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Summary. A modified and improved numerical solution scheme, for local nonsimilarity boundary layer 
analysis, is used to study the combined free-forced convective laminar boundary layer flow, past a vertical 
isothermal flat plate, with temperature-dependent viscosity. This numerical scheme is efficient and accurate 
and it can be programmed and applied easily and its application is illustrated, step by step, by the study of the 
above mentioned problem. Numerical results are presented graphically, for the flow field, for the case of air 
and water and for different values of the viscosity/temperature parameter H r over the range of the convection 
parameter 0.2 < ~ < 1.0. The analysis of the obtained results showed that the flow field is appreciably 
influenced by the viscosity/temperature parameter, and hence care must be taken to include the variation of 
viscosity with temperature in the heat transfer processes. 

1 Introduction 

Many contemporary problems of interest in boundary-layer flow ar/d heat transfer do not admit 
similarity solutions [1]-  [9]. The nonsimilarity of boundary layers may result from a variety of 
causes and several numerical solution methods have been devised for dealing with nonsimilar 
boundary layers. Among them, the local nonsimilarity solution method is one of the most well 
known methods. This method was developed by Sparrow and coworkers [10], [11] and has been 
applied by many investigators to solve various nonsimilar boundary-layer problems [12] - [15]. 

Minkowycz and Sparrow [16] presented an effective numerical solution scheme for local 
nonsimilar boundary-layer analysis which is able to deal effectively with the multiequation 
systems encountered in nonsimilar boundary-layer flows, and it employs integrated forms of the 
governing differential equations. However this numerical solution method often presents 
stability and overflow or underflow problems. 

In this work a modified and improved numerical solution scheme for locally nonsimilar 
boundary layer analysis is presented. The scheme is based on almost the same technique as the 
one mentioned in the above paragraph [16], but it deals with the differential equations in lieu of 
integral equations. At each level of truncation, the governing coupled, non-linear system of 
differential equations is solved by applying the common finite difference method with central 
differencing, a tridiagonal matrix manipulation and an iterative procedure [17]. The whole 
numerical scheme can be programmed and applied easily and has distinct advantages compared 
to that of Minkowycz and Sparrow with respect to stability, accuracy and convergence speed. 

The application of this effective numerical solution scheme is illustrated, step by step, by the 
study of the combined free-forced convective laminar boundary-layer flow past a vertical 
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isothermal flat plate with a temperature dependent viscosity. Numerical results are presented 
graphically for various values of the dimensionless parameters governing the problem under 
consideration, followed by a quantitative and a qualitative analysis. The numerical scheme was 
also applied to several representative problems of boundary layer analysis [16], [18], [19], which 
have already been solved by different numerical techniques, and the obtained results were found 
to be in excellent agreement. 

2 The physical problem and outline of the numerical scheme 

The steady laminar free-forced convective boundary-layer flow, of a viscous incompressible and 
homogeneous fluid, with temperature-dependent viscosity, over an isothermal vertical flat plate, 
is governed by the following system of partial differential equations (1)-(2) and their boundary 
conditions (3): 

H 1 H-H~ H' H ~ff,, f,~f'~ -H ,  
f ' "  - - -  f "  f "  - ~(H - H,) = ~ --- (1) 2 f  H, H-H~ H-~ ~ O~J H~ ' 

1 (dHf  ~f ) H " + ~ P r J H ' = P r r  ~ -  - ~ H '  , (2) 

f ' ( r  f ( ~ , 0 ) = 0 ,  H(~,0)= 1, f ' ( ~ , ~ ) =  1, H ( ~ , ~ ) = 0 .  (3) 

In the above system of equations (1), (2),f(~, 7) is the dimensionless stream function, H(~, t/) is the 
dimensionless temperature, Pr is the Prandtl number, { is the convection parameter and H~ is the 
viscosity/temperature parameter, defined as 

7'(x, y) T -  T| 
f ( r  ~) - vo~ Re~ 1/z' H(r ~/) T~ - T~ '  Pr  = ~o~v~cp/k (4) 

1 
= Grx/Re~ 2, Hr = ?(T~, - T~o)' respectively, Grx is a local Grashof number, R% is a local 

Reynolds number and primes denote partial differentiation with respect to the pseudosimilarity 
variable t /=  R% 1/2 y/x. 

