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ABSTRACT

In this paper, we consider free convection in a shallow annular cavity heated
and cooled at the sidewalls and which is filled with a fluid-saturated porous
medium. Attention is paid to the case where the aspect ratio, A, is asymptoti-
cally small. A combined asymptotic and numerical analysis of this flow is un-
dertaken for Rayleigh numbers that are either O(1) or O(A ™) in magnitude.
In both cases, there are three asymptotic regions within the cavity to be
considered: a core flow and two endwall regions. When the Rayleigh number
is O(1) in magnitude, an analysis up to O(A*) is presented; it is found that
core solutions at O(A") are only determined precisely by considering the equa-
tions at O(A""?), and therefore, we obtained solutions up to O(A®). Successive
solutions in the endwall regions are obtained as numerical solutions of Pois-
son’s equation. When the Rayleigh number is O(A™") in magnitude, the leading-
order core flow profile is modified and it depends on the Rayleigh number. The
leading-order stream function and first-order temperature field in the endwall
regions are given as the solution of a pair of coupled nonlinear partial differ-
ential equations. It is when the Rayleigh number is large within this order of
magnitude that distinct boundary layers on the endwalls are generated. In both
asymptotic regimes, expressions for the Nusselt number are derived.
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NOMENCLATURE
A aspect ratio, height-to-gap- Greek symbols
width o effective thermal diffusiv-
a constant ity
C, heat capacity B coefficient of thermal ex-
Ciy --v5 Ca constants pansion
f(®), g(%), h(%), k(x) core functions AT temperature drop across
g gravitational acceleration the annulus, 7, — T,
h cavity height S length-scale ratio
K permeability of the porous 0 temperature function
medium 0 scaled temperature
k effective thermal conduc- v kinematic viscosity
tivity P annulus aspect ratio
Nu Nusselt number p* reference fluid density
Q overall heat flux P scaled stream function
R scaled Rayleigh number 1 nondimensional stream func-
Ra Rayleigh number tion
r., ry cold and hot endwall radii Subscripts
F,d, Z cylindrical polar coordinates c cold
T temperature h hot
T., T, cold and hot endwall tem- . . .
l terms in asymptotic expan-
peratures .
a, w radial and vertical velocity ston
components Superscripts
x* cold endwall scaled radial B dimensional variables
variable " core region variables
X, 2z nondimensional radial and ! differentiation with respect
vertical coordinates to £

INTRODUCTION

Heat transfer in porous media is of fundamental
importance because of its many technological appli-
cations in geothermal energy utilization, insulation of
high-temperature gas-cooled reactor vessels, the bury-
ing of drums containing heat-generating chemicals in
the Earth, thermal energy storage tanks, petroleum
reservoirs, and chemical catalytic convertors, etc.
However, convective flow in a shallow, two-dimen-
sional cavity filled with a porous medium has occu-
pied center stage in many fundamental heat transfer
analyses. One common method of maintaining con-
vective flows has been to use externally supplied tem-
perature gradients across the system. A great deal of
research, both theoretical and experimental, on this

classical heat transfer process has accumulated over
the last three decades. Bejan (1987) and Nield and
Bejan (1992) have presented detailed surveys on this
topic.

In contrast, there is a marked paucity of studies of
convective flow in a shallow “annular’’ cavity filled
with a porous medium, although an understanding of
this type of heat transfer process is essential because
of its numerous applications in geophysics and en-
ergy-related problems. Examples of these applications
include the insulation of pipes, the deep geological
disposal of high-level nuclear waste, and thermal en-
ergy storage systems. In a proposed repository, a
waste canister surrounded by crushed rock (the “en-
gineered’’ barrier to radionuclide release) can be ad-
equately modeled as a porous annulus.
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The problem of free convection flow in a vertical
porous annulus when the inner wall is heated and the
outer wall cooled, and where the upper and lower
surfaces are insulated, was considered by Hickox and
Gartling (1985). Using a finite element technique,
they obtained heat transfer results for Rayleigh num-
bers up to 100. The range of aspect ratio they consid-
ered was 2 = A = 8. They also developed an ap-
proximate analytical method valid for low Rayleigh
numbers and high aspect ratios.

Havstad and Burns (1982) used three different
methods, a finite difference computation, an asymp-
totic technique, and a perturbation analysis to study
free convection in a vertical annular cavity filled with
a porous medium. Of these methods, only the first two
were used to obtain heat transfer results, whereas the
third was used to establish the temperature and ve-
locity fields for low Rayleigh numbers. These authors
have correlated their results with a five-constant em-
pirical formula valid for low Rayleigh numbers. In
the boundary-layer regime at high Rayleigh numbers,
Bejan (1984) has proposed, using scale analysis, a
simpler two-constant correlation equation.

