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Abstract. In this paper we analyse how the presence of inertia (Forchheimer form-drag) affects the
steady free convective boundary layer flow over an upward-facing horizontal surface embedded in
a porous medium. The surface temperature is assumed to display a power-law variation,xn, with
distance from the leading edge,x. It is shown that there are three distinct cases to consider:n < 0.5,
n = 0.5 and 0.5 < n< 2. In the first case inertia dominates the flow near the leading edge, but its
effect wanes downstream. The boundary layer is self-similar in the second case with the resulting
profiles being dependent on the strength of the inertia effect. In the third case, inertia effects grow
with increasing distance from the leading edge, and the boundary-layer thickness is greater than
when inertia is absent.
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Nomenclature

d microscopic length scale
f, F,F reduced stream function
ḡ acceleration due to gravity
g,G,G scaled temperature
Gr Darcy–Grashof number defined

in Equation (10b)
K permeability
K̃ inertial parameter
n power-law index
Q fluid flux velocity
Ra Darcy–Rayleigh number defined

in Equation (10a)
T temperature
u fluid flux velocity component

in thex direction
v fluid flux velocity component

in they direction
x Cartesian coordinate in the

streamwise direction

X scaled streamwise coordinate
y Cartesian coordinate in the

cross-stream direction

Greek Symbols
α nondimensional inertia parameter
β coefficient of thermal expansion
η pseudo-similarity variable
ζ pseudo-similarity variable
χ pseudo-similarity variable
ε porosity
ξ scaled streamwise coordinate
θ dimensionless temperature
κ effective thermal diffusivity
ρ fluid density
µ viscosity
ψ stream function

1. Introduction

In this paper we investigate the detailed effect of fluid inertia, as modelled by the
quadratic Forchheimer terms, on the free convective boundary-layer flow induced by a
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horizontal surface with a power-law surface temperature. As such, this is an extension
of a recent paper by Rees (1996) who considered only the uniform surface temperature
case. Free convection boundary layers occur frequently in porous media, and the topic
has applications in in geophysics, thermal insulation engineering and heat storage
systems. As was pointed out by Rees (1996), the horizontal free convection boundary
layer induced by a flat surface with a uniform temperature is fairly weak, and therefore
the effects of inertia are typically only manifest when a higher-order boundary-layer
theory is undertaken, see Riley and Rees (1985). However, Rees (1996) showed that it
is possible to have inertia modify the leading order boundary-layer flow when either
(i) a suitably defined inertia parameter is sufficiently large, or (ii) when distances
fairly close to the leading edge are considered. The aim of the present paper is to
investigate how a nonuniformly heated surface modifies these qualitative phenomena.

Free convection from a horizontal surface was first studied by Cheng and Chang
(1976) who investigated Darcy flow. This work was extended to higher order by
Riley and Rees (1985) who also considered the detailed effects of inertia, and by
Chang and Cheng (1983). Subsequent work on this problem has centred on mixed
convection (e.g. Kumariet al., 1990) suction/injection of fluid at the surface (e.g.
Minkowycz et al., 1985; Lai and Kulacki, 1990) and aspects of the stability of the
flow (e.g. Hsuet al., 1978; Jang and Chang, 1988; Storesletten and Rees, 1997; Rees,
1997a). However, we shall attend to the seemingly straightforward case where inertia
is present in the free convective boundary layer, as a good understanding of the role
of inertia on the development of the flow and its associated rate of heat transfer is
still lacking.

In general, the governing boundary-layer equations are not self-similar and there-
fore we employ the Keller-box method to integrate the resulting parabolic equations.
It is found that three distinct cases arise depending on the value of the power-law
exponent,n. In the first case, wheren < 0.5, inertia dominates near the leading
edge, but its effect diminishes as the leading edge recedes. The precise opposite is
true whenn > 0.5, in that inertia is absent at the leading edge, but its effect becomes
stronger further downstream. Whenn = 0.5 there is a transition between these two
behaviours, and the flow is self-similar in this case.

