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Summary. An investigation is undertaken of the unsteady response of two-dimensional laminar free 
convection boundary layer flow of a viscous incompressible fluid along a semi-infinite vertical heated plate 
where the mean surface heat flux oscillates with a small amplitude about a steady profile. The buoyancy 
forces are favourable, resulting from a positive flux of heat from the surface of the plate into the fluid. The 
interaction of the time-periodic heat flux with the usual boundary-layer flow is examined by using 
a linearized theory. Solutions are obtained using three distinct methods, namely an extended series expansion 
method for low frequencies, an asymptotic series expansion method for high frequencies and a fully 
numerical finite difference method for general frequencies. Calculations have been carried out for a wide 
range of parameters to examine the solutions in terms of the amplitude and phase angle of the fluctuating 
parts of the surface shear stress and the surface temperature. It has been found that the amplitude and phase 
angle of both the shear stress and the surface temperature predicted by these three methods are in very good 
agreement in their respective ranges of validity. 

1 Introduction 

In the area of laminar boundary layer theory, Lighthill [1] was the first to study the unsteady 

forced flow of a viscous incompressible fluid past both a flat plate and a circular cylinder with the 

free stream having small amplitude oscillations. The similarity solutions for free convection flow 

from a vertical plate with a uniform surface heat flux was originally studied by Sparrow and 

Gregg [2] who obtained solutions valid near the leading edge. The corresponding problem of 

unsteady free convection flow along a vertical plate with an oscillating surface temperature was 

studied by Nanda  and Sharma [3] and Eshghy et al. [4]. Muhuri  and Maiti [5] and Verma [6] have 

analyzed the effect of an oscillating surface temperature on the unsteady free convection flow 
from a horizontal plate. All of these investigations were based on the assumption that the surface 

temperature executes temporal oscillations with a small amplitude about the uniform mean 
temperature, and they were carried out by employing the Karman-Pohlhausen approximate 
integral method. To obtain perturbation solutions valid near the leading edge and in the far 

down-stream region Roy [7] considered the same type of problem for high Prandtl  numbers and 
Wilks [8] studied free convection flow over a vertical plate with a uniform surface heat flux. The 
case of prescribed surface heat flux on a vertical plate was studied by Merkin and Mahmood  [9], 
Merkin et al. [10] and Chaudhary and Merkin [11]. These works were confined to steady flow, 
and solutions were obtained which are valid at large distances from the leading edge, and 
solutions were also given for intermediate regions. Based on a linearized theory, Kelleher and 
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Yang [12] have studied the heat transfer responses of a laminar flee convection boundary layer 
along a vertical heated plate to surface temperature oscillations and, recently, Hossain et al. [13] 
have investigated the same type of problem in detail, where the mean surface temperature, Ow(x), 

is proportional to x", where x is the streamwise distance from the leading edge of the plate. 
Hossain et al. [13] presented solutions in terms of the amplitude and phase of the surface heat 
transfer rate for small and large values of 3, the streamwise distribution of frequency of 
oscillation. An attempt to match the low and high-frequency oscillations was also made. 

The corresponding case of the free convection boundary layer flow over a vertical heated plate 
with a non-uniform surface heat flux has not been treated previously, and this is what is 
considered here. It should be noted that, since non-uniform surface heat flux variations are more 
likely to occur physically than uniform surface heat fluxes, it is important to determine the extent 
to which a non-uniform surface heat flux will affect the boundary layer response. In the present 
paper we consider an unsteady free convection flow of a viscous incompressible fluid along 
a vertical heated plate when the surface heat flux of the plate oscillates with a small amplitude 
about a mean flux which itself varies as the power of n of the distance from the leading edge. We 
investigate this general problem by employing (i) an extended series expansion method in the 
low-frequency range, (ii) an asymptotic series expansion method in the high-frequency range, and 
(iii) a finite difference method to find the nature of solutions for general frequencies. Calculations 
have been carried out for a wide range of the parameters to determine the effects of unsteadiness 
on the surface temperature and shear stress. 

