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1 Introduction

The study of free convection heat transfer from uniform sur-
faces embedded in a saturated porous medium has attracted a
great deal of interest from many investigators over the last two
decades; see Nield and Bejan (1992) for a comprehensive re-
view of this topic. Studies have centered on those cases where
the thermal boundary conditions allow the use of similarity
transformations to reduce the governing equations to a system
of ordinary differential equations. In general, this means that
the heated surface is plane and that the imposed temperature or
surface heat flux satisfies a power-law distribution. However,
in practice, surfaces are sometimes roughened intentionally in
order to enhance the heat transfer. Roughened surfaces are en-
countered in several heat transfer devices such as flat-plate solar
collectors and flat-plate condensers in refrigerators. Larger-scale
surface nonuniformities are encountered in cavity wall insulat-
ing systems and grain storage containers. Similarly, nonunifor-
mities in the boundary conditions in a plane surface may be
obtained by the presence of a nonuniform heat source located
nearby.

There i1s a growing body of literature devoted to this type
of generic problem. There are now many papers dealing with
boundary nonuniformities in porous channels: Riahi (1993,
1995, 1996) and Rees and Riley (1989a, b) and Rees (1990).
But the first papers to study the effects of such nonuniformities
on thermal boundary layer flow of a Newtonian (clear) fluid
are those of Yao (1983) and Moulic and Yao (1989a, b). More
recently, Chiu and Chou (1993) have extended this work to
micropolar fluids, and Hossain et al. (1996) to a study of magne-
tohydrodynamic flow of a highly electrically-conducting fluid.
In the area of convection in a porous medium, Rees and Pop
(1994a, b, 19954, b) have considered the effect of wavy surfaces
on the otherwise self-similar free convection boundary layer
flows. When a uniformly heated vertical surface exhibits surface
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Three-Dimensional Free
Convection Boundary Layers in
Porous Media Induced by a
Heated Surface With Spanwise
Temperature Variations

In this paper we consider the effect of a nonuniform surface temperature distribution
on the steady laminar free convection boundary layer flow induced by a vertical
plate embedded in a fluid-saturated porous medium. The surface temperature profile
exhibits sinusoidal variations in the spanwise ( horizontal } direction, but the minimum
temperature remains above or equal to that of the ambient medium. The resulting
boundary layer flow is three-dimensional, and the governing equations are solved
using a combination of a spanwise spectral decomposition and the Keller-box method.
Detailed results in terms of the evolution of the rates of heat transfer and the devel-
oping thermal field are presented. The numerical work is supplemented by an asymp-
totic analysis valid far downstream where it is found that the effect of nonuniform
heating becomes confined to a thin layer of uniform thickness embedded within the
main growing boundary layer.

waves, the resulting flow does in fact remain self-similar (Rees
and Pop, 1994a), but when inertia effects are included, this
property is lost (Rees and Pop, 1995a). However, when a verti-
cal surface with a uniform heat flux has steady surface waves,
the flow immediately becomes nonsimilar even in the absence
of inertia effects (Rees and Pop, 1995b). In Rees and Pop
(1994b) we considered very small amplitude undulations in a
uniformly heated horizontal surface; in this case there exists the
possibility of separated flow in the lee of the undulations and
conditions were presented to indicate whether or not this would
occur for any particular case.

All the papers quoted so far have been concerned with trans-
verse nonuniformities where the boundary conditions are inde-
pendent of the spanwise direction and, therefore, the resulting
flow is two-dimensional. A more recent paper has considered
the case of longitudinal surface waves (spanwise variations) on
free convection from a vertical surface in a porous medium
(Rees and Pop, 1996). Under a wide range of boundary condi-
tions, the flow remains self-similar, but the authors showed that
this is only true when the boundary layer thickness is asymptoti-
cally smaller than the spanwise wavelength of the nonunifor-
mity. In particular, when the surface temperature is uniform,
this means that nonsimilarity is first obtained at an O(R) dis-
tance from the leading edge, where R is the porous medium
Rayleigh number. In the present paper, we consider a uniform
surface with an imposed surface temperature distribution which
varies sinusoidally in the spanwise direction. Such a configura-
tion could be supposed to model the presence of a hot water
pipe immediately adjacent to a porous insulating cavity such as
a double-skin wall of a house packed with a porous insulant,
although we are unaware of experimental data against which
to compare the present analyses. The resulting flow is three-
dimensional, and we study the boundary layer flow using both
numerical and asymptotic methods.

