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Thermal convection in a saturated porous medium contained between two undulating
fixed boundaries of mean horizontal disposition is considered when the layer is heated
from below. In an analytic study, the amplitudes of the two-dimensional undulations
are assumed to be small compared with the mean depth, and the wavelength is taken
to be close to the critical wavelength for the onset of Lapwood convection. For values
of the mean Darcy—Rayleigh number Ra below the Lapwood critical value Ra, an
analytical formula is found for the mean Nusselt number. As Ra— Ra,, convection
driven by baroclinic effects induced by boundary variations is greatly amplified by
convective instabilities. The natures of the resultant bifurcations are examined when
the configuration is varicose and also non-varicose. Consideration is given to both
longitudinal and transverse modes and to the effects of detuning. The effects of finite
amplitude and larger Rayleigh number are examined, for the varicose configuration,
in a numerical study of two-dimensional convection. Periodic solutions are found and
the existence of the flows delimited in the parameter space of Ra and the boundary
amplitude a.

1. Introduction

The phenomenon of buoyancy-induced flow and heat transfer through a saturated
porous medium has attracted considerable attention over the last twenty years. This
interest in thermal convection through porous media has been stimulated in two ways.
First, there are diverse applications in, for example, chemical engineering, geothermal
energy and hydrocarbon reservoir modelling, thermal-insulation engineering, and
such geophysical phenomena as frost heave. Secondly, the problem provides a
relatively simple test-bed for the development of analytical and numerical techniques
for studying thermal instability, bifurcation and transition to turbulence in a
Newtonian fluid. Moreover, porous media also provide a convenient means of
studying experimentally such phenomena as cell-pattern selection and hysteresis.

The present study is aimed at examining the geometrical effects of two-dimensional
spatially periodic boundary variations upon the Lapwood problem (i.e. an unstably
stratified Boussinesq fluid saturating a porous medium bounded between two smooth,
horizontal boundaries of infinite extent with constant, but unequal temperatures).The
motivation for initiating this study was geophysical, namely the application to
convection within a saturated porous medium such as a folded rock stratum. In the
context of geophysical applications, the assumption of isothermal boundaries, i.e.
perfectly conducting boundaries, must be questionable. Indeed recent work by Riahi
(1983) does address itself to the problem of porous layers with finite conducting
boundaries. In this paper, however, we choose to simplify the problem by confining
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our attention to the perfectly conducting case. Nevertheless, it is not our intention
to consider a particular application of our results.

The onset of convection in a plane horizontal porous layer was first investigated
using linear stability theory by Lapwood (1948). Subsequently, Palm, Weber &
Kvernvold (1972) employed weakly nonlinear theory to investigate moderately
supercritical flow, while Straus (1974) used spectral methods to further extend the
results. Palm et al. reported, and the results of Straus confirmed, that two-dimensional
motion is the only stable mode for moderately supercritical Rayleigh numbers in the
Lapwood problem. It is natural therefore that we concentrate on two-dimensional
modes — this is the spirit in which most thermal-convection studies are undertaken,
especially in problems involving imperfections.

Other literature directly related to this problem is generally concerned with
convection of Newtonian fluids in horizontal slots, rather than saturated porous
media. Watson & Poots (1971) seem to be the first to have studied the effect of
boundary variations on free convection. Their study of convection in a vertical slot
was motivated by an interest in optimizing the heat transfer from wavy-walled
boilers. Vozovoi & Nepomnyaschii (1974), Tavantzis, Reiss & Matkowsky (1978), and
Kelly & Pal (1976, 1978), Pal & Kelly (1978, 1979) have variously described the effects
of periodic, small-amplitude boundary non-uniformities in either the temperature or
location. On the other hand Eagles (1980) and Walton (1982a, b) have considered
similar non-uniformities which are also slow, i.e. occur over a long scale. Of all these
references, Kelly & Pal (1978) is the most pertinent.