2 Mathematical formulation 

In a Cartesian coordinate system a semi-infinite vertical plate is placed at y = 0, x _>_ 0 so that 
x measures the distance along the plate from the leading edge, and y is measured normally 
outwards from the plate into the fluid. Far from the surface the ambient fluid temperature is Too. 
Favourable buoyancy forces arise as a result of a positive surface heat flux, q~,, from the plate. 
Under the Boussinesq approximation, the usual Navier-Stokes and energy equations for two 
dimensional incompressible flow, for the case where the surface rate of heat flux is time- 
dependent, reduce to the following boundary layer equations (Kramer and Pai [14]): 

~u ~v 
3-x + ~y = 0, (1) 

Ou 3u ~u 02u 
& + u ~x + v Oy v eY 2 + g ~ ( r -  T~), (2) 

aT OT OT OaT 
& + u ~xx + v - -  = e (3) t~y 3y 2' 

where u, v are respectively the x and y-components of the velocity field, v is the kinematic 
viscosity, Tand Too being the temperature of the fluid in the boundary layer and the temperature 
of the ambient fluid, g is the acceleration due to gravity, fl is the coefficient of volume expansion, 
and ~ is the thermal diffusivity. 

Equations (1) - (3) are to be solved subject to the boundary conditions 

y = 0: u = 0, v = 0, -kOT/Oy = qw(x) [1 + e cos cot] ~, 

y ~ o o :  u ~ O ,  T ~  Too 
(4) 
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where m is the frequency of oscillation of the surface heat flux of the plate and 8 ~ i is a measure of 
its amplitude. 

The boundary conditions (4) suggest that the solutions of Eqs. (1) - (3) may be found as the 
real parts of the following expressions (Ishigaki [15]): 

u = u o + ~ exp (imt) ui ,  

v = v o + e exp (ioot) vl ,  (5) 

T -  T~ = q j x )  (/70 + ~ exp (iogt) 01), 

where the components u o, Vo and /70 represent the basic steady mean flow satisfying the 
differential equations 

OUo OVo 
Ox + ~ = O, (6) 

Ou o dUo + dUo OZUo 
Ot + u~ ~ x  Vo -~y = gflqw(x) ~o + v --,Oy z (7) 

O/7o dgo O/7o o~/7o 
0--t-- + u~ ~ + Vo 0y = z - - ,0y z (8) 

with the boundary conditions 

Uo = O, Vo = O, /70' = -q~(x )  at y = 0, 

U o ~ 0 ,  / 7 o ~ 0  as y - o  oo, (9) 

and u l, vi and 0i are the components of the unsteady flow, which satisfy the differential equations 

Ou 1 c~vl 
- -  + O, (10)  
dx -~y = 

Oul duo + Ou~ . Ouo d2u~ 
Uo ~ + u~ dx ~o 7 y  * vl ~ + i,oul = ~q~(x)  o, + v dY ~ , (11) 

001 a0o OO1 d0o d201 
Uo ~ + ul ~ + Vo 7y  + vl -f ly+ i~o~ = ~ --,Oy ~ (12) 

subject to the boundary conditions 

u i = 0 ,  v i = 0 ,  0 ' s = - q w ( x )  at y = 0 ,  

u s ~ 0 ,  0 i --*0 as y ~ .  (13) 

In order to get the similarity equations for the steady state equations (6) - (8), we introduce the 

following group of transformations: 

Ciy  
11) 0 = C2x~ ' /SF(r] ) ,  O 0 = qw(x) 0(~), tl - xl /S,  qw(X) = qo x", (14.1) 

where 

C 1 . C 2 = (14.2) 
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In the above ~o(X, y) satisfies the equation of continuity for the steady state flow, and qo is 
a constant related to the mean surface heat flux. 

Thus we obtain the equations 

(n+4)  FF,, (2n+3)  F'" + - -  F '2 + O -- 0, (15) 
5 5 

(n + 4) (4n + 1) 
1_ O" +- FO' F'O = 0. (16) 
Pr 5 5 

The boundary conditions to be satisfied by the above equations are 

F(0) = F'(0) = 0, 8'(0) = - 1, 

F'(oo) = O, O(oo) = 0. (17) 

Here primes denote differentiation with respect to q, and Pr = v/a is the Prandtl number. 
The transformations (14) lead us to the following group of transformations for Eqs. 