The formulation of the problem is given in Section 2, while
the detailed description of the numerical method is contained
in Section 3. The numerical results are presented in Section 4.
Section 5 contains the asymptotic analysis for large distances
from the leading edge where we show that the boundary layer
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splits into a two-layer structure. This type of behavior, where
the main boundary layer has a constant thickness near-wall
layer embedded within it, also arises in other contexts. Another
example of such a two-layer structure arises in the study of the
influence of boundary (Brinkman) effects on the vertical free
convection boundary layer in a porous medium, as discussed
by Kim and Vafai (1989). Finally, the results are discussed
briefly in Section 6.

2 Formulation of the Problem

We consider the laminar free-convection boundary layer flow
induced by a vertical heated semi-infinite surface embedded in
a fluid-saturated porous medium. Attention is given to the case
where the surface temperature exhibits sinusoidal variations in
a spanwise direction about a mean value which is above the
temperature of the ambient medium. The resulting flow is three-
dimensional and nonsimilar.

In this paper dealing with three-dimensional boundary layer
flows, we assume that the porous medium is isotropic, uniform,
and nondeformable, that the fluid and the porous matrix are
in local thermal equilibrium, and that inertia, boundary, and
dispersion effects are absent. All of these assumptions may be
relaxed in future work. Additionally, the flow is laminar and
steady; this is a very reasonable assumption given the recent
papers by Rees (1993) and Lewis et al. (1995) which show
that the vertical free convection boundary layer induced by a
uniformly heated surface in a porous medium is stable. It is
possible that boundary effects may modify this qualitative be-
havior, for in the analagous problem of convection in a vertical
channel with sidewall heating (the Darcy-Bénard problem ro-
tated through 90 deg), Kwok and Chen (1987) showed that
uniform Darcy-Brinkman flow is susceptible to instability,
whereas the pure Darcy-flow case is stable (see Gill, 1969 and
Lewis et al., 1995).

The nondimensional equations of motion goveming steady
Darcy-Boussinesq free convection flow for this problem are

ou v Ow
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where we have used the same nondimensionalisation as Rees
and Pop (1994a). In (1), x, y, and z are Cartesian coordinates

Nomenclature

corresponding, respectively, to the streamwise (i.e., upwards),
cross stream (1.e., normal), and spanwise directions. The corre-
sponding velocity fluxes are (u, v, w). In Egs. (1), p is the
pressure, § is the temperature, and V2 is the three-dimensional
Laplacian operator. The porous medium Rayleigh number, R,
is defined as

_ pgPAKAT
MK

R (2)

where p is a reference density, g is gravity, 3 is the coefficient
of cubical expansion, y is the fluid viscosity, and « is the thermal
diffusivity of the saturated medium. In (2), AT is the difference
between the mean surface temperature and the ambient tempera-
ture, K is the permeability, and d is a lengthscale associated
with the surface variations, and is such that one full thermal
wavelength is precisely 27wd. The boundary conditions required
to complete the specification of the problem are

v=0, §d=1+acosz at y=0, (3a)

v=20, -0 as y-— o>,

(3b)

where a is the amplitude of the surface wave. The three velocity
components in (1) may be eliminated to obtain the pressure/
temperature formulation

6
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subject to the boundary conditions
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Without the spanwise surface temperature variation, we re-
cover the well-known Cheng and Minkowycz (1977) similarity
solution for free convection from a uniformly heated vertical
surface in a porous medium. Cheng and Minkowycz (1977)
developed their solution in terms of a local Rayleigh number,
a standard method of analysis since there is no natural length
scale in the problem they considered. In the present analysis,
the surface temperature wavelength provides such a length scale
and, therefore, it proves most convenient to work in terms of
the Rayleigh number based on this lengthscale. Thus, we can
take the Cheng and Minkowycz similarity variable in the form

yRIIZ

n .
xl/Z

(5a)

a = wave amplitude

d = spanwise dimensional lengthscale
S = similarity solution in (7)

g = gravitational acceleration

h = function defined in (7)

n = subscript
N = truncation level
J = subscript

P = pressure
P = near-wall pressure in asymptotic
analysis :
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R = pgBdK AT/ ux = porous medium
AT = reference temper-

u = streamwise flux
v = cross-stream flux
w = spanwise flux ve-

x = vertical or

y = horizontal or cross-stream coordi-
nate

z = horizontal or spanwise coordinate

B = coefficient of thermal expansion

v = f£”(0) in the solution of Egs. (7)