In our analytical work, the amplitudes of the boundary variations are taken to be
0(8), where & < 1, and expansions are made in terms of . The wavenumber of the
periodic variations of both boundaries is assumed to lie close or equal to the critical
wavenumber (k, = ir) characteristic of the classical Lapwood problem and so, as in
Kelly & Pal (1978), the problem generally involves resonant wavelength excitation.

In the Lapwood problem no steady convection is possible until the Rayleigh
number Ra is greater than the critical value Ra, = n* for linear stability. When there
are boundary variations, however, fluid motion always occurs, whatever the non-zero
value of the Rayleigh number, due to the baroclinic effect. In § 3 the * quasi-conduction’
regime, wherein Ra < Ra, and the convection has amplitude O(4), is analysed and
asymptotic expansions found for the stream function, the temperature and hence the
Nusselt number. For a configuration which is not exactly varicose, these expansions
become singular as Ra—>Ra,—and a rescaling is necessary which balances the
growing amplitude of O(6/(Ra— Ra.)) with the amplitude of the motion due to the |
classical Lapwood convective instability of O((Ra— Ra,)?); this is considered in §4.
In §4.1 two-dimensional flow is studied and a governing cubic equation found for the
amplitude of convection. This equation yields three supercritical states but only the
mode connected to the suberitical state is found to be stable. In §4.2 a three-dimensional
formulation is introduced and a study made of the interaction between longitudinal
and transverse rolls, together with the effect of a small detuning of the boundary
wavenumber from k,. It is found that there is no purely transverse mode, but there
are three situations depending on the detuning, in which purely longitudinal and
mixed modes coexist.

If the configuration is varicose, the expansions of §3 remain regular, but there is
a supercritical bifurcation near Ra = Ra,; this is analysed in §5. In §5.1 two-
dimensional motion is considered and the shift in the critical Rayleigh number due
to boundary non-uniformities calculated. It is found that two modes bifurcate near
Ra = Ra,; one, termed type I, stable in the infinite layer and the other, termed type
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I1, stable, for example, in an infinite cylinder. In §5.2 the interactions between
longitudinal and transverse rolls with amplitudes O(d) are studied. In this case, a
stable purely transverse mode is first to bifurcate. There is also a purely longitudinal
mode which is unstable until it suffers a secondary bifurcation to an unstable mixed
mode.

Finally in §6, a numerical study is presented of the varicose case for finite boundary
amplitudes and for Rayleigh numbers up to 40. It is found that there exist two
distinet modes of two-dimensional flow, one of which is fluctuating, the other being
steady and consisting of either two or four cells.

2. Formulation of the problem

We consider an undulating porous layer, of mean vertical depth 2d and of infinite
horizontal extent, saturated with fluid. The mean disposition of the layer is horizontal
and we use a Cartesian coordinate system with £ vertical and £ in the horizontal
direction of the boundary variation. The upper and lower boundaries are taken to
be impermeable and isothermal at temperatures 7, and TY(T, < 1)) respectively,
which yield a natural characteristic temperature scale AT = §(7;—T},). Other variables
are non-dimensionalized with respect to length, velocity, pressure and time scales
given by d, A/ (p; ¢ d), vAn,/ (Ke;) and py, ¢y, d*/ Ay, Tespectively. Here A Pms Cm 8T
the thermal conductivity, density and specific heat of the saturated porous medium;
v and ¢, are the kinematic viscosity and specific heat of the saturating fluid, which
has a reference density p;. Then, on assuming that the Prandtl-Darcy number is large
and invoking the Boussinesq approximation, the non-dimensionalized Darcy—
Boussinesq equations become :

q=—Vp+RabZ, (2.1)
V'g=0, - (22)

26
%—t+(q°V)0 = V26, (2.3)

where ¢ is the Darcy velocity vector, p the pressure and 0 is the temperature.
Ra = BgKATdp;c;/vA,, is the Rayleigh number with g the coefficient of cubical
expansion of the saturating fluid, K the permeability and g the acceleration due to
gravity.