(10) - (13) for the fluctuating part of the problem: 

( k x )  2/5 
q~t = C2x4/Sf(tl, ~), O1 "~-  q,~(x) O(rl, {), { = to \ g - ~ v /  " (18) 

Equation (11) and (12) then reduce to 

(n+4)  . . . .  [ (4n+6) ] 
f " ' + - - - ~ - r j  -- i~q 5 F' f ' +  

- ~ F ' - - - - F "  ~ 

(n+4)  [ ( 4 n + l )  1 1 0 " + -  FO'-  i ~ + - - f '  O + - -  
Pr 5 5 

- 5 "~ F ' - - - O '  O{ 

(n + 4) 
F'T+ 0 

5 

(n + 4) (4n + 1~) 
07" -  of' 

5 5 

with the boundary conditions 

(19) 

(2o) 

f(~, O) =f '(~,  O) = O, 0'(~, O) = - 1, ( 
(21) 

f ' (~,  oo) = 0(4, co) = 0.  

The unsteady shear stress and surface temperature are important quantities to find, and these 
may be obtained from the solutions of Eqs. (15) - (17) and (19) - (21). Here we present the 
solutions in terms of amplitude and phase of the shear stress and the rate of surface heat flux. 
These are defined according to 

A, = / ( f , , ) z  + (f},)2 I,=o, A, = / ( 0 , )  2 + (0i) 2 {,=0, (22) 

and 

q~, = tan -1 V,-v/[,=o, ~bt = tan -1 ~ [,=o, (23) 

where (fr, f0 and (0,, 00 represent the real and imaginary part off({, t/) and 0(4, i/) respectively. 
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Equations (15) - (17) describe the steady mean flow and temperature field. The solutions of 
these equations have already been obtained by Chaudhary and Merkin [11] for different values of 
the associated physical parameters Pr and n. Equations (19) - (21) describe the O (8) fluctuating 
component of the solution, and these shall be solved by a variety of methods. In Section 3 we 
detail the solution for small values of ~ using a series solution. Given that ~ is proportional to 
both co and x z/5, see (18), such a series solution is valid both for small values of x while co = O (1), 
and for very low frequencies (co ~ 1) with x = O (1). Section 4 discusses the asymptotic solution 
for large values of ( -  again this could be interpreted either as a large distance limit or as a high 
frequency limit. Solutions for intermediate values of 4, where the equations are, in general, 
nonsimilar, were obtained using the Keller-box method (see [17]). Details of the implementation 
of this method are now quite standard and have been discussed in [13]. It is also worth noting 
that, when n = 1, Eqs. (19) and (20) reduce to a pair of linear ordinary differential equations where 
solutions may be obtained via a straightforward shooting method. 

3 Series solution for small 

Clearly, a description of the effect of unsteadiness on the flow near the leading edge using results 
based on a finite number of terms in the series will only be valid in a very small range of 
frequencies. Since small values of ( also correspond to very low frequencies, co, we expect the flow 
to adjust quasi-statically to the fluctuating rate of heat transfer at the boundary. We expandfand 

0 according to 

f(~, q) = ~ (2i~)'fdtl), 0(4, q) = ~ (2i~) m OmO1). (24) 
" = 0  m ~ O  

Substituting these into Eqs. (19) - (20) and then equating the terms of like powers of(2i~) to zero, 
we obtain the following pairs of ordinary differential equations for the functions f "  and 0": 

(n + 4) (n + 4) (4n + 6) FTd + F')~o + 0o = 0, (25) 
f ; "  + 5 Ff;' 5 5 

1 (n + 4) (4n + 1) (4n + 1) (n + 4) 
- -  Og + FO'o OoF' - -  O f ' o  + O f o  = 0, (26) 
Pr 5 5 5 5 