7 = similarity variable

@ = temperature

©® = near-wall temperature in asymptotic
analysis :

A = unknown coefficient

w1 = dynamic viscosity

k = effective thermal diffusivity

p = reference fluid density

o = eigensolution exponent

& = scaled streamwise coordinate

Rayleigh number
ature drop
velocity

velocity

locity

streamwise co-
ordinate
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The boundary layer is confined to regions where n = O(1),
and from both this observation and the definition of 1 in (5a),
we see that when x = O(1) the boundary layer thickness in
terms of y is of magnitude O(R™'?). However, we are inter-
ested in how the spanwise variations affect the boundary layer
flow. It is important, therefore, that the cross stream and span-
wise diffusion effects balance in terms of their orders of magni-
tude. Since z = O(1), we must have y = O(1), and hence,
from (5a), n = O(1) implies that x = O(R). Therefore, we
define a new streamwise coordinate, £, using

()

and introduce both this and (5a) into Eq. (4). As R 1s assumed
to be asymptotically large, we retain only the leading order
terms in each equation to obtain the following boundary layer
equations:

(5b)
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We note in passing that the Cheng and Minkowycz (1977)
similarity solution, which forms the solution of (6) when a =
0, may be written in the form

p:fﬂa)da —%nf(n)zh(n), 6=1"(n) (Ta,b)
0

where f1is given by the equation

f”’+2 f"=0 (7¢)
subject to
f(0)=0, f7(0)=1, and f'(n)—>0 as n—x.
(7d)

Here, primes denote differentiation with respect to 7, and (7a)
defines the function k(7).

3 Numerical Solution Procedure

Equations (6) are parabolic in &, but at £ = 0O they form a
pair of ordinary differential equations. Without z-variations the
most common approach to solving such parabolic systems in
boundary layer flows is to use the Keller-box method (see Keller
and Cebeci, 1971). The extra spatial dimension which is present
here yields additional difficulties but there are at least three
possible methods which could be used to solve Egs. (6): (i) a
full finite difference discretization with an implicit or semi-
implicit discretization in £ which is solved using Gauss-Seidel
with multigrid acceleration at each value of £ (such a scheme
is not too great a modification from that used by Rees and
Bassom (1993) to investigate boundary layer instabilities in
porous media); (11) a full finite difference discretization solved
using multidimensional Newton-Raphson iteration by means of
the block tri-diagonal (or Thomas) algorithm; or (iii) a spectral
decomposition in the spanwise direction followed by the stan-
dard Keller-box method. Of these, the first and second methods
are likely to be the least accurate unless very fine grids are
used, and although the size of the problem obtained using (iii)
is much larger than is usual for Keller-box applications, it was
chosen as being the quickest to develop and, given the ease-of-
use of nonuniform grids, potentially both the most accurate and
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the fastest to run. However, we also used method (1) with a large
number of grid points to validate our Keller-box computations at
the leading edge.
We expanded the solutions in the form
N

P =pol&n) + 2 2 pa(€& n)cos nz,

n=1

N
= 90(6» 77) + 2 Z Hn(éa 77) cosnz,

n=1

(8a, b)

where N is the truncation level. Substitution of (8) into (6)
yields the following equations:
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where the final summation in (9¢) only applies when the ‘‘up-
per’’ limit of the sum is not less than the ‘‘lower’’ limit.
Equations (9) form an arbitrarily large system of partial dif-
ferential equations which can be discretized in the usual Keller-
box style by first assigning grids in both the n and £ directions.
The 7-grid used was nonuniform and consisted of 61 points
lying between O and 20 with points concentrated near = 0 to
allow for the development of a near-wall layer. On the other
hand, the £-grid was uniform and consisted of 1601 equally
spaced points between O and 10. Equations (9) were reduced
to first-order form in 7, yielding a system of 4N + 4 equations,
and these were discretised using central differences based half-
way between the n-gndpoints. Apart from at £ = 0, where
(9) forms a set of ordinary differential equations, a backward
difference discretization in £ was used; this was deemed neces-
sary since central differences in £ were found to yield pointwise
oscillations reminiscent of those of the Crank-Nicholson method
when the steplength is too large. These oscillations could be
reduced in size by a very substantial decrease in the streamwise
steplength, but the backward difference scheme, though for-
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mally of first-order accuracy, yielded sufficiently accurate re-
sults and the solutions were free of oscillations.