The formulation of this problem, the analysis, and its solution by the local similarity solution 
method, (e.g. for small values of the mixed convection parameter ~ < 1) has already been 
presented in [1]. The local similarity solution method, used there, provides accurate results only 
when ~ ~ 1. For higher values of the convection parameter ~ though (as ~ tends to 1), this method 
is inappropriate and the corresponding results become less accurate. On the other hand it is 
obvious that the nonsimilar aspects of the problem are embodied in the terms containing partial 
derivatives with respect to 3, and nonsimilarity is assured because of the term involving ~ on the 
left hand side on (1). Thus, with i-derivative terms retained in the system of equations (1) and (2), 
it is necessary to employ a numerical scheme suitable for partial differential equations for the 
solution. In addition, owing to the coupling between adjacent streamwise locations through the 

derivatives, a locally autonomous solution at any given streamwise location cannot be 
obtained. However, when the terms involving ~ ~( ) /~  and their t/derivatives are deleted, the 
resulting system of equations resembles, in effect, a system of ordinary differential equations, and 
the computational task is simplified. Furthermore, locally autonomous solutions can be 
obtained because the streamwise coupling is removed. So, the numerical solution method 
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presented here can be applied to solve the system of equations (1)-  (3) and to give accurate results 
for all values of the convection parameter 4. 

First level of truncation (Local similarity method) 

At the first level of truncation terms involving 4 ~( )/04 are considered small and deleted. This is 
particularly true when ~ ~ 1. The system of equations (1)-(2) reduces now to 

1 H - H r  H' H H 
f ' "  - - - f "  f "  - ~(H = 0 ,  (5) 2 f  Hr H - H r  - r ) H r  

1 
H" + ~ Pr fH '  = 0, (6) 

whereas the boundary conditions (3) remain the same. 
It can be seen that Eqs. (5) and (6) can be regarded as a system of coupled ordinary differential 

equations for the functions f and H with 4 as a parameter for a given Prandtl number. This 
approach is computationally attractive but leads to numerical results of uncertain accuracy 
(Local similarity solution method). The local nonsimilarity method can correct such a draw- 
back. 

Second level of truncation 

At the second level, all the terms in the conservation equations, e.g. Eqs. (1) and (2), are retained, 
with the l-derivatives disguised by the introduction of the new functions g = af/O4 and 

= OH/a{. Since g and ~ represent two additional unknown functions, it then becomes 
necessary to deduce two more equations for determining g and 4. Auxiliary equations for these 
functions, and their boundary conditions, are derived by partial differentiation of Eqs. (1), (2) and 
boundary conditions (3) with respect to 4. The auxiliary equations for g and �9 contain terms 
involving Og/a{ and a~0/O{ and their q-derivatives. When these terms are deleted, the system of 
equations for f H, g and �9 and their boundary conditions reduces to 

1 H - H r f , ,  H' f,, ~ H - H ,  H - H r  
f"' - 2 f --Hr H - H r "  Hr H = {(gf" - f' g') H-----l--' (7) 

H" + -12 Pr f/-/' = Pr {@f' - gH'), (8) 

g,,, ( l  f H - - H r  H' H-Hr'~ ,, ( eb - H ,  f ,H-Hr '~  , 
+ _ u + ) g + 4f'-g + r + -) g 

_ H; +~-~, +r f H' i f ,  + - -  

~,f,, 
H - M r 

o) 
H - M r 

+ 4 ~ - - ,  (9) 
Hr 

�9 " + Pr f + 4g ~' - Pr (f '  + ~g') �9 = - -~ Pr gH', (10) 
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f'(~, 0) = 0, f(~, 0) = 0, H(~, 0) = 1, g'(~, 0) = 0, g(~, 0) = 0, ~(~, 0) = 0, 

f ' ( r  H G ~ ) = 0 ,  g'(r ~ (r  (11) 

It is worth mentioning that at the second level, as at the first level, the set of governing 
equations (7)-(10) can be regarded as ordinary differential equations with ~ as parameter. This 
system provides locally autonomous solutions in the streamwise direction. This form of the local 
nonsimilarity method is referred to as the second level of truncation, because approximations are 
made by dropping terms in the second-level equations (the f, H equations being the first-level 
equations). 