2. Governing Equations and the Boundary-Layer Approximation

We consider a horizontal surface which is embedded in a homogeneous fluid-
saturated porous medium. The surface is held at the temperature,Tw = T∞+A(x∗)n,
whilst the ambient temperature of the medium isT∞. We assume thatTw > T∞ (i.e.
thatA > 0) and examine the resulting two-dimensional flow induced by buoyancy
forces in the medium along the surface. The governing dimensional equations are

u∗
x∗ + v∗

y∗ = 0, (1)(
1 + K̃

µ
|u∗|

)
u∗ = −K

µ
p∗
x∗, (2)
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1 + K̃

µ
|u∗|

)
v∗ = −K

µ
(p∗
y∗ − ρgβ(T − T∞)), (3)

u∗Tx∗ + v∗Ty∗ = κ(Tx∗x∗ + Ty∗y∗), (4)

(see Riley and Rees, 1985) and Darcy’s law is recovered whenK̃ = 0. In Equa-
tions (1)–(4)x∗ andy∗ are the Cartesian coordinates along and perpendicular to the
heated plate, respectively,u∗ andv∗ are the respective fluid velocity fluxes,p is the
dynamic pressure andT is the temperature. Here,K is the permeability of the porous
medium,K̃ is a material parameter measuring the inertial impedance of the matrix,
g is the acceleration due to gravity,ρ the fluid density,µ the dynamic viscosity,β the
coefficient of cubical expansion of the fluid andκ the effective thermal diffusivity of
the saturated medium. Ergun’s (1952) relations,

K = d2ε3

150(1 − ε)2
, K̃ = 1.75d

150(1 − ε)
, (5)

illustrate howK andK̃ vary with ε, the porosity, andd, the characteristic pore or
particle diameter. Clearly, whenε ∼ 1 thenK̃ is large and the nonlinear term is
important. Equations (1)–(4) are nondimensionalised using the substitutions,

(x∗, y∗) = l(x, y), (u∗, v∗) = κ

l
(u, v), (6a,b)

p∗ = κµ

K
p, T = T∞ + Alnθ, (6c,d)

wherel is a macroscopic lengthscale. When the two-dimensional stream function is
introduced using

(u, v) = (ψy,−ψx) (7)

then we obtain the equations,

(1 + GrQ/Ra)∇2ψ + (Gr/QRa)×
×(ψ2

xψxx + 2ψxψyψxy + ψ2
yψyy) = −Raθx,

(8)

∇2θ = ψyθx − ψxθy. (9)

The Darcy–Rayleigh number, Ra, and the Darcy–Grashof number, Gr, are given by

Ra= ρgβ(Tw − T∞)lK
κµ

, Gr = ρKK̃gβ(Tw − T∞)
µ2 , (10a,b)

andQ is a fluid flux given by

Q2 = ψ2
x + ψ2

y . (11)
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If we assume thatx = O(1) as Ra→ ∞, then the boundary-layer approximation
is valid wheny � 1. Subject to this approximation, Equations (8) and (9) reduce to

(1 + 2|ψy |Gr Ra−1)ψyy = −Raθx, (12)

θyy = ψyθx − ψxθy, (13)

and the boundary conditions are,

ψ = 0, θ = xn on y = 0, (14)

ψy → 0, θ → 0 as y → ∞. (15)

Following Rees (1996) we introduce the following scalings,

ψ = Ra1/3ψ̂, y = Ra−1/3ŷ, x = x̂, and Gr= αRa1/3 (16)

into Equations (12) and (13). Here,α is a constant which measures the strength of
the fluid inertia. Hence,ψ andθ satisfy the following equations:

(1 + 2αψ̂ŷ)ψ̂ŷŷ = −θx̂, (17)

θŷŷ = ψ̂ŷθx̂ − ψ̂x̂θŷ , (18)

where the modulus sign which is present in Equation (12) has been dropped in
Equation (17) since the function̂ψŷ is always positive. The constant,α, can be
scaled out of the equations by introducing the transformation,

ψ̂ = α
1+n
1−2n ψ̄, x̂ = α

2n+3
1−2n x̄, ŷ = α

2−n
1−2n ȳ, θ̂ = α

(2n+3)n
1−2n θ̄ . (19)

Equations (17) and (18) now become,

(1 + 2ψ̄ȳ)ψ̄ȳȳ = −θ̄x̄ , (20)

θ̄ȳȳ = ψ̄ȳ θ̄x̄ − ψ̄x̄ θ̄ȳ . (21)

It is important to note at this point that the transformations given by Equation (19)
are invalid whenn = 0.5, and therefore this specific case merits seperate attention. It
is also necessary to state that the equivalent transformation in Rees (1996) is in error,
and should be replaced by the present Equation (19) withn = 0. The approriate
similarity variables for further analysis now depend on the precise value ofn. Thus
the boundary-layer analyses are contained in the next three sections, and correspond,
respectively, to 0< n < 0.5, n = 0.5 and 0.5< n< 2.