If we include the boundary conditions in the reckoning, the
discretized form of (9) has been transformed into a set of (4N
+ 4)M, nonlinear algebraic equations where M is the number
of n-gridpoints. When the equations are arranged suitably, a
multidimensional Newton-Raphson iteration scheme can be
used to solve the resulting block tri-diagonal matrix/vector iter-
ation equations. The specification of the iteration matrix, the
Frechét derivative of the vector of algebraic equations, is ex-
ceedingly complicated, and should even one entry be in error,
then it is highly likely to degrade seriously the performance of
the Newton-Raphson method. Normally, this specification is
given explicitly by the programmer. A safer and much quicker
specification (though slightly slower computationally) is ob-
tained using numerical differentiation. This technique has been
used successfully very recently in another large-scale Keller-
box analysis, that of boundary layer flow in a layered porous
medium (Rees, 1996). Forward differences were used to obtain
the iteration matrix, although high accuracy 1s not of great con-
cern for this part of the solution methodology. Convergence of
the Newton-Raphson procedure was deemed to have taken place
when the maximum pointwise correction taken over all vari-
ables was less than 1078,

It is essential at this point to mention how the pressure bound-
ary conditions at 7 = 7,,,, were defined. Although (4d) states
that the second denvative of p must become zero, thereby
allowing p to vary linearly at sufficiently large values of 7, we
find that this can be relaxed by setting p = 0 at 7,,,,. Referring
to Eq. (9a), the right-hand side tends to zero when 7 is large,
and therefore the large-n asymptotic behavior of p, is that it
must be proportional to ¢ ™. Thus, when n = 1, the boundary
condition p, = O is appropriate. When n = 0, a linear variation
in pp can be allowed, but given the facts (i) that there is also
a derivative boundary condition at 7 = 0, and (ii) that no &-
derivatives in p appear in the boundary layer equations, we can
impose po = 0 at 7., with no effect on the overall solution
except that the absolute pressure at each value of £ is unknown.
Thus, we compute the pressure relative to its absolute value at
the edge of the boundary layer. Further, we have no need to
know the absolute pressure, for the computation of v and w rely
solely on pressure differences, and the streamwise velocity, u,
is equal to RO at leading order in R.

Initially, eleven Fourier modes were taken (N = 10 in (8)),
but it was found that N = 5 gave almost indistinguishable results
for all cases considered and also a much enhanced computa-
tional speed. Thus, we solved a 24th-order system, rather than
a 44th-order system. Furthermore, we checked the accuracy of
the solution at £ = 0 by comparing directly with a finite differ-
ence solution of (6) at £ =  using a suitably modified version
of the code used by Rees and Bassom (1993). It is essential to
note that, although z-derivatives are absent from the governing
equations at £ = 0, the surface temperature distribution, in
conjunction with the nonlinear terms, serves to make the solu-
tion a function of z.

4 Numerical Results

Figure 1 shows the solution at £ = 0 in the form of isotherms
for various values of a, the surface temperature wave amplitude.
It is important to note that since the velocities and pressure
gradients (v, w, p/0y and dp/90z) must all balance in magni-
tude for large values of R, then u = R + o(R). Therefore,
Fig. 1 also corresponds to vertical isovels. The aim of Fig. 1is to
display the way the wave amplitude, a, affects the temperature
distribution at the leading edge. The main effect of having local
hot spots is to cause the local thinning of the boundary layer,
and vice versa. A close examination of Fig. 1 for the larger wave
amplitudes appears, at first glance, to suggest that increasing the
value of a causes the boundary layer to become thinner locally
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near a cold spot. However, this appearance is deceptive; for
isotherm curves corresponding to, say, # = 0.01 and 8 = 0.001,
they still indicate that the boundary layer is much thicker at the
cold spot, but that it is also quite weak there because of the
relatively small excess of the coldest surface temperature above
that of the ambient medium.