Third level of truncation 

At this level, all terms are retained in both the f, H and the g, 4~ equations. The ~-derivatives 
appearing in the g, @ equations are now disguised by introducing h = 0g/0~, X = 843/8~. The g, 
4~ equations and their boundary conditions are then differentiated with respect to ~ to obtain two 
additional equations for the functions h(~, q) and X(~, ~). In these new equations, terms involving 
8h/8~ and 3X/0~ and their q-derivatives are deleted, so that once again a locally autonomous 
system of ordinary differential equations for f, g, h, H, 45 and X can be derived. These equations 
are not presented here due to lack of space. 

The numerical scheme 

At the third level of truncation, there are six equations whose leading terms a re f" ,  H ' ,  g", ~", h'" 
and X", respectively. In general, the nonsimilarity method can give rise to a large number of 
ordinary differential equations that will require simultaneous solution. Two numerical schemes 
have mainly been used for the solution of such a system. The first using a direct forward 
integration of the governing differential equation along with a shooting technique and the second 
employing the integrated forms of the differential equations. The former scheme is relatively easy 
to apply at the first and second levels of truncation, but convergence of solutions may become 
difficult to obtain at the third level of truncation, as the number of simultaneous equations grows 
larger. The latter scheme can deal with multiequation systems at higher levels of truncation but it 
is somewhat more complicated in numerical aspects of computation and sometimes presents 
stability problems. Thus, both schemes have their advantages and disadvantages. The numerical 
scheme presented here is almost based on the same technique as the second mentioned scheme, 
but it deals with the differential equations in lieu of integral equations. At each level of truncation, 
the governing coupled and non-linear system of differential equations is solved by applying the 
finite difference method, with central differencing, a tridiagonal matrix manipulation and an 
iterative procedure. The whole numerical scheme can be programmed and applied easily and has 
distinct advantages compared to the above mentioned ones with respect to stability, accuracy 
and convergence. This numerical scheme is demonstrated by solving the systems of Eqs. (5), (6) 
subject to the boundary conditions (3), for the first level of truncation. The procedure was easily 
extended, in the same manner, to the second and third level of truncation. At the first level, Eq. (5) 
can be written as 

H' / H 1 H -- Hr f"  = ~(H -- Hr) ~ .  (12) 
f '"+ - 2 f  Hr H - H r  



Convective laminar boundary layer flow 43 

So, it can be considered as a second-order linear ordinary differential equation in y = f'(t/) ifH(t/) 
and an approximationf(q) (or f'(t/)) are known. In this case Eq. (12) can be written as 

y" = p(t/) y' + q(t/) y + r(t/), (13) 

l f H - H r  H' H 
where y(t/) = f'(t/), p(t/) = ~ H2 + H - Hr' q(t/) = 0 and r(t/) = ~(H - Hr) ~ .  

Equation (13) can be solved now by a common finite difference method, based on central 
differencing and tridiagonal matrix manipulation. It can be shown [20] that when using this 
difference method, in the case where p, q and r are continuous functions of~/on the closed interval 
[0, t/| with q(t/) > 0 on this interval, then the solution of Eq. (13), together with boundary 
conditions y(0) = ~ and y(t/| = b, where ~, b are real constants, is unique provided that the step 
size h < 2/L, where L = max [p(t/)[, 0 < t /<  t/o~. On the other hand it is necessary to establish that 
y(4) is continuous in order to ensure that the truncation error of this numerical scheme has order 
O(h2). 

Hence, to start the solution procedure at a given 4, it is necessary to assume distribution 
curves for f'(t/) and H(t/) between t /=  0 and I /=  t/oo (t/-~ oe) which satisfy the boundary 
conditions (3). For example, f'(t/) = t//t/~ and H(t/) = 1 - t//t/oo can be used as first inputs. The 
f(t/) and H'(t/) distributions are obtained by integrating and differentiating, respectively, the 
assumedf'(t/) and H(t/) curves. H(t/) is then retained, whilst the momentum equation (12) is solved, 
using an algorithm employing a tridiagonal scheme, enabling a new approximation forf'(t/) to be 
produced. Thef(t/) distribution is updated by integrating the newf'(t/) curve. This new profile of 
f(t/) is then used for new input and so on. So, the momentum equation (12) is solved iteratively 
until convergence is attained. The iterations stop when the difference in the values off"(0), 
between two successive iterations, are less than a small quantity el. The converged profile off(t/) 
is then used to solve equation (6), using the same algorithm, but without iterations, thereby 
producing a new approximation for H(t/). Next the computational procedure reverts to its 
original starting point using the most recent profiles of f '(t/) and H(t/) as inputs. This process is 
continued until final convergence is attained, viz. the changes in f"(O) and H'(O) are within 
a certain specified tolerance el. 