(n+4)  [ 2 m ( 5 - 1  ) (4n + 6!] F~f. ~ 
f;~' + 5 Ff~ + 5 

[ 1 1 + ( n + 4 )  2 m ( n - 1 )  F ' ~ f ' + 0 " = ~ - f d _ l  
5 5- 

[2m(n__-- 1) (4n + 1)] F'Om (4n + 1) 1 (n + 4) FO~, + Of''  
Pr~ + 5 1 5  5 J 5 

(27) 

!n + 4) 2m(n - 1!3 = 1 
+ 5 5 J Of,, ~ 0"_ 1, (28) 

where m = 1, 2, 3, . . . .  The respective boundary conditions are 

fo(0) =f 'o(0) = 0, 0'o(0) = - 1 ,  f'o(OO) = 0o(OO) = 0, 

J f '(0) =f,~(0) = 0"(0) = 0, fm(OO) = 0"(oo) = 0, 

where primes again refer to derivatives with respect to q. 

(29) 
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It can be seen that Eqs. (25) - (28) are linear, but coupled, and may be solved independently 
pairwise one after another. In the present analysis, the implicit Runge-Kutta-Butcher [18] initial 
value problem solver together with the Nachtsheim-Swigert [19] iteration scheme is employed to 
solve the system of Eqs. (25) - (28) up to O(~ lo). Here the Pade's approximant [20] is also used to 
obtain a more accurate approximation for the local amplitude and phase of the fluctuating parts 
of both the shear stress and the surface heat flux. Detailed numerical results are discussed in 
Section 5. 

4 Asymptot ic  so lut ion for large 

Away from the leading edge buoyancy forces become increasingly important until far 
down-stream the flow will be predominantly one of free convection perturbed only slightly by the 
presence of the free stream. Therefore, in this Section attention has been given to the behaviour of 
the solutions to Eqs. (19) and (20) when r is large. Again, we emphasize that this limit corresponds 
either to large values of x for finite co or to large values of co when x is finite. Actually, a detailed 
examination of the numerical results obtained by means of the Keller box method shows that, for 
large values of ~, the unsteady response is confined to a thin region adjacent to the surface. We 
note, however, that this conclusion may not be true at higher orders in the e-expansion. Therefore 
we seek a series solution in the high frequency range, utilizing the limiting solution as the 
zeroth-order approximation. For this reason, the following transformations are introduced: 

y =  ~1/2t/' q~(~, y) = ~3/2f(~, q), 0(~, Y) = 0(~, t/). (30) 

These scalings were motivated by an order-of-magnitude analysis of (19). 
Equations (19) and (20) then become 

03cp ( n + 4 )  _ 1/2 02(12 �9 ~q~ 
O y  3 + ~ F( o g  2 1 O Y  

(6n + 4) F,r ~ c3~o (4n + 1) F,,r ~ + 0 
5 + 5 

- 2(n-l'[F'( 0295 ~ + ~YO2~~ ~ + ~Y O~--Y)I ' (31, 

and 

1 020 
Pr ~y2 

(n+4~ 00 
- -  - -  + ~ - ~  Fr 1/2 

- io 

( 4 n + l )  F,~_10 ( 4 n + l )  o~_ 2 Oqo ( 4 n + l )  
5 5 ~ -~ 5 0'~- 5/2r 

2 ( 1 - n )  V ~  ,{00 Y ~Y ) [c3q~ 2-~Y ~ 1 - LF ~ -~  + - O'r ~ + , (32) 

respectively. Since these equations correspond to a thin near-wall layer, the leading order 
functions, F and O, in this region can be represented with good accuracy by the following power 
series: 

F = a2tl 2 + a3t /3  + a4r /4  + as t /2  + . . . .  (33) 

O = ball + b:/2 + baq 3 + b4t/* + bs~/5 + .... (34) 
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where, according to Eqs. (15) - (17) 

1 
a2 = ~ F"(0), ..., bl = O'(0) . . . . .  