The variation of the flow as £ increases is presented in two
forms. Firstly, in Fig. 2 we show how the isotherm field evolves
at increasing distances from the leading edge. Secondly, the
results of further computations are summarised in Fig. 3 in the
form of the rates of heat transfer of the individual Fourier
modes. Figure 2 shows isotherm plots for a = 1.0 at selected
values of £. As £ increases from zero, spanwise diffusion be-
comes increasingly important as the coefficients of the z-deriva-
tive terms in (6) are proportional to 2. This has the effect of
modifying the temperature field, and, in particular, of reducing
the thickness of the boundary layer locally at the cold spots.
Once more it is necessary to point out that isotherms corre-
sponding to § = 0.01 and § = 0.001 show that the boundary
layer is thicker at the cold spots than elsewhere. We find that
by the time £ takes the value 0.5, the boundary layer has essen-
tially a uniform thickness as z varies and z-variations modify
the profile only well within the boundary layer. In fact, we see
that z-variations become confined to a decreasingly thin region
close to the heated surface as £ increases. Note that the expres-
sion ‘‘decreasingly thin’’ refers to the thickness of the near-
wall layer in terms of 7, but that the near-wall layer actually
attains a uniform thickness in terms of y; this observation paves
the way for the asymptotic analysis presented in the next sec-
tion.

In Fig. 3 we show how the surface rate of heat transfer
evolves downstream by considening the individual Fourier
modes. Figure 3(a) shows how the value of 6y, (7 = 0) varies
with £ for various values of the wave amplitude. Here we see
that the curves converge fairly quickly onto the value —0.444,
which corresponds to an isothermal vertical surface (Cheng and
Minkowycz, 1977). Much of the essential evolution, from the
leading edge z-dependent solution to what is effectively the
i1sothermal surface similarity solution (save for values of 7 close
to zero), takes place in the interval 0 < £ = 4. The graph of
8:, (n = 0) shown in Fig. 3(®) shows that, at large &, the
variation of heat transfer is linear; this behavior is explained in
the next section. Figures 3(c¢) and 3(d) show the evolution
of the rate of heat transfer for the second and third modes,
respectively. Both sets of curves display well-defined variations
in 0 = £ = 4 although their amplitudes are smaller than those
for modes 0 and 1. When £ > 4, the rate of heat transfer has
decayed very rapidly towards zero. Corresponding heat transfer
curves for increasingly higher modes have decreasing maximum
value, thereby justifying the choice of N = 5 mentioned earlier.

5 Asymptotic Analysis for Large Values of £

In this section, we present a brief analysis of the flow at large
distances from the leading edge of the heated surface. Figure 2
has shown that the boundary layer splits into two very distinct
regions: a main layer where 7 = O(1) and there is no dis-
cernable z-variation, and a near-wall layer where 7 < 1 and z-
variations are very evident. The near-wall layer may be shown
to have a constant thickness (in terms of y) and it means that
n = O(£7") in this region. Given that = y/£, it is a simple
matter to reduce Eqgs. (6) to ones involving only y, z, and &.
In the near-wall region we shall use P and ® as the notation
for pressure and temperature, respectively, and in both regions
we expand the solution as an inverse power series in £. Let
(p> _ (p“”(n)) N §_I<p“)(n)>

@ 9(0)(77) 0(1)(77)

2
+ 52(2’(2)&7;) + ..., (10a)
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Fig. 1 The isotherms at £ = 0 corresponding to various surface temperature wave amplitudes: (i) 2 = 0; (ii} a = 0.2; (iii)) a2 =
0.4; {iv) a = 0.6; (v) 2 = 0.8; (vi) a = 1.0. All isotherm plots in this paper have the isotherms plotted at intervals of 0.1.
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The equations governing P and ® into which (10b) will be
substituted are

(10b)

2 2 a
orpP (9P_L6’0:0’ (11a)
By? 0z 2¢ O¢
2 a2
00 00 9P9® P90 1000 .
Jy 0z dy Jy dz 0z 26 O

At large values of &, the flow in the main part of the boundary
layer is generated by the mean temperature drop between the
surface and the ambient medium, and it is easily shown that
the solutions for p'® and 8'® are given by the expressions for
p and 8 in (7). In the near-wall layer we find that

PO =0 and O®P=1+aecosz. (12a,b)
The solution methodology proceeds by returning to the next
order in the main layer, solving the resulting equations, ob-
taining the asymptotic matching conditions for the near-wall
solution as y — %, and finally, by solving the associated near-
wall equations. The detailed analysis is straightforward but in-
creasingly lengthy as successive terms are obtained. Before the
results of our analysis are presented, however, it is important
to note that the equations for the O(£7?) terms in the main
layer, i.e.,

d*p® n do®

— + 6% =0, 13
dn’ 2 dn (13a)
a9 + 1 4 (09 @y 4+ (dp(o) dg® " dp‘® dg(o))
dn? 2 dy dy dy dy dy