The boundary conditions needed to complete the specification of the problem are

qg'n=0, 6=—1 [(upper boundary), (2.4)
g'n=0, 6=+1 (lower boundary), (2.5)

where n denotes the normal to the boundary. In addition we assume that there is
zero net horizontal volumetric flux.

3. Quasi-conduction regime

It is easily shown that small-amplitude steady solutions yield the critical Rayleigh
number Ra, above which non-decaying solutions exist for the full non-linear Lapwood
problem (Beck 1972). Thus by continuity, we expect that for Ra sufficiently below
Ra, the flow between small-amplitude wavy boundaries is unique, stable and, since
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the flow arises owing to the non-uniformities of the boundaries, two-dimensional.
Thus on introducing a stream function 3 such that ¢ = curl (¥/7), we have

Vi = Rad,, 3.1)
V20 = J(y, 6)+6,, (3.2)
with
y=0 } onz = 1+8g,(x), (3.3)
0=-—1
Y= 0} 1
g=1( °B*7 1 —dgy(x). (3.4)
Here V2 denotes the two-dimensional Laplacian in « and z,
Oy 06 0y 00
T, 0) = dx 0z 0z ow (3.5)

and g,(x), ¢,(x) denote the shape functions of the upper and lower boundaries
respectively. We take

gu(x) = Qy CO8 (kx_ﬂ)’ gl(x) = @y COS (kx+ﬂ): (36)

where 24 is the phase difference between the two wavy boundaries, and a,, a, are
amplitude measures for the respective boundaries.

It is convenient at this stage to introduce new independent variables £ and % such
that

_ 2+ 0lg,(@) — gy (0)]
5+ 810, (2) + gy (@)] 57)

which transform the upper and lower boundaries to y = +1.
Equations (3.1), (3.2) become

£=u,

L,y = RaL,0, 38
06
L,0 =2s, J(y, 5)+8%§, (3.9)
where
oy 0Y 060 oy a6
2 2 /7 /7 4 a
L =sizpt2nng 5 ag+[4+828e..] s {(1— 1) g — (1 +7) gL 20%,0g; +90)] o
0 0
L, = slag+é‘slsza,
with

81 = 2+8(gl+gu)/
s, = (1—=79)gi— (1 +7) g

On assuming that ¢ < 1 and that Ra is sufficiently below Ra, (to be made more precise
later) we look for steady-state solutions and expand:

Y(E, 1) = 89y (£, 1)+ O%rg(E, M)+ .. (3.10a)
O(E. 1) = —n+36,(E, 7)+86,(E, )+ ... (3.100)
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The O(1) terms constitute the pure-conduction solution, whilst the O(J) terms satisfy
V2, — Ra 6,; = {Ra k[(1—7) a; sin (k§+ B)— (1 +7) a, sin (kE—p)], (3.11a)
V20, + ¥y = —3k*[(1—17) a; cos (kE+ )+ (1 +7) a, cos (kE— )],  (3.110)

with ¢, = 6, = 0 on 9 = + 1. These equations are readily solved:

Yy = afy(n) sin (kE+ B) +ay fo(7) sin (kE— ), (3.12a)
0, = a1 9,(n) cos (kE+ B) +ay g,(n) cos (kE—p), (3.120)
where
_ 1 sinh (yn) cosh(xy) sinh (y7) cosh (y7)
Fin) = 3ka [sinh (y) cosh(y) sinh(y) = cosh(y) ] ’ (3-13a)

sinh (y) cosh(y) sinh(y) cosh(y) (3.130)

foln) = %Ra%liSinh (X77)+COSh (x7) sinh(yy) cosh (yn)},

_ 1[sinh (yy) cosh(xy) sinh(yn) cosh(yy) ,
) = 4[: sinh (y)  cosh (y) + sinh (y)  cosh (y) +2 277]’ (3.13¢)

1 [sinh (xn) , cosh (xy) , sinh (yy) | cosh (y)

92(77)—4 sinh (y¥) = cosh(y) sinh(y) = cosh(y) _2_277]' (3-13d)

Here y, which may be real or imaginary, and vy are given by
y?: = k*+k Rat, %= k®—k Ra, (3.14a, b)

with y = v =k when Ra = 0.