Based on the above expansions, solutions to Eqs. (31) and (32) may be obtained in the following 
form: 

f(~, Y)= ~ U"/2f~(Y), 0(4, Y ) =  ~, ~-m/2 Ore(Y). (35) 
m ~ O  m = O  

When Eqs. (35) are substituted into Eqs. (31) and (32) and terms of like powers of ~ are collected, 
one obtains 

f~ '  - / f 6  = - 00,  (36.1) 

fT'  - / f ~  = - O1, (36.2) 

f~ '  - / f ~  = - 02 ,  (36.3) 

2(7n + 3) 2(4n + 1) 
f~,  _ / f~  = (3n + 1) a2y2f6 , -f a2Yf'o a2j~ - -  03,  (36.4) 

5 5 5 

and 

1 
p-~ O~ - iO0 = 0, (37.1) 

1 
- -  0~ - iO1 = 0, (37.2) 
Pr 

1 
- -  0 "  iO2 = 0 ,  (37.3) Pr 2 - -  

(Sn + 2) 1 (3n + 2) az Y 20'o + - -  a2 YOo, (37.4) p-~ 0~ - iOa - 5 5 

where primes now denote differentiation with respect to Y. The associated boundary 
conditions are 

f,,(0) =f,~(0) = f ~ ( ~ )  = 0, for m = 0, 1, 2, 3, 4 . . . .  ~. 

J 0 ' o ( 0 ) = - 1 ,  Om(0)=O, , (c~)=0 ,  for m = 1 , 2 , 3 , 4  . . . .  
(38) 

Now solving Eqs. (36) and (37), subject to the boundary conditions (38), we find the following 
expressions for f"(r  0) and 0(r 0): 

( + i - ~ )  ~-l/2 + (Al~ All + A12) ~-5/z + O(~-7/z) 
f"({, O) = 1 

and 

(39) 

1 ( l ln  + 4) a2 0(3, O) = ~ ~-1/2 + ~-5/2 + 0(3-7/2) (40) 
20Pr sv Pr 
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where s = ]/i  is evaluated in the first quadrant (i.e. s = (1 + i)/~-2), and 

1 Ao = 1 ( l l n  + 4) a2 (3n + 2) 
Po = ~P-r(Pr - 1)' Pr(Pr - 1) Po, A1 = 20Pr , A2 = 10s ' 

s(8n + 2) a2  (3n + 1) a2 2(7n + 3) a2  ( 8 n  + 2) a2 
A3 = , A4 - , As ~- , A 6  -~ , 

10 5 5 5 

sA~ 4A2]/@(3Pr + 1) 8A3Pr 2sA4(3Pr + 1) 2sAs 
A7 = Pr----~ + s(Pr - 1)* , As - (Pr - 1) 3 (Pr - 1) 4 ' A9 --  (Pr - 1) 3 

s A6  A1 ~ r  A2(15Pr 3 + 19Pr 2 - 3Pr + 1) 
--  s A 6 A ~  Pr(Pr - 1) z' A~o = - s P t  + s(Pr - 1) + 2Pr(Pr - 1) 4 

P1 = A7  + As + A 9 , A l l  = 
sA3( l lPr  2 + 6Pr - 1) A4Po 2sA4 ~P~(3Pr + 1) 

2 ] / / - ~ ( P r -  1) 3 4s ( P r -  i) 4 

4A4 [ / /~  AsPo As(Pr + i) A6Po A 6  

s ( P r -  1) if' Aj2 . . . . .  + 4s s V ~ ( P r -  1) 3 2s s [ / f~ (Pr  - 1) 2. 

It is to be noted that the complex expressions (39) and (40) are valid for all Prandtl numbers, 
Pr ~: 1. However, when calculations for Pr = 1 are needed, it is necessary to take the limits of 
these solutions as Pr ~ 1. 