More recently, Prasad and Kulacki (1984, 1985)
and Prasad et al. (1986), using comprehensive nu-
merical and experimental studies, have extended the
results of Hickox and Gartling (1985) and Havstad
and Burns (1982) to Rayleigh numbers as high as 10*.
They have investigated both the boundary-layer and
curvature effects that arise in the presence of strongly
convecting flow. It was shown that the flow patterns
and the isotherms are affected significantly by cur-
vature. Correlation equations for critical Rayleigh
numbers were also proposed to delimit the various
flow regimes. Other works in this general area include
a study of the effects of internal heating (Rao and
Wang 1991) and the effects of departures from
Darcy’s law (Dharma Rao et al., 1996).

Notwithstanding the preceding review of the topic,
further work is needed to improve our understanding
of flow in a porous annulus. This paper deals with

i
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the case where the aspect ratio, as just defined, is
asymptotically small and, therefore, the annulus is
very shallow. There is an overall temperature drop
from the inner to the outer surfaces, and the upper
and lower surfaces are again insulated. In this regard,
we are considering the porous medium analogue of
the clear fluid problem considered by Merker and
Leal (1980). However, we do not follow their meth-
odology, but use the classical method of matched as-
ymptotic expansions to obtain solutions in the end
regions (i.e., near the vertical walls), and in the core
(far from the endwalls). The use of this method ob-
viates the necessity of making assumptions about the
form of the flow in the core at leading order. In this
paper, we not only present the porous medium ana-
logue of the Merker and Leal (1980) analysis, for
which we take Ra = O(1), but also extend it to as-
ymptotically large values [Ra = O(A™")]. It is within
this latter regime that boundary layers first begin to
form on the vertical sidewalls. At still higher Rayleigh
numbers, the present solution methodology breaks
down and the asymptotic analysis is very different
because the boundary layers on the vertical surfaces
dominate the flow; such a study is outside the scope
of the present paper.

GOVERNING EQUATIONS

We consider a closed annular cavity with inner ra-
dius r,, outer radius r., and height A, as shown in Fig.
1. The cavity is filled with a fluid-saturated porous
medium, and the inner and outer walls are held at
different but uniform temperatures, 7,, and T, respec-

. tively, with 7}, > T.. The top and bottom surfaces are

insulated, and all surfaces are rigid and impermeable.

It is convenient to introduce cylindrical polar co-
ordinates, (7, ¢, z), and their corresponding velocity
components, (# 7, w). In the problem we consider,
there is no reason to expect the flow to be anything
other than axisymmetric and two dimensional, al-

oT
z=h oz
T="Thx
F:Th 7=0 %_Z
H

Figure 1. Basic flow configuration, a shallow annular cavity filled with a porous medium, subjected to a radial flow of

heat, with the upper and lower surfaces insulated.
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though we note that the flow at very high Rayleigh
numbers may exhibit three-dimensional instabilities.
Therefore, we take # = 0 and neglect all ¢ derivatives.
Assuming that Darcy’s law and the Boussinesq ap-
proximation are both valid, the governing equations
for steady convective flow can be written as

0 0

57 70+ 5z P =0 (1)

o ow KB oT

o gRE @

0z ar v OF

9T _oT 19 (_oT T

i—+w—=a|-—=\F—=)+ 3 €))]
or 9z F or ar 0z

see Prasad and Kulacki (1984). We introduce a stream
function using

and nondimensionalize by setting
x=F —r)h, z=2zh &)
U = W(haRa), 6= (T — TH(T, — To) ©

Three (mutually dependent) aspect ratios are defined
according to

A=h/@F.—r), d=rih,
1] =Ad = rh/(rc - rh) (7)

and the Rayleigh number for convective flow in po-
rous media is defined as

_ gKB(T, — Th
av

Ra )
On substituting these definitions into momentum and
energy Egs. (2) and (3), we obtain the following gov-
erning equations:

A A* oy 08
A gy AW D ©)
(p + Ax) (p + Ax)" ox ox
Ve + —2 ?_6
(p + Ax) ox
A N o0 o 9o
=Ra ———— _‘JJ___\IJ_ (10)
(p + Ax) \9x 0z 9z ox
subject to the boundary conditions
a9
=—=0 at z=0,1 (11)
0z
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$=0, 6=1—Ax at x=0,A" (12)

and where the Laplacian operator used ia Egs. (9) and
(10) is defined as
¥ ¥

pY 13y

Vi=— +
ax 0z

We seek solutions of Egs: (9)—(12) for arbitrary
values of Ra in the shallow layer limit, i.e., A — O.
There are two different cases of interest as A — 0,
namely, p-= O(1) and 8 = O(1). The former case cor-

responds to annuli where the inner radius is asymp-

totically larger than the annulus depth, &, whereas the
latter case has the inner radius and layer depth of the
same order of magnitude. In the present work, we
shall restrict attention solely to the former case.