These solutions are valid for all wall wavenumbers k, but in general become singular
in the limit cosh y 0. Using (3.14), we see that for a given wavenumber k this
behaviour first occurs as Ba— %, where

k? +im?)?

R, = (—Tg—)—, - (3.15)
which is precisely the expression for the neutral stability curve in the Lapwood
problem. This type of behaviour was first noted by Watson & Poots (1971) and again
later by Kelly & Pal (1976). Thus as Ra— Ra, with k ~ k;, (3.10a, b) break down
and new expansions must be determined. For the Bénard problem, this resonant case
was simultaneously attacked by Tavantzis, Reiss & Matkowsky (1978) and Kelly &
Pal (1976, 1978).

When the layer is varicose, that is a, = a; = a, say, and £ = 0 (see figure 1a), the
first-order solution reduces to

. ! sinh (yy) sinh (y9)] .

Y, =1aRa I: sinh (y) _ snh () } sin (k§), (3.16a)
1 [sinh (x7) sinh (wy)_ 1

0, = §a[ sinh (x) + sinh (7) 277] cos (k§), (3.16b)

which remains bounded near the neutral stability curve. This was noted by Kelly
& Pal (1978) but pursued no further; discussion of this special case is left until §5.
In figure 1, we display the O(d) streamlines for Ra = 5, a, = a,, and various wall
phases 8. For the varicose configuration, # = 0, the flow consists of a set of four
counter-rotating cells per wall wavelength, as expected from symmetry considerations.
As shown, this pattern is quickly distorted by small deviations of £ away from zero,

17 FLM 166
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(e) 0

FicUre 1. The O(d) streamlines as calculated from equation (3.12a) for Ra = 5, a, = a;, and wall
phases (a) 0°, (b) 5°, (c) 10°, (d) 20°, (e) 45°, (f) 90°.

(@)

Ficure 2. The O(8) streamlines as calculated from equation (3.12a) for Ra =5, £ =0 and wall
amplitudes (2) @, = a,, (b) a; = 0.75a,, (¢) a, = 0.5a,, (d) a, = 0.25a,, (¢) a; = —0.25a,, (f) @, = —a,,.

with pairs of cells coalescing as |f] increases. The sense of the flow is always such that
it is up the hotter, lower boundary and down the cooler, upper boundary.

Again from symmetry considerations, we expect a symmetrical two-cell pattern
when § = 0 and a, = —a, i.e. for the sinuous case (see figure 1f). This is shown in
figure 2 along with the effect of varying e, whilst holding a, fixed with # =0 and
Ra =5.

The boundary non-uniformities may induce distortions at O(82) to the mean values
(i.e. averages over one boundary wavelength) of horizontal flow and heat transfer.
Omitting all algebraic details, it is found that the mean flow is non-zero, except if
£ =0 or m, or if one of the boundaries is flat, i.e. a, or a; = 0. Of more importance,
however, is the mean heat transfer. On using A,, /AT to non-dimensionalize the local
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Ficure 3. The second-order Nusselt numbers (from equation (3.18)) for k = k..

conductive heat transfer from the lower boundary, the mean Nusselt number Nu is
given by (cf. Watson & Poots):

ok 2n/k( 1+ 892 ) (ae)
Ny = — — )= dé&. 3.17
2n )y \1+30lg+g.)/ \On/, 4 : 3.17)
It is found that
Nu = —1+82[(a}+ a2+ 2a, a, cos2p) Nuy
+ (a? + a2 — 2a, a, cos 2f) Nug]+0(6?), (3.18a)

where
1
Nuy, = kéia [COtg ) _ COt; W) + coth? y — coth? y} —i&[x coth y+v cothy],
(3.185)
1
Nug = kéiaz [tar;h y_ tar;(h X t tanh? X — tanh? 'y] —1i5 [x tanh y 4+ tanhy].
(3.18¢)
Here the heat transfer has been conveniently factored into varicose (a, = a,, # = 0)
and sinuous (a; = —a,, § = 0) contributions. Nuy and Nug are plotted in figure 3 and

we note that they are always negative. Thus, since the coefficients of Nuy, and Nug
in (3.18a) are non-negative, we conclude that the induced convection enhances the
boundary heat transfer.