3. Boundary Layer Flow for 0 << n<<0.5

At the outset we shall regard the presence of inertia as a perturbation to Darcy flow,
and therefore we introduce the transformation,

ψ̄ = x̄(1+n)/3f (ξ, η), θ̄ = x̄nθ(ξ, η), (22)
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ξ = x̄(1−2n)/3, η = ȳ/x̄(2−n)/3, (23)

which is the appropriate one for Darcy flow. Equations (20) and (21) reduce to the
form,

(1 + 2ξ−1fη)fηη =
(

2 − n

3

)
ηgη − ng −

(
1 − 2n

3

)
ξgξ , (24)

gηη +
(

1 + n

3

)
fgη − nfηg =

(
1 − 2n

3

)
ξ(fηgξ − fξgη), (25)

and the boundary conditions become

f = 0, θ = 1, on η = 0 and fη, θ → 0 as η → ∞. (26)

Given the presence of theξ−1 term in Equation (24) we see that inertial effects decay
asξ becomes large. But whenξ is close to zero inertial effects dominate and we must
use the different transformation:

ψ̄ = x̄(2+n)/5F(X, ζ ), θ̄ = x̄nθ(X, ζ ), (27)

X = x̄(1−2n)/5, ζ = ȳ/x̄(3−n)/5. (28)

Equations (20) and (21) become

(X + 2Fζ )Fζζ =
(

3 − n

5

)
ζGζ − nG−

(
1 − 2n

5

)
XGX, (29)

Gζζ +
(

2 + n

5

)
FGζ − nFζG =

(
1 − 2n

5

)
X(FζGX − FXGζ ), (30)

and the boundary conditions are

F = 0, G = 1, on ζ = 0 and Fζ ,G → 0 as ζ → ∞. (31)

Equations (24) and (25) and Equations (29) and (30) were solved using the Keller-
box method (see Keller and Cebeci, 1971; Cebeci and Bradshaw, 1984) a very well-
established technique for studying nonsimilar boundary layer flows. The particular
implementation used here follows recent papers (Rees, 1997b,c) which uses a numer-
ical differentiation procedure to generate the Jacobian matrix forming the central
Newton–Raphson iteration scheme. Such an implementation, though slightly slower
than when the Jacobian is defined explicitly within the code, allows a much more
rapid code development, and reduces the possibility of coding errors. For the present
problem, Equations (29) and (30) were solved in the range, 0<X< 1 (equivalent to
0< x̄< 1), and Equations (24) and (25) fromξ = 1 (x̄ = 1) onwards. A nonuniform
η or ζ grid with 67 points lying between 0 and 40 was used, with grid points concen-
trated near the heated surface where variations are largest. Generally, convergence
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of the Newton–Raphson iteration scheme at each streamwise station occurred on or
before the 4th iteration, and this is based on a maximum pointwise correction of
10−8 for convergence. However, the solution procedure atX = 0 required special
treatment as the coefficient of the highest derivative term in Equation (24) becomes
exponentially small asζ increases. Thus a satisfactory approach to the numerical
solution atX = 0 was obtained by iterating with under-relaxation in order that
numerical values ofFζ remain positive over the whole range of integration for all
iterates.

The inertia-dominated profiles forF(ζ ) andG(ζ) atX = 0 thus obtained are
depicted in Figures 1a and 1b for various values ofn. For reference we also show,
in Figure 2, how the scaled slip velocity,Fζ (ζ = 0), and rate of heat transfer,
Gζ (ζ = 0), vary withn. It is necessary to note that Equation (30) withn = 0 does
not agree with the uniform temperature analysis of Rees (1996) which is in error.
Thus, whenn = 0, we haveGζ (ζ = 0) = −0.4606, andFζ (ζ = 0) = 0.9279,
which correct the values quoted in Equation (39) of Rees (1996).