The equations: of motion are solved using the
method of matched asymptotic expansions, and it is
shown that the flow divides into three distinct regions
corresponding to a nearly parallel core flow in the
main body of the annulus, and two nonparallel turning
regions near the heated and cooled endwalls. Al-
though the flow configuration considered here is iden-
tical to that of Merker and Leal’s (1980) analysis of
a Newtonian fluid, we do not assume that the core
flow is parallel at leading order, but prove that it is
by rigorous analytical means using a solvability con-
dition at second order in the asymptotic expansion.

Equations of Motion in the Core Region

Governing Egs. (9) and (10) may be expressed in
a form that is more appropriate for the core region
because the horizontal length scale in the cavity is
much greater than the vertical scale. Thus, it is con-
venient to rescale the equations according to

£=Ax, =0, 6=0 14)
which leads to
ERTEE A 8 06
a A Wi a3
0x a9z (p + %) ox ox
L0 9% A* 96
A’ —P + = e
ax° oz (p + %) ox
A* (ol ab o ab
—Ra A (B WD (16)
ptX\oX oz 0z 0x

Here, £ and p are both O(1) quantities as A — 0. In
the core region we seek solutions in the form of the
asymptotic expansion
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(& 8) = X 4G, 6) 17)

Equations of Motion in the End Regions

In the end regions, the characteristic horizontal
length-scale turns out to be O(k), dimensionally, and
this has already been assumed when obtaining Egs.
(9) and (10). Thus, we seek solutions of Egs. (9) and
(10) in the same form as Eq. (17), where the variables
{ and § are replaced by ¢ and 6.

ASYMPTOTIC ANALYSIS FOR Ra = O(1)

In this section, we consider in detail the case Ra =
O(1) and present an asymptotic expansion valid in the
core and end regions of the cavity. These solutions
are matched asymptotically using the matching prin-
ciples

Hm(f, ) ~ M, Oporens a8 A — 0 (18)
-0

X

lim (§, 0)coaens as A—0  (19)

Lim(, 6)core ~
=1 x*— —co
where x* = x — A is the appropriate horizontal var-
iable in the cold-end region.

Solutions at O(1)

Although the flow is generated by means of dif-
ferential heating along the length of the cavity, and
the fluid motion would seem to be initiated at the ends
of the cavity, it turns out that at this order of mag-
nitude of the Rayleigh number, it is necessary to con-
sider first the flow in the core region before turning
to that in the end regions. At leading order in the core
the equations are

0 6
\l!o 96, (20)
0z*
80,
=0 21
— 1)

subject to the boundary conditions [Eq. (11)]. The in-
tegration of Eq. (21) and satisfaction of the appropri-
ate boundary conditions gives

8o = f(®) (22)
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where f(X) is at present an arbitrary function. Follow-
ing this, the leading-order stream function is given by

o=+ 97 E2 23)
where the prime denotes differentiation with respect
to x. It is at this stage that Merker and Leal (1980)
assume that the leading-order flow in the core is par-
allel and insist that \j:o is independent of %. Although
it turns out that this assumption is indeed correct for
the present problem, we shall not specify f(£) at this
point, but leave it arbitrary at this stage of the anal-
ysis. At O(A®), we find that the governing equations
in the core cannot be solved unless f(¥) takes a spe-
cific form.

From Egs. (9) and (10), we obtain the following
leading-order equations that are valid in the end
regions:

=0, V6,=0 2
ox % @4

The solutions of these equations, which are compat-
ible with boundary conditions (11) and (12), give the
following values for 6, in the end regions:

6, = 1 (25)
6, = 0 (26)

hot end:
cold end:

These solutions must match those of the core solution,
and if we write Eq. (22) as a Taylor-series expansion
in £

6 = f(®) = f(0) + ££'(0) + 5 "f"(O) + -

it then becomes

8 = f(0) + Axf'(0) + ---
when rewritten in terms of the hot end region varia-
ble, x. Applying the matching relation [Eq. (18)], at
the hot end
6, + A6, +
as A—0,