4. The critical regime for the non-varicose configuration
4.1. Two-dimensional

We follow Kelly & Pal (1978) and consider flow in a non-varicose layer with k = k,
and Ra ~ Ra,. According to Palm et al. (1972), two-dimensional motion is the only
stable mode for moderately supercritical Rayleigh numbers in ordinary Lapwood
convection. It is feasible that this result carries over to the present case when the
boundary non-uniformities are infinitesimally small. The orientation of the rolls,
however, is not obvious. It is plausible that the rolls will be longitudinal (i.e. with
generators in the y-direction) and we first investigate this case.

17-2
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The scalings appropriate to this type of problem have been fully discussed by
Tavantzis et al. (1978) using matched asymptotic expansions, and by Kelly & Pal
using heuristic reasoning. We initially consider steady solutions and take

Y =0 ¥+ Wi+ oW +..., (4.1a)
0=—n+86,48160;+00 +..., (4.1b)

and
Ra=RaC+6§Ra§+.... (4.1¢)

The problem at order 8% and & are equivalent to the first- and second-order problems
considered by Palm et al. in their study of supercritical convection in a porous
medium. Omitting the detailed analysis, we have

¥, =—2k, A cos (k. §+0a) cosk,, (4.2a)
O = A sin (k. §+a) cosk, 7, (4.2b)
Y: =0, O;=3;4%,sin2k.7, (4.3a, b)

where the amplitude A and phase « are to be determined. The equations for ¥, and
0, are then

V*¥,—Ra. 0, = }Ra k. [(1—7)a, sin(k, £+ B)—(1+9)a, sin (k, E—p)]
+k, Raz A cos (k. §+a) cosk.y, (4.4a)

V2O, + ¥, = —3ki [(1—n)a, cos (k. E+ B)— (1 +9)ay, cos (k. §—F)]
+1k; A% sin (k. E+a) [cosk,p+cos 3k, n], (4.4b)

which must be solved subject to the vanishing of ¥, and ©, on 9 = +1. If (4.4q) is
multiplied by ¥1/Ra,, (4.4b) by 0, and the resulting equations added and integrated
over a wavelength in the £-direction and between —1 and + 1 in the -direction, the
following solvability condition results:

ks A*— Raz A—2k,c® = 0, (4.5a)
where ¢ is the real root of
= [a, sin (a+ ) —a, sin (a—f)]. (4.5b)

We interpret (4.5a) as defining 4 in terms of Raz. As shown in figure 4, for Raz > 3k2 c®
there are three possible solutions to (4.5a). As Raa—> 00, A/c ~ +[Raz/ (kg 02 )}t on the
upper and lower branches respectively, whilst A /¢ ~—2k%c?/Raz on the middle
branch. '

We now turn to the questions of the preferred convective phase @ and the relative
stability of the three supercritical solutions. In order to address these questions we
must allow for a slow time dependence in the amplitude 4 and phase a. Thus we
introduce a slow timescale 7 = 0% into (3.9). The existence of solutions to the O(d)
equations requires that

%—é =—YHkl A3 -4 Raz+ 2k, [a, sin (a— f) —a,, sin (a+ p)]} (4.6a)
% = _%{“1 cos (a— ) —a, cos (ax+ B)}. (4.60)
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~
~
~ -

—2
Ficurk 4. The imperfect bifurcation for the general undulating layer (equation 4.5): , stable
solution; --------- , unstable solutions; ~————— , the perfect bifurcation, for reference.