5 Results  and discussion 

In the present analysis, solutions for the fluctuating free convection flow of a viscous 
incompressible fluid along a vertical heated surface with a small amplitude oscillation in the 
surface heat flux about a non-uniform steady heat-flux which varies in power of the distance 
measured from the leading edge are investigated. Solutions of the (leading order) steady part of 
the problem have already been discussed by Chaudhary and Merkin [11]. The fluctuating part of 
the problem has been analyzed by the Keller box method in the entire frequency regime. The 

solutions have also been obtained in the small frequency regime using the perturbation method 
and in the large frequency regime by an asymptotic method. The results thus obtained are 
expressed in terms of amplitude and phase of the fluctuating parts of shear stress as well as those 
of surface temperature showing the effects of varying both the surface heat flux-gradient 
parameter n and the Prandtl number, Pr. Here, some of the values of the Prandtl number are 
chosen to represent the fluid as a liquid metal which is currently used as coolant in nuclear 
engineering (Wilks [8]), e.g., 0.05 for lithium and 0.01 for mercury. We have also obtained 
solutions for Pr = 1.0, 0.7, 0.1, 0.05, 0.01. 

Numerical values of the amplitude and phase of fluctuating parts of the shear stress and the 
surface temperature obtained by the three methods mentioned above are given in Tables 1 and 
2 for Pr = 1.0 and n = 1.0. The comparison shows that the perturbation solutions and the 
asymptotic solutions are in excellent agreement with finite difference solutions. For n = 0.0, 0.25, 
0.5 and 0.75 with Pr = 0.7, which corresponds to air, the numerical values obtained by the 
methods mentioned above for the amplitude and phase of the fluctuating shear stress are 
presented graphically in Figs. 1 and 2. The corresponding values of the amplitude and phase of 
the fluctuating surface temperature are shown in Figs. 3 and 4. In these figures the thick curves 
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Table 1. Amplitude and phase of the fluctuating part of the shear stress for Pr = 1.0 and 
n =  1.0 

109 

A u 

Series and i Keller 

l 

asymp. I 

- G  

Series and I Keller 
asymp. I 

.00 .6061 a .6059 .0000 a .0000 

.10 .6040 a .6063 5.3640 a 5.3637 

.20 .5980 a .5979 10.6776" 10.7173 

.30 .5883 a .5904 15.8945 a 15.8893 

.40 .5752 ~ .5752 20.9769 a 21,0539 

.50 .5591 ~ .5615 25.8986 ~ 25.8855 

.60 .5395 ~ .5412 30.6509 a 30.7364 

.70 .5153 ~ .5231 35.2556 a 35.1104 

.80 .4827 ~ .4998 39.7982 a 39.5363 

.90 .4346 ~ .4793 44.5220 a 43.3488 
1.00 .3588 ~ .4551 50.1771 a 47.2693 
1.10 .236& .4343 60.178P 50.4661 
1.20 .0814 a .4109 55.9940 ~ 53.8628 
1.30 .3369 a .3912 31.8783 ~ 56.4534 
2.00 .2730 59.6674 
3.00 .3967 b .1812 62.2827 b 62.7032 
4.00 .2329 b .1336 67.3015 b 67.3071 
5,00 .1600 b .1054 71.2366 b 71.2458 
6.00 .1204 b .0869 74.2890 b 74.2815 
7.00 .0962 b .0739 76.6676 b 76.6675 
8.00 .0800 b .0643 78.5420 b 78.5421 
9.00 .0684 b .0569 80.0388 b 80.0386 

10.00 .0598 b .0511 81.2505 b 81.2508 
15.00 .0368 b .0338 84.8519 b 84.8120 
20.00 .0267 b .0252 86.5420 b 86.5420 
25.00 .0209 b .0202 87.4810 b 87.4805 
30.00 .0173 b .0168 88.0628 b 88.0628 
40.00 .0128 b .0126 88.7264 b 88.7264 
50.00 .0102 b .0101 89.0828 b 89.0828 
60.00 .0084 b .0084 89.2996 ~ 89.2997 
70.00 .0072 b .0072 89.4427 b 89.4427 
75.00 .0067 b .0068 89.4970 b 89.4879 

Series solution for low frequency 
b Asymptotic solution for high frequency 

represent  the Kel ler  box  solut ions,  the  circled and  solid circled curves  represent  the  pe r tu rba t ion  

and  a sympto t i c  solut ions,  respectively.  As before,  the compar i sons  be tween  these curves 

ascer ta ined tha t  the pe r t u rba t i on  solu t ions  and the a sympto t i c  so lu t ions  are in excellent  

ag reemen t  wi th  the Kel ler  box  solut ions  at  every  selected va lue  of  the surface hea t  flux exponent .  