+ ~f(0) + Axf'(0) + --

we obtain
f(0)=1 27

In similar fashiom we show that the cold endwall
boundary condition is

=0 (28)
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Solutions at O(A)

In the core region, the governing equations at O(A)
are identical to the leading-order equations, Eqgs. (20)
and (21), except that the subscript 0 is replaced by 1.
Thus, the core solution is

b, = 509 29)
b= + o) E2 (30)

where g(£) is to be determined later, at O(A”). Equa-
tion (10), when expanded in powers of A, yields the
following equation for 0, at O(A):

V291 =0 (31)
which is to be solved subject to the boundary condi-
tions

a0
— = at z=0,1 and 06,=0 at x=0

a9z
(32)

&

Equations (31) and (32) have the solution 6, = c.x,
where the constant ¢, is found by matching with the
core solution:

B=0,+Ab, + - +=f(®) +AgR) + - -

=f(0) +A[xf'(0) +g(0)] + - - -
(33)
It follows that

=f'(0) and g(0)=0 €)

and, similarly in the cold-end region. Thus, the re-
spective solutions in the hot and cold ends are

=f'(Oy and 6, =f(1x* (3%)
The equation for W, is
Vi = p 22 = pf(0) = a (36)

which is solved subject to the boundary conditions
Po=0 at 2=0,1; Y=0 at x=0;
Y, is finite as x — 37

where a, defined by Eq. (36), is as yet unknown.
Equation (36) and boundary conditions (37) are
equivalent to the problem of flow along a large-as-
pect-ratio, two-dimensional duct. The solution is eas-
ily obtained numerically using a pointwise Gauss-Sei-
del iteration scheme with multigrid acceleration. The
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Figure 2. Basic streamlines corresponding to ¥, given by
Eq. (38).

particular multigrid method used was a standard Cor-
rection Scheme approach, as described in Brandt
(1984), with a pointwise Gauss-Seidel iteration. Con-
vergence was deemed to have taken place when the
residuals were less than 107%. A 128 X 32 grid was
used on a computational region with aspect ratio 4;
such a grid, in combination with a second-order ac-
curate finite difference discretization, yields very ac-
curate results. The streamlines obtained from the use
of this code are depicted in Fig. 2. The solution may
also be written analytically as

z——z 4
"’“”[ 2(2m—1)

-exp[—(2m — 1)mx]sin(Zm. — 1)172] (38)
or, for later reference, as
2 —
Vo = a [z > 2+ o, z)] (39)

where the function ®(x, z) is defined by direct com-
parison with Eq. (38). Near the cold end wall, £ ~ 1,
the stream function is given by

o = a [222_ 2+ ®(—x*, z)] (40)

Solutions at O(4A%)

It follows from Egs. (16), (22), and (23) that

8 ' 1
‘;Z (f” + 1 f) — Raf'f’ (z - 5) (41)

Integrating once with respect to z gives

06 '

_2=_f”+f_n z

0z pt+x
2

— Raf'f’ ( — Z) + o) 42)
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The insulating boundary conditions at z = 0 and 1
imply that c,(£) = 0, and that

fl
" =0 43
I e “3)
The solution of Eq. (43) together with the boundary
conditions, (27) and (28), which were derived earlier,
is

i
f@=aln (2 - ’1‘) (44a)
where a is now found to be
-1
a={mn—2 (44b)
pt+1

Consequently, the core solutions at O(1) are, precisely

. 22 —z\ . p+ %
¢0_a( . ) Go—aln(p+1) (45)

From this, we see that the core flow is parallel at
leading order, but this result has been proved rigor-
ously rather than having been assumed at the outset.
Integrating Eq. (42) once more yields

2
>z

A o [ 2 1 .

Raf'f ( ra— + 24) + h(z), (46)
where A(£) will be determined at O(A*). We intro-
duced the constant, 1/24, into the polynomial part of
Eq. (46); this is simply to make that part of the so-
lution odd about z = 1/2, and such an approach is
allowable because A(X) remains arbitrary at this point
in the analysis. The equation for ll;z is found from
using Eq. (46) in Eq. (15), and it is

0",
Vi (o + W — Rap + DF "
2 7 1
'(? 2t E) @7

for which the solution is

=+ D'®) (z > Z)

5 Z4 22

z
_— " — e + —_— 8
Ra(p + DF'f (60 24" 24 60) “8)
In the hot end region, it follows from Eq. (10) that

v, = —% — Ry & o

p Pz @
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where s, is given in Eq. (39). It is possible to write
down the solution to this equation, when subject to
the insulating boundary conditions at z = 0 and 1, and
with 6, = 0 at x = 0, in the following form:

2

Ly + cx — Raa—® 50)
p’

92= 22

where the constant c; is found by matching, and the
function O satisfies the equation

VO=z— - +— (51)

and the boundary conditions

i}
—®-=O at z=0,1, ®=0 at x=0
a0
d ——0 © 2
and —— - as x — (52)

Equation (51) was solved numerically using the same
pointwise Gauss-Seidel/multigrid Poisson solver,
and the isotherms corresponding to ® are shown in
Fig. 3.