Figure 3 displays local rates of heat transfer at the heated surface as functions
of X for different values of the power-law exponent,n. These are presented in two
forms:

(i) Gζ for X< 1 and ξ−1/5gη for ξ > 1, and (32a)

(ii ) X1/3Gζ for X< 1 and gη for ξ > 1. (32b)

The form given in Equation (32a) allows the behaviour of the heat transfer in the
inertia-dominated regime to be seen clearly, whereas Equation (32b) shows well the
approach towards the Darcy-flow regime at large distances from the leading edge. In
both cases, these functions are plotted againstX for convenience of presentation, and
we note thatX = ξ5/3. Figure 3 indicates that Darcy flow is quite quickly established
asX increases.

4. Boundary-Layer Flow for n = 0.5

Unlike the first case described above, it is not possible to scaleα out of the governing
boundary-layer equations whenn = 0.5. The physical reason for this is that the
induced streamwise velocity whenn = 0.5 does not vary withx, and therefore inertia
may be either strong or weak. In this regard the situation is exactly like the thermal
boundary layer induced by a vertical surface held at uniform temperature (Riley and
Rees, 1985). Indeed, the flow is self-similar in this case, and the substitution of

ψ = x̂1/2f (η), θ = x̂1/2g(η), η = ŷ/x̂1/2, (33)

into Equations (17) and (18) yields the equations,

(1 + 2αf ′)f ′′ = 1
2(ηg

′ − g), (34)

g′′ + 1
2(fg

′ − f ′g) = 0. (35)
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Figure 1. The inertia-dominated profiles of (a)F(ζ ) and (b)G(ζ) for various values of the
power-law exponent,n. These form the self-similar profiles corresponding to the solution of
(29) and (30) atX = 0 for n< 0.5, and the solution of Equations (47) and (48) asX → ∞
for n > 0.5.

These ordinary differential equations have been solved using a suitably modified
version of the present Keller-box code whereα in Equation (34) is treated as the
marching variable in order to perform a parameter sweep with ease. The values of
f ′(0) andg′(0) asα increases from zero are displayed in Figure 4 where we see
that both quantities decay asα increases. This is related to the fact that inertia serves
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Figure 2. Variation of the slip velocity,Fζ (ζ = 0), and rate of heat transfer,Gζ (ζ = 0), at
X = 0 as functions ofn.

Figure 3. Local rate of heat transfer as a function ofX for various values ofn. The curve
marked (i) corresponds to the definition given in Equation (32a), and (ii) to that in Equation
(32b).

to thicken the boundary layer due to the increased effectiveness of conduction from
the heated surface which is caused by the decreased advection of heat downstream.
Selected numerical values are given below in Table I.

It is possible to perform a straightforward asymptotic analysis of the solutions
of Equations (34) and (35) which is valid to leading order for large values ofα. The
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Figure 4. Variation of the slip velocity,fη(η = 0), and rate of heat transfer,gη(η = 0),
for n = 0.5 as functions ofα. Some numerical and asymptotic values are also presented in
Table I.

transformation

f = α−1/5F(χ), g = G(χ), η = α1/5χ, (36)

upon introduction into Equations (34) and (35) yields

F ′F ′′ = 1
2(χG′ − G), (37)

G′′ + 1
2(FG′ − F ′G) = 0. (38)

Another modification to the Keller-box code allows a relatively easy solution of these
equations. Using interval halving and Richardson Extrapolation based on the fact that
discretisation errors are given in terms of a power series composed of even powers
of the steplength, we find that

F ′(0) = 1.0231 and G′(0) = −0.8239. (39)

Hence, we obtain

f ′(0) ∼ 1.0231α−2/5 and g′(0) ∼ −0.8239α−1/5, (40)

as the limiting behaviour asα becomes large. These values compare very favourably
with the exact values atα = 100, as may be seen in Table I.

5. Boundary-Layer Flow for 0.5<<n << 2

In this section we consider larger values ofn and treatn = 2 as the upper bound
because the boundary layer attains a constant thickness in the Darcy-flow regime for
this case.
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Table I. Values off ′(0) and−g′(0) for selected values ofα
together with the respective asymptotic values given by Equa-
tion (40).