Here (4.6a) follows in the same way as (4.5a), whilst (4.6b) follows by applying the
same procedure as for (4.6a) but using eigensolutions ¥} and @, with phase a+{n
rather than « in the §-direction. The equilibrium phase «, is determined by simply
taking da/d7 = 0, hence

a,—a
tano, = (“Z'*ai) cot S. (4.7)
Denoting ¢ by ¢, when o = a, in (4.5b) and setting « = a,+4& in (4.6b) gives
% = —ZcA—ccg sin &, (4.8)

from which we infer that the solutions along the lower branches are unstable to
perturbations that are out of phase with themselves. A linear stability analysis of
the upper-branch solutions shows that this branch is stable.

Finally, the effects of detuning may be investigated. Letting

k= ky(1+6k) (4.9)

be the wall wavenumber and proceeding as above, we find that equation (4.6a) is
replaced by

dd

T = —1[k% A3 + (Ra, k? — Raz) A+ 2k,(a, sin(a—f)—a, sin(x+f))] (4.10)

and all the above observations regarding stability remain valid.

4.2. Three-dimensional

In other situations, it is known that (i) longitudinal rolls are generated before
transverse rolls (Walton 1983)1 and (ii) longitudinal rolls are unstable to disturbances

T Walton’s definition of a transverse roll is equivalent to our longitudinal roll.
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in the form of transverse rolls (Straus 1974). It is of interest therefore to investigate
the interaction of longitudinal and transverse modes.

Of course, we must abandon the stream-function description of the problem and
adopt a full three-dimensional form. We have found it convenient to work in terms
of the pressure. By taking the divergence of (2.1) and substituting for g from (2.1)
into (2.3), we obtain

V2p = Rab,, (4.11)
06
Vi = RaﬁHZ-Vp'V0+—a—t-,
where V2 denotes the three-dimensional Laplacian in z, y, 2. The boundaries are
impermeable and isothermal, hence

(4.12)

(Vp—Ra 62)'n = 0} on z = 1+dg,(), (4.13)
0=—1

(vp—RaBz)'n=0} on z = — 1 —dg,(x), (4.14)
f=1

where n denotes the normal to the wavy boundary. We recast these equations using
new independent variables (£, {, ), where (£, ) are as defined in (3.7) and { = y:

02 o6
{L1+s§@}p = 2Ra sla, (4.15)
) = 2tas, 6 2 22, 20
{L +81a§2}0 2Ras, 07, {agafa«;ag
6 dp o6 ap} 5 5, 00 Op 67
88182{077 ag+agan (4+0%s3 )677677+81 % (4.16)
with
,\ Op , 0p
— 52 &L -
(2 8829,1)877 319uag+R081 0} ony=1 (4.17a)
6=—1
, Op op
(2+8232g])%+31glag Rasl—O} ong=—1. (4.17b)
0=1
We expand
p=—iRa,?+8p+8p+ ... (4.18a)
0=—n+80,+080:+ ..., (4.18b)
Ra = Ra +&u+..., (4.18¢)

k=k(1+8k+...), (4.184d)

where the leading-order terms in the p- and #-expansions are the conduction-state
distributions for plane boundaries. At O(d5) we obtain the usual linear Lapwood
equations, but recast due to the (p, #)-formulation:

Vip; = Rac%—aé, (4.19a)
i
V20, = — Ra, Bx+a—3 (4.19b)

on’
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with

%{’; 0, =0 ony==+1. (4.19¢)

We concuntrate on the eigensolution representing a sum of longitudinal and transverse
rolls. On expanding the eigensolution for small ¢ and truncating at leading order, we
have

= [2k, sin (k§+a) sink, 9] Ay, + 2k, sink,{ sink, 5] A, (4.20a)
— [sin (k& + ) cos ko 7] Ag,+[sin k, £ cos ko] Ay, (4.200)

where A, Ay denote the amplitudes of the longitudinal and transverse rolls
respectively. At O(d%), we obtain the solutions

py = —3ke 4} + A% ]eos2k n—2k, kA cos (kE+a) sink,n
— 3 —-sz LAgsin (kf+a) sink, § cos2k,n, (4.21a)