Solutions (46) and (50) must now satisfy the
matching condition (18). As

6=0, + A48, + 4%, +
=1+ A[xf'(0) + g(0)] + A> B x*f"(0)
+ xg'(0) + h(0) — Raf'(0)f'(0)
E-2o)e e

for small values of £, it follows that

2 2

zazx + cx — Ra——@ ~1xf”(0)
+ xg'(0) + h(0) - Raf 0)f'(0)

22 21 a’
B [T L ’
(6 4 24) 2 * T30

a’ (22 22 1
ZIE-Z+= 54
ap2(6 4 24) (54)

as x — o, Because

+ n0) —

. L=
X0 6 4 24

the matching is consistent if ¢; = g’(0) and 4(0) = 0.
Similarly, we find that A(1) = 0. Thus, we obtain




==

Figure 3. Isotherms corresponding to the function ©
given by Eq. (51).

2 2

a a
0,= —~5x>+g'(Ox — Ra— © 55
2= x T8 a s (55)

The equation governing W, is obtained from Eq.
(9) at second order in A, and is
a 9P a’ 9@

V, =—— — Ra

= ¥ pg'(0 56
S ox > ox pg'(0) (56)

in the hot end region. Because the x derivatives on
the right-hand side of Eq. (56) tend to zero as x —
oo, it follows that
2
"=z
w—og@E—2 as xee 57)
The detailed solution for s, is found numerically us-
ing the program described earlier, but we will not
present results because they now depend on the pre-
cise value of Ra. Matching with the core flow also
gives consistent results.

Solutions at O(4?)
The equation for 0, is given by

(9293 g’ 1
+ = —Raf'g' |z — =
) Raf'g (z 2) (58)

Integration once with respect to z, and the application
of the boundary conditions at z = 0 and 1, yields the
following equation:

gl
g+ ——0=0 59)
P+ %)
We have shown that g(0) = g(1) = O are the boundary
conditions and, therefore, we conclude that g(£) = 0.
It follows that the O(A) core solutions, (29) and (30),
are

6,=0, =0 (60)
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The core solutions at O(A%) now take the following
form:

b, = k(®), ¥ =(p + Dk'(R) (61)

@~ 2

2
where k(%) is determined at fifth order.

Given that the core solutions at O(A) are zero, it
is necessary to go to O(A”) in the present analysis to
determine the leading correction [i.e., the O(A®)
terms] to the parallel core flow profile.

The end region solutions at O(A%) are more com-
plicated than those at lower orders, but their deter-
mination is straightforward as it only involves the so-
lution of two uncoupled Poisson equations. More
importantly, we note that these solutions do not affect

the O(A*) core solutions that we now consider.

Solutions at O(A4%)

The determination of the unknown function, A(%),
which appears in the O(A?) core solutions, requires us
to consider the solution for 64. The equation for 64
may be shown to be given by

9’6 h
24 T (h" + —_A>
0z pt=x

3 2 12

(52t 52 2z 1
+Rafff (— ?‘FZ-FE—%) 62)

-(z—s—-z—z+i) —Ra(2z— D) 'k’

Integrating Eq. (62) with respect to z, and applying
the boundary conditions at z = 0 and 1, lead to the
following equation for A:

1
n o+ + —Ra’f'f'f'=0 63
— T sk (63)
The solution of this equation subject to the boundary

conditions, #(0) = k(1) = 0, is

Ra’a’ 1 1
h(®) = -5
© =0 ((P +2 p
a(2p + 1 p
- (2 2) In A) (64)
pi(p t1)° pt X

Having found Eq. (64), it is straightforward to write
down s, and 6., using Eqs. (46) and (48), although
the resulting expressions are lengthy. It is clear from
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Eq. (48) that the core flow is not parallel at this order
in the expansion as {5, is a function of %.