F igures  5 -  6 and  7 -  8 represent  the numer ica l  values  of  ampl i tude  and  phase,  respectively,  of  the 

f luctuat ing par ts  of  the shear  stress as well as the surface t empera tu re  at Pr = 0.7, 0.1, 0.05, and  

0.01 while n = 0.5. 

F r o m  Table  1 and  Table  2, we m a y  see tha t  the ampl i tude  o f  the shear  stress and  the surface 

hea t  t ransfer  decrease  m o n o t o n i c a l l y  as the f r equency  increases regardless  o f  the surface 

t empera tu re -g rad ien t  for  the prescr ibed  Prand t l  n u m b e r  (which can  be seen f r o m  Figs. 1 and 3). 

This  is due  to the t empera tu re  lag in the f luid layer  ad jacent  to the surface,  the a m o u n t  o f  lag 

vary ing  wi th  the f requency.  I t  is seen that ,  in the ent ire  f requency  range,  the surface t empera tu re  
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Table 2. Amplitude and phase of the fluctuating part of the surface temperature for 
Pr = 1.0 and n = 1.0 

At 
I 

Series and Keller Series and [ Keller 
asymp, asymp. 

m 

.00 1.2116" 1.2117 ,0000" .0000 

.10 1.2088" 1.2112 3.1757" 3.1871 

.20 1.2005 a 1.2004 6.3120 a 6.3427 

.30 1.1871" 1.1892 9.3721" 9.3910 

.40 1.1693" 1.1688 12.3257" 12.3656 

.50 1.1476" 1.1493 15.1529" 15.1577 

.60 1.1227 a 1.1221 17.8505 a 17.8635 

.70 1.0951" 1.0971 20.4396 a 20.3317 

.80 1.0646" 1.0658 22.9761 a 22.7117 

.90 1.0299" 1.0377 25.5645" 24.8090 
1.00 .9881" 1.0049 28.3801 a 26.8298 
1.10 .9343" .9763 31.7156 a 28.5418 
1.20 .8608 a .9441 36.0979 a 30.2082 
1.30 .7578 a .9169 42.6369" 31.5594 
2.00 .7461 33.9817 
3.00 .81868 .5999 29.91488 34.8627 
4.00 .6313 b .5134 34.05758 35.0530 
5.00 .52958 .4557 36.6715 b 36.6152 
6.00 .4646 b .4140 38.41688 38.4168 
7.00 .4189 b .3820 39.6403 b 39.6398 
8.00 .3847 b .3565 40.53328 40.5333 
9.00 .3578 b .3355 41.2065 b 41.2094 

10.00 .3359 b .3178 41.72818 41.7287 
15.00 .2669 b .2585 43.17008 43.1702 
20.00 .2285 b .2234 43.7977 b 43.7977 
25.00 .2031 b .1996 44.13458 44.1345 
30.00 .1847 b .1820 44.3392 b 44.3392 
40.00 .1593 b .1574 44.56905 44.5696 
50.00 .14228 .1407 44.6909 b 44.6909 
60.00 .1296 b .1283 44.7646 b 44.7646 
70.00 .11998 .1187 44.81308 44.8134 
75.00 .1158 b .1147 44.8314 b 44.8314 

a Series solution for low frequency 
b Asymptotic solution for high frequency 

oscillations always lead that of the fluctuating surface temperature. The phase angles, 

~b, and q~t, are zero under quasi-steady conditions, and they decrease monotonical ly towards 

the respective asymptotic values - 9 0  ~ and - 4 5  ~ respectively as ~ ~ oo. We further observe 

that the phase angle decreases in the low-frequency range as the value of the surface 

temperature-gradient decreases for given Prandtl  number  (which can be seen from Figs. 2 

and 4). 

