all the set are solved numerically employing a very 
efficient finite difference method introduced by Keller [19], and which was used most efficiently by 
Cebeci and Bradshaw [22] and very recently by Hossain et al. [14]-[15]. 

4 Results and discussion 

The numerical results for the heat transfer coefficient Cf/Gr 3Is and the heat transfer rate 
coefficient Nu/Gr 1/5 are obtained for representative values of the pertinent parameters Ra and 
0w for both positively (A > 0) and negatively (A < 0) inclined surface with Pr equals unity. 
Throughout we have considered the case of heated surface. It should be noted here that for both 
C02 in the temperature range 100,-~ 650~ (with corresponding Prandtl number range 
0.76 ~ 0.6) and NH3 vapor in the temperature range 120 ~ 400~ (with corresponding Prandtl 
number range 0.88 ~ 0.84) at 1 atm, the value of Ra ranges approximately from 10 to 30, whereas 
for water vapor in the temperature range 220 ,-~ 900 ~ (with corresponding Prandtl number 
Pr ~ 1.0) the Ra values lie between 30 to 200 (see Cess [12]). In Figs. 2 to 5, the numerical values 
obtained for Cj./Gr 3/5 and Nu/Gr 1/5 from the solutions of the representative equations for 
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Fig. 2. Values of skin-friction coefficient against 
x for different values of Ra with Pr = 1, A = 1.0 
and 0w = 1.1 
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Fig. 3. Values of Nusselt number coefficient 
against x for different values of Ra with Pr = 1, 
A = 1.0 and 0w = 1.1 
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Fig. 5. Values of Nusselt number coefficient 
against x for different values of 0w, with Pr = 1, 
Ra = 10.0 and A = 1.0 

upstream, downstream and entire regime are compared with unit  value of A and Pr. In 

these figures the circled curves, the bulleted curves and the solid curves represent respective- 

ly for the cases upstream, downstream and entire region. It can be seen that the solutions 

obtained for the cases upstream and downstream region are in excellent agreement with 

those of the entire region. Undoubtedly  these solutions are better than the series solution. 

In Figs. 2 and 3 the curves represent, respectively the values of Cf/Gr 3/5 and Nu/Gr 1/5 
against x for values of Ra equals 1.0, 5, 10, 20 and 50 with the temperature parameter 

0N = 1.1. From these figures it is observed that both Cs/Gr 3Is and Nu/Gr t/s increase owing 

to increases in the thermal radiation parameter Ra. The values of Cy/Gr 3/5 and Nu/GP/s 
against x for values of the surface temperature parameter 0,, equals 1.1, 2.0, 2.5 and 3.0 with 

Ra = 10.0 are shown in Figs. 3 and 5. It can be seen that an increase of the surface 

temperature also leads to increase in the values of Cf/Gr 3/5 and Nu/GP/5. In the previous 

figures, since we have seen excellent agreement between the solutions from the equations 

valid in the upstream and downstream regimes with those of the entire regime, here in Figs. 

6 and 7, we represent the values of Cs/Gr 3/5 and Nu/Gr 1/5 against x for values of A equals 
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Fig. 9. Temperature distribution at the point of  
separation x~ for Ra = 1.0 and 10.0 and 0 ,  = 1.1, 
1.5, and 2.0 with Pr  = 1 and A = - 1 . 0  

0.0, 0.5, 1.0, 1.5 and 2.0 with Ra = 10.0 and 0,~ = 1.1 obtained only for the equations valid in the 
case of entire region. Here again, we see that increase in the inclination to the horizontal leads to 
increase in both the values of Cr 3/5 and Nu/Gr 1/5. We further observe that owing to increase in 
the inclination there is an increase in the boundary layer thickness. 

When the plate is at a negative angle to the horizontal, the separation of the boundary layer 
would occur downstream from the leading edge of the plate as the opposed buoyancy force and 
induced pressure gradient are of comparable magnitude. Here we have calculated the position of 
separations point, x~, for A = -- 1, when Re equals 1 and 10 with values of Ow equals 1.1, 1.5 and 
20. The numerical values of these separation points are entered in Figs. 8 and 9. In these figures, 
the velocity and temperature profiles are presented at the corresponding separation points. It can 
be seen that at an increase in both the radiation parameter and the surface temperature 
parameter leads to increase both in velocity as well as in the temperature profiles. We also notice 
that the position of the separation point moves away from the leading edge with the increase of 
either of the radiation-convection interaction parameter or the surface temperature parameter of 
the heated surface. 
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5 Conclusions 

Effect of radiat ion-convect ion interaction on natural  convection flow along an isothermal fiat 

plate inclined at small angle to the horizontal  has been investigated by integrating the 

t ransformed boundary  layer equations for small and large distances from the leading edge of the 

plate numerically using implicit  finite difference method. Novel  variables are also proposed  such 

that  the numerical  solution is effective by simulation of a single set of equations which 

incorporate  the equations at the upstream and downstream regimes. In  case of the negative 

inclination at A = - 1, the separat ion points are accurately determined since the solutions at 

these points behaved in regular manner.  F r o m  the present investigation it may also be concluded 

that  the posi t ion of the separat ion point  moves away from the leading edge with the increase of 

either of the radiat ion-convect ion interact ion parameter  or the surface temperature  parameter  of 

the heated surface. It is hoped that  experimental  da ta  will be available in near future to very the 

results of the present investigation. 
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