To initiate the computational process for the second level of truncation, the converged 
distributions for f '  and/7,  from the first level solution, are used as initial inputs along with 
guessed distributions for g' and ~ that satisfy the boundary conditions (11) and proceed 
successively to refine the f  H, g, and �9 functions in a manner identical to that used in dealing with 
the first level of truncation. 

To start the numerical solution, for the third level of truncation, the converged results for the 
f '  H, g' and �9 functions from the second level along with guessed distributions for the h' and 
X functions are used as initial input data, and the computational scheme then works successively 
to refine t h e f  H, g, ~, h and X functions and their t/-derivatives. In general, the computational 
procedure for higher levels of truncation parallels the one for the first level, and their details are 
thus omitted. 

In the numerical computations, a proper step size At/ and an appropriate t/~ value (an 
approximation to t /=  oe in the free stream) must be determined, usually by a trial-and-error 
approach. It is known that the location of the boundary layer edge, q | is strongly dependent on 
the Prandtl number Pr. In general, if the appropriate q~o value is not known, it is advantageous to 
start the computation by using a small value of q~ (say, 4 or smaller) and then successively 
increase the qoo value until convergence is attained, the criterion being the stability of the 
physically important gradients f"(0), - H'(0) etc. Once a proper q ~ value is determined, a check of 
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Table 1. Values off'(0; H,, ~) and - H'(0; H,, ~) for the three levels of truncation in the case of air (Pr = 0.71) 

O, ~ f"(0;/-/,, ~) - H'(0; H,  r 

First Second Third First Second Third 

2.0 0.2 0.390 801 0.327100 0.325 870 0.306 331 0.304 016 0.303 310 
0.4 0.493 594 0.443190 0.440 950 0.323 323 0.329123 0.328 790 
0.6 0.604 621 0.548 620 0.544 790 0.338 770 0.348 246 0.348 480 
0.8 0.701579 0.646 659 0.641300 0.350 538 0.363 723 0.364 790 
1.0 0.801230 0.738 954 0.732 720 0.362 216 0.376 636 0.378 980 

6.0 0.2 0.543 518 0.484 943 0.483 070 0.325 899 0.325 242 0.324 880 
0.4 0.723 517 0.651873 0.648 910 0.346 299 0.351093 0.351290 
0.6 0.887938 0.806198 0.798900 0.362609 0.371225 0.371810 
0.8 1.037 846 0.947 913 0.938 450 0.375 938 0.387 302 0.388 840 
1.0 1.201316 1.082168 1.070 790 0.390 802 0.400751 0.403 690 

10.0 0.2 0.575 033 0.512 963 0.510 880 0.329 652 0.328 629 0.328 300 
0.4 0.764 764 0.689 078 0.685 720 0.349 863 0.354 602 0.354 840 
0.6 0.939 797 0.851926 0.843 900 0.366 574 0.374 850 0.375 470 
0.8 1.098 429 1.001519 0.991100 0.379 993 0.391028 0.392 620 
1.0 1.271472 1.143181 1.130730 0.395 090 0.404 553 0.407 560 

the effect of step size A~/= h on the numerical values of the above-mentioned gradients should be 

conducted. Usually, a step size of A~/= 0.025 was sufficient to provide accurate numerical results 

in such type of problems. The values of these gradients, in the case of air (Pr = 0.71), for different 

values of the convection parameter ~ and the viscosity/temperature parameter Hr, for the three 

levels of truncation, are shown in Table 1. 

3 Numerical results and discussion 

Numerical calculations are carried out for fluids having Prandtl number equal to 0.71 (air) and 4.608 

(water) [21], over the range of convection parameter 0.2 < ~ < 1.0 and for different positive and 

negative values of the viscosity/temperature parameter Hr. Our results are shown in Figs. 1 - 4 for the 

velocity and temperature fields and in Figs. 5 - 8 for the skin friction and heat transfer coefficients. 