From Figs. 1 and 3 it can be seen that, in the low-frequency regime, the amplitudes of the 

shear stress and the fluctuating surface temperature decrease when the exponent of the surface 

heat-flux increases. Similarly, from Figs. 2 and 4 it can be seen that the phase angle increases in 

the low-frequency range as the value of the exponent increases, while the value of Pr is kept 

constant. 



Heat transfer response 111 

1 ~ 1______02~  , O.~o.4 I ~  0.6 

A~, 

�9 Asymptotic ~ k  
0.2 o Series ~"x.~ 

- -  Kelle~-box 

0.0 , t 

0.1 1.0 I0.0 20.0 

Fig. 1. Amplitude of fluctuating shear-stress for 
different values of n while P r  = 0.7 

35 ~ 

_r 25~ 

15 ~ / / / /  �9 Asymptotic 
/'////" o Series 

S - -  Keller-box 
5 ~ 
0 ~ I I I , 

0.1 1.0 10.0 20.0 40.0 

Fig. 2. Phase of fluctuating shear-stress for differ- 
ent values of n while P r  = 0.7 

l . S  I I 

1 4  
~ 5 0  

75 

At 1.0 ~ N ~ k  

0.6 * Asympto 
o Series 

- -  Keller-box 
0.2 J I 

0.1 1.0 10.0 20.0 

Fig. 3. Amplitude of fluctuating surface tempera- 
ture for different values of n while P r  = 0.7 

-r 

90 ~ 

70 ~ 

50 ~ 

30 ~ 

10 o 

0 o 
0.1 

�9 Asymptotic 
o Series 

- -  Keller-box 
I i I 

12 10.0 20.0 40.0 

Fig. 4. Phase of fluctuating surface temperature 
for different values of n while P r  -= 0.7 

3.5 0.01 J ~ i 
* Asymptotic 

. " ~  o S e r i e s  

~ - -  Keller-box 
2.5 0 . 0 5  ~k 

1.5 

0.70 

0.5 

0 . 0  " ' 
0.1 1.0 10.0 30.0 70.0 

Fig. 5. Amplitude of fluctuating shear-stress for 
different values of P r  while n = 0.5 

90 ~ 

70 ~ 

_~= 50~ 

30 ~ 

10 ~ 
0 o 

0.1 

0.7 

0.1 

0.0 

0.01 
* Asymptotic 
o S e r i e s  

- -  Keller-box 

I I ,  

1.0 10.0 30,0 70.0 

Fig. 6. Phase of fluctuating shear-stress for differ- 
ent values of P r  while n = 0.5 

From Figs. 5 and 7 it can be seen that, in the low-frequency regime, the amplitudes of the 

shear stress and the surface temperature decrease as the Prandtl number increases. From 

Figs. 6 and 8 it may be observed that the phase angle decreases as the Prandtl number increases, 

while n is fixed at 0.5. 
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6 Conclusions 

A linearized theory has been used to study the unsteady response of a laminar free convection 

boundary layer flow of viscous incompressible fluid along a vertical heated plate to time- 

periodic surface heat flux oscillations, when the mean surface heat flux varies as a power of x. 

Three distinct methodologies, namely, a perturbation method for low frequencies, an asymptotic 

method for high frequencies and the Keller box method for intermediate frequencies, have been 

used to obtain solutions. Detailed calculations were carried out to obtain numerical values of 

amplitude and phase of the fluctuating shear stress and the surface temperature for different 

values of the surface heat-flux exponent n and the Prandtl number Pr. It has been found that the 

amplitude and phase of the fluctuating shear stress and the surface temperature predicted by 

these three methods are in very good agreement in the entire frequency range. It may further be 
concluded that the amplitudes of the shear stress and surface temperature decrease as the 

frequency increases regardless of the Prandtl number and the value of the surface heat flux 

exponent. The phase angles of the shear stress and the surface temperature also decrease 

monotonically towards the respective asymptotic values - 90 ~ and - 45 ~ as ~ ~ oo regardless of 
the value of Pr and n. 
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