ASYMPTOTIC ANALYSIS FOR Ra = OA™)

The asymptotic analysis carried out in the preced-
ing Asymptotic Analysis for Ra = O(1) section was
for the Ra = O(1) case. A detailed consideration of
the magnitudes of the various terms in the asymptotic
expansion shows that it is also valid if Ra = o(A '),
i.e., if RaA << 1 as A — 0. The core solutions at O(A%)
given in Eqs. (46) and (48) contain terms that are
proportional to Ra’, and therefore, these “second-or-
der’’ solutions are formally the same order of mag-
nitude as the O(1) solutions, when Ra = O(A™).
Therefore, we would expect the leading-order core
profile to be modified at such large values of the Ray-
leigh number.

In this section, we develop an analysis that is valid
when Ra = O(A ). A rescaled Rayleigh number, R,
is introduced by setting

R = RaA (65)
Energy Egs. (10) and (16) become

& S —L
(p + Ax) ox
__ R (ayo6 oo (©6)
_(p + Ax) \dx 0z 9z ox
,0% 9% A? 9
2t t =~ a0
ox° o9z (p + %) ox
T+ x\ox ez oz ax

while the equations for stream function (9) and (15)
are unchanged. We seek asymptotic core solutions of
Egs. (15) and (67), and end-region solutions of Egs.
(9) and (66) in the same form as expansion (17).

Solutions at O(1)

Leading-order equations in the core are identical
to Egs. (20) and (21), and the solutions are

b=+ or®@E=2 b-r® @

where the function f(£) is to be determined at O(A%).
Note that f{x) will be different from that found in the
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Asymptotic Analysis for Ra = O(1) section, and which
was given by Eq. (43). From Egs. (9) and (66), we
obtain the leading-order equations valid in the end
regions. The solutions are once again given by

hot end: 6,=1, coldend: 6,=0 (69)
Matching with the core solutions yields
fO=1, f1)=0 (70)

Solutions at O(A)

In the core region, the governing equations at O(A)
are

R 38,

= + % 1
=0+ H (71)
% —rpy (o -1 ™
9z% 2

Integration twice with respect to z, and the application
of the boundary conditions at z = 0 and 1, leads to

~ 22 2 1

0,=g®) —Rff |———+—

1 =8 — RIS (6 7 24> (73)
where g(X) may be determined later at O(A%), al-
though we shall not proceed this far in our analysis.

From Eqgs. (71) and (73), we obtain
@ -2

z
2
P A z
—Rfp (-2 4
Iy (60 24 24 60)] (74)

In the hot end region, the governing equations at O(A)
are

P =(p + %) [g'(f)

00
qu‘o:P'gj (75)
V29 =I_? %&_3_%3_91 (76)
! p \ox 0z 0z dx

where Eq. (69) has been used. The solutions have to
match boundary conditions (32) and (37). Matching
the core solutions, we obtain

b= of ©E—2 a5 x )
0, = 8(0) + x'(0) = R ©)f(0)
(%_ZZ-F%) as x —> ® (78)
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which, in turn, implies that

a0, ,

p — f'(0) as x—>
Equations (75) and (76) form a pair of coupled non-
linear partial differential equations that have to be
solved numerically. A much more convenient form for
the numerical work results from the following substi-
tutions:

W = pf' O, 8, = (O, + x],

R=-f'(OR 79
which, when substituted into Egs. (75) and (76),
yields the following equations:

Table 1
Values of f'(0) for various values of R and p
R p = 0.01 p=01 p=1 p=10
1 —21.7081 —4.1703 —1.4427 —1.0492
1 —11.6859 —3.8188 —1.4317 —1.0484
2 —8.4655 —3.3230 —1.4038 —1.0461
5 —5.4773 —2.4985 —1.3027 —1.0362
10 —4.1478 —2.0279 —1.2096 —1.0255
20 —3.5148 —1.7955 —1.1585 —1.0192
50 —3.2748 —1.7078 —1.1390 —1.0167
100 —3.2371 —1.6941 —1.1360 —1.0164
200 —3.2275 —1.6906 —1.1352  —1.0163
500 —3.2248 —1.6896 —1.1350 —1.0162
1000 —3.2244 —1.6895 —1.1350 —1.0162
0 —3.2243 —1.6894 —1.1349 -1.0162
Table 2