+ 099 =0, (13b)

are homogeneous, but admit the eigensolutions

=12 (i)
10 |

£=0.0

(iii)

]

(vi)

BAG

¢=2.5 £€=4.0 £=10

Fig. 2 The isotherms at various values of £ corresponding to the surface temperature wave amplitude a = 1.0: (i) £ = 0; (ii)

£ = 0.5 (iii) £ = 1.5; (iv) £ = 2.5; (v) £ = 4; (vi) £ = 10.
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where X\ is an unknown coefficient. Clearly, this means that
successive terms in the asymptotic series will contain parts of
the solution with arbitrary coefficients. However, it remains
possible to obtain exact leading-order solutions for the functions
multiplying cos 2z and so on, even though they first appear at
O(£7°). We also note, in passing, that the main-layer equations
admit other eigensolutions. If eigensolutions appear at O(£~°)
in the expansion, then the first six eigensolutions correspond to
the following values of o: 2.0000, 7.6558, 17.8220, 32.5048,
51.7049, and 75.4225; these values were obtained using a
fourth-order accurate Runge-Kutta shooting method code, and
the values are correct to four decimal places.

Using the procedure outlined above, we find that the main-
region solutions take the following forms:

p=h(n) + £72LN(nf — n* )]+ O™, (15a)

O =7"(n)+ 7 IMf"] + O™, (15b)

while the near-wall solutions are
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Fig. 3 The variation of the rate of heat transfer for the first few Fourier
modes as functions of £ for various surface temperature wave ampli-
tudes: (a) zeroth mode; (b) first mode; (c) second mode; (d) third mode.
The a = 0 curve for the zeroth mode is also the asymptotic curve for the
other values of a. The asymptotic curves for the first and second modes
are depicted as thin lines.
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NOVEMBER 1997, Vol. 119 / 797



In these expressions, it is to be understood that y = f"(0) =~
—0.444 (see (7)), the O(£™*) terms in (15) are proportional
to A?, and the O(£ ~*) term in ( 16b) contains terms independent
of z and others that are proportional to cos z. It is clear that
our assumption that the main layer is independent of z is well-
justified a posteriori by the inner layer results where all z-
dependent terms decay exponentially into the main layer.

The above results may be used to obtain heat transfer data.
In order to compare with Figs. 3, we need to obtain the 7-
derivative of the inner layer solutions. Thus, we find that

00
on

=(-acos ) + vy + <‘y>x + %ya cos z)ﬁz

7=0

(165 Sy e
(8192 ya cosZz)§ + O™, (17)

. Again, the O(£7*) terms in (17) contain z-independent terms
and terms proportional to cos z.

Using (17) we are able to write down the asymptotic behavior
of the rate of heat transfer corresponding to the various Fourier
modes defined in Eq. (8b):

Dol (METH0E (18a)
07] n=0
691 1 3 - —4
Y +0(¢ (18b
(977 o 5 a§ 32 yaé ) [ )
08, 165 S 6
il +0 18
.o L6382 7® 3 (£7) (18¢)
Wl ~ o). (184)
677 n=0

By considering the interaction of the nonlinear terms in Egs.
(11), it 1s straightforward to show that the heat transfer corre-
sponding to mode n, the term proportional to cos nz, is of
O(£7%") when n > 1. The expressions in (185, c¢) are also
shown in Figs. 3(b, ¢) and give very accurate comparisons
with the numerical values obtained from solving the full bound-
ary layer equations. We note that only the leading term in ( 18a)
is known with certainty since \ can only be determined by a
direct comparison with the full numerical solution of (9).

6 Discussion

In this paper, we have considered how the presence of longi-
tudinal surface temperature variations affects the flow and heat
transfer from a vertical heated surface in a porous medium.
This is, to our knowledge, the first time a nonsimilar three-
dimensional, boundary layer flow in a porous medium has been
studied. The pressure and temperature fields have been deter-
mined by a combination of numerical methods and an asymp-
totic analysis. We have found that the flow, even for seemingly
very large surface temperature waves, may be described accu-
rately with a surprisingly small number of spanwise Fourier
modes. At large distances from the leading edge, the flow is
essentially the standard Cheng and Minkowycz (1977) vertical
profile with only the first Fourier mode giving substantial
changes from this in a near-wall layer adjacent to the heated
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surface. The numerical and asymptotic analyses compare very
favorably, even for values of & as small as 3, and this lends
support to the accuracy of both types of analysis.
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