Oy = ik, | A3+ A%] sin 2k, n+3k, Ay, Ap sin (k§+ o) sink,{sin2k.n,  (4.21b)

whilst the existence of a solution to the O(8) equations requires

A
%L = Yu—F*Rag) Ay — ks A3 —3k8 Ay A%+, 3 cosd, (4.22a)
ddy _ A —1F4 43 54 42 4 (4.22b)
dr ATt AT e AL AT :
%OLT— —j;—cc" sin &. (4.22¢)
L

Here we have again set « = o, + &, where «, is the equilibrium phase, given by (4.7).
We now consider the stability of the upper branch of (4.5a) to cross-roll disturbances.
On substituting (A4, A, &) = (4, 0, 0)+ (4, A1, ') and linearizing, we obtain

dA;
dL Uu—k® Ra,—3k3 A2] A7, (4.23a)
d A’
o = slu— ke A% 4r, (4.23b)
do’ k,c

__D
I y a’. (4.23¢)

For the stability of the upper-branch solutions, both terms in the square brackets
in (4.23) must be negative. Hence the curve of marginal stability is given by
= 102 4% which intersects the upper branch at the positive roots of
M =7k p p

St — Ra, Bd+2(8) k2 2 = 0. (4.24)

The maximum detuning allowable in order that the whole of the upper branch be

stable is easily determined to be k,,,,, where
9 k
B ax] = TR —P 0.75197c,, (4.25a)
at which point
10
= (4.25b)

Mmax = (63)% CCE)
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FicURE 5. A sketch of the longitudinal component of the mixed mode for the general undulating
layer (equation 4.26): , stable solution; --------- , unstable solution.

We note that the pure A;, mode is stable for high enough values of u, irrespectively
of the degree of detuning within the O(8%) range.

The pure A; mode, however, is not the only equilibrium state: there exists a
mixed-mode solution to (4.22) with Ay # 0. On eliminating Ay, the longitudinal
component Ay, of the mixed mode satisfies

s A3 — [u+2k? Ra ) Apy +3k. ) = 0. (4.26)

A sketch of Ay, is displayed in figure 5. A stability analysis reveals that the upper
and lower branches are both unstable, whilst the middle branch is stable. It should
be emphasized that there is no pure Ay mode solution to (4.23) and so transverse
rolls cannot constitute the most unstable mode.

By considering the condition for the existence of the transverse component of the
mixed-mode (i.e. from (4.22b)), we deduce that the roots of (4.24) coincide with the
points where the 4y mode curve intersects the Ay, mode curve. The situation is
illustrated qualitatively in figure 6 for various k. For the purposes of delineating the
three possible regimes, we introduce the value Emin, via

51\ (41\:
pinl = (E> <@) ¢, = (0.7817c,), (4.27)
which is the amount of detuning needed for the stable middle branch of the 41 mode
to intersect the stable upper branch of the A mode. For k| < |k, the whole of
the upper branch of the Ay mode is stable and there is also a stable mixed-mode
solution which exists when g > 4, where

ji = (357} k& ¢ — k2 Ra,. (4.28)

For |k .,] < |Bl < |Eminl there is a sub-interval in which the A; mode is unstable,
whilst the mixed-mode is stable. Finally, when |k| > |ky;,|, there is a continuous
transition from the 4; mode to the mixed mode.
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/3

FicUure 6. An illustration of the three possible regimes for the stability and existence of longitudinal
and mixed modes for the general undulating layer: , stable solutions; --------- , unstable
solutions.

5. The critical regime for the varicose configuration

We turn now to the special case mentioned in § 3, namely the varicose configuration
with @, =a, =a and f=0. In this case, expansion (3.10) remains regular near
Ra = Ra, but the solution that it represents becomes unstable. We have what
Tavantzis ef al. (1978) call a weak imperfection: the imperfection modifies, but does
not alter the qualitative character of the bifurcation.