α f ′(0) α−2/5F ′(0) −g′(0) α−1/5G ′(0)

0.0 1.1411 0.8165
0.1 1.0560 0.7921
0.2 0.9931 0.7726
0.4 0.9029 0.7424
0.6 0.8391 0.7192
0.8 0.7903 0.7005
1.0 0.7510 0.6848
2.0 0.6271 0.6307
3.0 0.5567 0.5967
4.0 0.5090 0.5720
5.0 0.4736 0.5527
6.0 0.4459 0.5370
7.0 0.4233 0.5237
8.0 0.4044 0.5123
9.0 0.3883 0.5024

10.0 0.3743 0.4073 0.4935 0.5198
15.0 0.3240 0.3463 0.4600 0.4794
20.0 0.2918 0.3087 0.4371 0.4526
30.0 0.2511 0.2625 0.4060 0.4173
40.0 0.2253 0.2339 0.3850 0.3940
50.0 0.2071 0.2091 0.3692 0.3768
75.0 0.1773 0.1819 0.3419 0.3474

100.0 0.1587 0.1621 0.3236 0.3280

With such large values ofn the buoyancy-induced motion near the leading edge is
very weak indeed, and therefore Darcy flow might be expected. Motion then becomes
stronger as̄x increases and inertial effects are felt increasingly. Thus the qualitative
nature of the flow is precisely opposite to what it is whenn < 0.5. The same pseudo-
similarity variables (η andζ ) may be used, but they now apply on ‘the other side’ of
x̄ = 1. Thus we use

ψ̄ = x̄(2+n)/5F(X, ζ ), θ̄ = x̄nG(X, ζ ), (41)

X = x̄(2n−1)/5, ζ = ȳ/x̄(3−n)/5. (42)

whenx̄ > 1, and

ψ̄ = x̄(1+n)/3f (ξ, η), θ̄ = x̄ng(ξ, η), (43)
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Figure 5. Local rate of heat transfer as a function ofξ for various values ofn. The curve
marked (i) corresponds to the definition given in Equation (49a), and (ii) to that in Equation
(49b).

ξ = x̄(2n−1)/3, η = ȳ/x̄(2−n)/3, (44)

when x̄< 1. The only difference between these definitions and those of Equations
(27) and (28) lies in the forms ofX andξ . The boundary layer equations are now,

(1 + 2ξfη)fηη = 2 − n

3
ηgη − ng + 1 − 2n

3
ξgξ , (45)

gηη + 1 + n

3
fgη − nfηg = 2n− 1

3
ξ(fηgξ − fξgη), (46)

for x̄< 1, and

(X−1 + 2Fζ )Fζζ = 3 − n

5
ζGζ − nG+ 1 − 2n

5
XGX, (47)

Gζζ + 2 + n

5
FGζ − nFζG = 2n− 1

5
X(FζGX − FXGζ ), (48)

for x̄ > 1. These equations are solved in the same way as before, and solutions are
again presented in terms of rates of heat transfer, but the definitions are now given as

(i) gη for ξ < 1 andX−1/3Gζ for X > 1, and (49a)

(ii ) ξ1/5gη for ξ < 1 andGζ for X > 1; (49b)

these are displayed in Figure 5. Again, the reasons for the two forms are to see
clearly both the inertia-free and inertia-dominated regimes. In this case, solutions
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are plotted againstξ , for convenience. Finally, the asymptotic rates of heat transfer,
Gζ (ζ = 0, X → ∞), that correspond to the inertia-dominated regime, are presented
in Figure 1 for various values ofn.

6. Conclusions

We have investigated how the presence of inertia modifies the flow and heat transfer
from a horizontal heated surface in porous media, where the surface temperature
varies according to a power ofx. Although inertia in the form of quadratic drag is quite
weak for horizontal free convective boundary layers, there is, nevertheless, a region
sufficiently close to the leading edge where inertia effects dominate (whenn < 0.5)
and where the boundary layer approximation remains valid. Whenn > 0.5, the
effects of inertia grow with distance downstream as the buoyancy-induced streamwise
velocity increases with distance in this case. Thus, far downstream the flow and
temperature profiles, as well as the boundary-layer thickness have been changed
from that where inertia is absent. In both these cases,α, the ratio of Gr and Ra1/3,
may be scaled out of the mathematical problem leaving only one free parameter,n.

Whenn = 0.5 it is not possible to scaleα out of the governing equations, and
therefore it is necessary to study this case for various values ofα. The flow is now
self-similar, and an asymptotic theory for large values ofα has been presented.

The main conclusion to be made is that quadratic drag modifies free convection
for a horizontal surface. Whenn < 0.5 it does so close to the leading edge, but when
n > 0.5 it will eventually do so asx increases.
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