Values of f'(1) for various values of R and p

R p =0.01 p=01 p=1 p=10
1 —0.2149 -0.3791 —0.7213 —0.9538

1 —0.2469 —0.3889 —0.7249 —0.9545

2 —0.2828 —0.4110 —0.7348 —0.9565

5 —0.3810 —0.4969 —0.7820 —0.9654

10 —0.5150 —0.6187 —0.8430 —0.9755
20 —0.6304 —0.7123 —0.8822 —0.9816
50 —0.6812 —0.7514 —0.8976 —0.9840
100 —0.6892 —0.7576 —0.9000 —0.9843
200 —0.6913 -0.7591 —0.9006 —0.9844
500 —0.6919 —0.7596 —0.9008 —0.9844
1000 —0.6920 —0.7596 —0.9008 —0.9844
] —0.6920 —0.7596 —0.9008 —0.9844
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Vip=—+1
o = — (80)
- - [ob, 00, o, a6 _ )
V291=R _ﬂ@l__‘ba_el r_Rf?_qJ.E (81)
ox 0z 0z ox oz
subject to the boundary conditions
- 08
z=0,1: =0, —Zl=0 (82)
x=0 Po=0, 6,=0 (83)
EXA 06,
— 007 — —> — =0 4
x=e ax 0. ox (84)
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Figure 4. Profiles of the core function, f®), forR=0,5,
10, 20, and «: (a) p = 1 and (b) p = 0.1.
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Figure 5. Contours of {5, for various values of R in the hot end region. Streamlines are plotted at an interval of 0.0125.

to one by this transformation, and because f'(0) is
always negative, R and R will have the same sign.
The numerical solution of Egs. (80) and (81) were
performed using a time-dependent code and were in-
tegrated to steady state, using a slightly modified ver-
sion of the finite difference code described in Rees
and Bassom (1993). Briefly, the method used a first-
order-accurate, backward-difference in time, and sec-
ond-order-accurate, central-differences in space. The
basic iteration scheme used was a pointwise Gauss-
Seidel method with the Full Approximation Scheme
multigrid algorithm; further details of the method may
be found in Rees and Bassom (1993). The full nu-
merical solution requires that the function f(£) is
known, and hence, that the value of f'(0) is known,
but this will be determined when solving the O(A%)
core equations, later in the text. The value of g(0)
may be found from the detailed numerical solution.

Core Solutions at O(A?)

To determine f(£), we need to solve the governing
equation for 0,, which may be given by

&, A (f,,+ f )

—Z 4 "+
az* f p+ £ p+ 2
"24_2z3+22 2prp1 00
Ff\———) + Rrrs

+ Rf'g'(2z — 1) (85)

Integration once with respect to z and the application
of the boundary conditions at z = 0 and 1 gives the
following equation:

" R_2 1 o f,
f(l+40ff>+p+)?
-(1 . 2 f’f’) ~ o (86)

This nonlinear differential equation, subject to the
boundary conditions [Eq. (70)], has been solved nu-
merically, using a fourth-order Runge-Kutta scheme
allied with the shooting method. Values of f’(0) and
f'(1) are presented in Tables 1 and 2, respectively, for
different values of p and R. When R << 1, Eq. (86)
reduces to Eq. (43). However, when R is large, the
leading-order form of the solution is given by

_et+t DT -+ H”
IR

f + OR™) 87

In Fig. 4, we display the form of f(£) for selected
values of R and p. It is clear that, as R increases, the
profile of f(£) varies monotonically between the ex-
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Figure 6. Contours of 8, for various values of R in the hot end region. Isotherms are plotted at an interval of 0.005R.

tremes represented by R = 0 and R = < analytical
profiles, given by Egs. (44) and (69), respectively.
When p takes relatively small values, the slope of f
(%) near the inner wall is relatively large, reflecting
the fact that the heat is transferred into the core over
a very small area compared with that of the outer
wall.

Having obtained solutions for f(X), and, in partic-
ular, the values of its derivatives at £ = 0 and 1, we
now have all of the information necessary to solve
Egs. (80) and (81). Steady solutions in the form of
streamlines are presented in Fig. 5 for a variety of
values of R and p. As R is increased, the symmetric
turning flow in the corners becomes increasingly
asymmetrical, and eventually a distinct boundary-
layer flow forms up the hot endwall. In the range of
R values presented in Fig. 5, the flow always tended
to the steady state; it is possible that unsteady behav-
for might ensue if R is sufficiently large as the gov-
erning equations are nonlinear. The corresponding
O(A ") isotherms are displayed in Fig. 6. Again, the
formation of the boundary layer at the vertical side-
wall is evident as R increases.