These physical quantities are of most interest in such problems and are defined by 

C• = 2%,/Q~U~ and Nu  = xqw/k(Tw - T~) (14) 

# ~u - k  ~ respectively, where z w = [  (~yy)l,=o and qw= (~yyT)y~o. (15) 

These quantities can also be written as 

csx = c r Rex 1/2 = (2Hr/(Hr - 1) f ' ( 0 ;  Hr, ~) and Nu~ = Nu Re~ -1/2~ = - H ' ( 0 ;  Hr, ~). (16) 

Figure 1 shows the variations of the velocity field, in the case of air (Pr = 0.71), for different 
values of the convection parameter ~ and the viscosity/temperature parameter H~, whereas the 
corresponding variations in the case of water (Pr = 4.608) are shown in Fig. 2. It is clear that for 
large values of the convection parameter ~(~ ~ 1) and when the viscosity/temperature variation 
is virtually negligible (H~ = 8 or -8 ) ,  typical mixed-convection profiles are presented in the 
boundary layer for such standard convection flows. On the other hand, in the case of air (Fig. 1), 
an increase of the sensitivity of viscosity to temperature effectively retards the development of the 
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forced (4 = 0.5) to the mixed convection regimes along the vertical plate (4 = 1). However, when 
the fluid is water (Fig. 2), it is observed the opposite effect when increasing the viscosity- 
temperature sensitivity. 

The temperature variations for air and water are shown in Figs. 3 and 4 for various values of 
the parameters Hr and 4. In the case of air it is observed that when Hr is reduced, i.e. when the 
sensitivity of viscosity to temperature is increased, then, at each r the temperature gradient at the 
wall is reduced. So, the consequence of higher viscosities near the wall is to effectively reduce all 
these temperature gradients. However, in the case of water a different result is achieved by 
increasing the viscosity/temperature sensitivity (Fig. 4). So, we conclude that for both air and 
water, the consequence of having a significant temperature dependent viscosity is to produce 
a marked effect on the temperature field in these convection flows. 

The dependence of the dimensionless skin friction coefficient f"(0) for various values of the 
convection parameter ~ and the viscosity/temperature parameter Hr, for air and water, is shown 
in Figs. 5 and 6, respectively. It is observed clearly that f"(0) increases with 4, i.e. as the distance 
from the leading edge of the plate is increased. On the other hand the effect of increasing the 
sensitivity of viscosity to temperature, through the parameter Hr, is different for gases and liquids. 
In the case of air, f"(O) is everywhere decreased as H, decreases whereas for water, as ]Hrr 
decreases, the skin friction coefficient is increased. This dependence of the skin friction coefficient 
on the values of the viscosity/temperature parameter, for both air and water, is more evident as 
Hr -~ 1 for air or as H, --, 0 for water. Quantitatively, in case of air with ~ = 0.8, halving the value 
of H~ from 8.0 to 4.0 decreases f"(0) by 10.46%, whereas a further halving of H, to 2.0 results in 
reducing f"(0) by 26.16%. The corresponding increases in water as H~ changes from - 8.0 to - 4.0 
and from -4 .0  to - 2 . 0  are 8.33% and 14.51%, respectively. 

Finally, Figs. 7 and 8 show the variation of the dimensionless heat transfer coefficient - H'(0) 
for various values of ~ and H, for air and water. The dependence of this quantity on ~ is very 
similar, qualitatively at least, to this of the skin friction coefficient f"(0). However, once again, in 
the case of air (Fig. 7), - H'(0) everywhere decreases as H~ is decreased whereas for water (Fig. 8) 
as rHrJ decreases, the heat transfer coefficient is increased. Quantitatively, for the same value of 

and for the same changes in the values of H,, as in the case off"(0), the corresponding decreases 
in the values of the heat transfer coefficient -H ' (0)  are 1.91% and 4.93% for air and the 
corresponding increases for water are 1.79% and 3.12%, respectively. 

4 Conclusions 

The numerical solution technique presented here is a modified and improved numerical solution 
scheme for local nonsimilarity boundary layer analysis. Local solutions are found from 
differential equations in lieu of integral equations. In each level of truncation, the governing 
coupled and non-linear system of ordinary differential equations is solved by applying the 
common finite difference method with central differencing, a tridiagonal matrix manipulation 
and an iterative procedure. This scheme can be programmed and applied easily and it is accurate, 
stable and rapidly converging. These facts suggest that it is capable of solving a wide class of 
nonsimilar boundary layer problems of fluid mechanics. This numerical solution scheme was 
successfully applied to the study of the free-forced convective boundary layer flow past a vertical 
flat plate, with a temperature dependent viscosity. The analysis of some representative results of 
this problem showed that when the viscosity of a fluid is sensitive to temperature variations, this 
effect has to be taken into consideration, otherwise considerable errors may occur in the 
characteristics of the heat transfer process. 
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