RATE OF HEAT TRANSFER

In this section, we complete the analysis of the
paper by determining the rates of heat transfer across

the annulus for both asymptotic regimes, Ra = O(1)
and Ra = O(A™"). The dimensional rate of heat trans-
fer across any cylindrical surface, which is concentric
with the inner and outer vertical surfaces of the an-
nulus, is given by

- .
oT
Q= f 2mr [—k—j + p*Csu(T — TC)] dz
0 or
(88a)

When translated into nondimensional terms, Eq. (88a)
may be expressed in the following form:

Table 3

Values of Nu for various values of R and p

R p=001 p=01 p=1 p=10
0 0.2171 0.4170 1.4427 10.492
1 0.2498 0.4283 1.4562 10.580
2 0.2869 0.4546 1.4960 10.834
5 0.3971 0.5748 1.7633 12.680
10 0.6361 0.8977 2.6844 19.242
20 1.4825 2.1090 6.3413 45.482
50 73494 10548 31.923 229.11
100 28.300 40.686 123.30 885.17
200 112.10 161.23 488.77 3509.2
500 69869  1005.04 30473 21872.
1000 2793.6 4018.9 12186. 87459.
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Figure 7. Variation of Nu as a function of both R and p.

Q = 2wki(T, — T.)

1 A -

a9 ~ O
. —(p + %) — — Rab — | d 8b
[Tros0® asd]a o
If we define Nu to be the integral in Eq. (88b), then
Q =2wkh(T, — T)Nu (88¢c)

When Ra = O(1), we can use the solutions derived in
the Asymptotic Analysis for Ra = O(1) section, to
show that

a‘(2p + DRa’A*
240p°(p + 1)°

Nu=—a+ o(A?) 89)

where we recall that @ = {In[p/(p + 1)]} ' is negative,
and hence, the leading term in Nu is positive. The
O(A?) correction to the leading-order Nusselt number
is also positive, reflecting the increased rate of heat
transfer that occurs as Ra is increased. We note that

the integral in Eq. (88b) has been evaluated at an
arbitrary value of £, but that the final result in Eq.
(89) is independent of £, as should be expected from
a physical point of view.

When Ra = O(A™"), the analysis of the Asymptotic
Analysis for Ra = O(A™") section yields the following
leading-order expression for the Nusselt number:

1 fa\12

Nu=—(p +;2)f’(5c‘){1 +@2%L} +O0A)  (90)
As it stands, Eq. (90) appears as if Nu is a function
of £, which is physically unreasonable. However, if
we multiply Eq. (86) by (p + %), it becomes an exact
differential and takes the following form:

dNu
dx
from which we deduce that Nu is a constant. Values

of Nu for different values of R and p are presented in
Table 3. It may be seen that the Nusselt number in-

=0 (1)
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creases as R increases. The contents of Table 3 are
also displayed in Fig. 7, where we see that there is a
fairly sharp transition between a low-R behavior,
where Nu is roughly constant, and a large-R behavior,
where Nu is proportional to R°. When R is large, we
can use Eq. (87) to show that the limiting form of Nu
is

R2

Nu ~
u 405[(p + 1)2/3 _ p2/3]3

(92)

CONCLUSIONS

In this paper, we extended many earlier studies of
flow in porous annuli subject to a radial flow of heat
by considering the case of a very shallow annulus.
Using the method of matched asymptotic expansions,
we found that many of the important features of the
flow, such as the parallel core flow at leading-order,
higher-order corrections to the core flow, and the lead-
ing-order end-region flows, may be described analyt-
ically. Moreover, these solutions are valid at any fixed
Rayleigh number, irrespective of its size, in the limit
of small aspect ratios. For this range of values of the
Rayleigh number, the flow is essentially dominated
by the leading-order thermal conduction profile. The
work was extended further by considering also the
case when the Rayleigh number is asymptotically
large, and in particular, we considered the case where
Ra = OA™") as A — 0. In terms of the rescaled Ray-
leigh number, R = RaA, we found that increasing val-
ues of R modify both the core conduction profile and
the end-region flowfield. At large values of R, we find
that boundary layers are formed on the heated sur-
faces, which is usually the case at large O(1) values
of Ra in O(1) aspect ratio cavities. Detailed heat
transfer results have been presented for both asymp-
totic regimes.

We have assumed that the flow is axisymmetric.
There are, of course, various circumstances where this
assumption may not be true. One example is provided
by a porous medium with either an anisotropic per-
meability, or an anisotropic diffusivity, or both. A sec-
ond example is where the flow admits instabilities,
although we do not think that that will happen for the
present problem. In the core of the annulus, the flow
is stably stratified and, therefore, instability, should it
arise, will be induced in the thermal boundary layers

Pop, Rees, and Storesletten

in the end-regions. However, a recent pair of papers
by Rees (1993) and Lewis et al. (1995) have shown
that vertical thermal boundary layers from isothermal
surfaces, such as occur in the present problem, are
stable.

Although we have considered convection in a very
shallow annulus with an asymptotically small aspect
ratio, there are no experimental results against which
our results can be compared.
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