We first determine the critical Rayleigh number for longitudinal rolls and then
consider the interaction of longitudinal and transverse rolls. We shall see that, in
contrast to the non-varicose case, transverse rolls are the first to appear but that at
higher Rayleigh numbers both longitudinal rolls and transverse rolls are possible
stable modes (at least to the types of disturbance considered here).

5.1. Two-dimensional
For k = k, and Ra ~ Ra,, we assume the double expansions

0 [e0)
(,0,Ra)= ¥ X eman(Wmn’ an’ Ra’mn)a (5.1)
m=0n=0
where ¢, the scale of the convection amplitude, is regarded as small and

(V00> Ooo» Bagg) = (0, —9, Ra). (5.2)
As both ¢ and Ra are externally imposed parameters, (5.1) actually defines .



516 D. A. 8. Rees and D. S. Riley

)0 9@ @

(a) ()

Ficurk 7. The streamlines (equation 5.3) of the two~dimenéi0nally stable mildly supercritical roll
solutions for the varicose layer: (@) « = nr (infinite layer); (b) @ = (n+}) 7 (infinite cylinder).

From the work of Palm ef al. on weakly nonlinear Lapwood convection, we deduce
that Ra,, = 0, Ra,, = kg and

(Yor> Boy) = (— 2k, cos (k. E+a) cosk,n, sin (k. E+a) cosk, 1), (5.3)

where a is an arbitrary phase. After much tedious analytical work, we further find
that Ra,, = Ra,, = 0 (as expected on symmetry considerations) and

gty oo
ot ,1+4Sinh2\/3kc ki + \/3coth\/3k

+[—\1£2§ coth 4/3k, —k—] k2 cos2a. (5.4)

As Ra,, is dependent on «, the preferred phase must be determined as in §4.1.
Applying the solvability condition on the O(ed?) equations yields

doc_ 1

—_—— —— 3 & .
P 3 [kc V3 coth 4/ 3k } k3 sin 2o, (5.5)

where the term in square brackets is positive and 7 = 6%. The preferred phases are
given by a = nr for integer n, which correspond to rolls centred in the hollows and
constrictions. These rolls have critical Rayleigh number

Ra = Ra,+17.4141a%%+ 0(8%). (5.6)

The other cqulhbrlum solutions of (5.5), namely a = (n+3) 7, are also of interest.
For although they give rolls which are unstable in the infinite layer, they are stable
when there is any vertical insulated barrier positioned symmetrically in the varicose
undulations, i.e. at £ = 2n, for some integer n,. The corresponding critical Rayleigh
number for this case is

Ra = Ra,+9.3796a202 + O(8%). (5.7)

The two cases described above are illustrated in figure 7. For convenience we call
the stable flow with & = nm, type I and that with a = (n+})w, type II.

The effects of detuning are such that the critical Rayleigh numbers for type-I and
-IT modes are both increased by an amount 82k Ra,, when the wall wavenumber is
k=k,/1 +8k). The conclusions regarding stability remain valid.

5.2. Three-dimensional

Here we consider the varicose analogue of §4.2. The governing equations are
(4.15)—(4.17), where g, and g, are given by (3.6) with k = k., a, = a; =a and § = 0.
In order to incorporate the fully interactive three-dimensional case, we assume that
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(41 + AR}

)
/
1

Ra,
Ficure 8. Sketch of the primary and secondary bifurcation for the varicose layer.
(a) transverse rolls, (b) longitudinal rolls, (¢) mixed mode.

the convective rolls have amplitudes which are O(8). Thus, for Ra ~ Ra,, we assume
that

(p, 0, Ra) =

n

(P, 0, Ra,), (5.8)

I ™M 8

o
where

(ﬁo’ 90: Rao) = (—'%Rac 772: -1, Rac)' (5-9)
At O(4), we take
P, = k() cosky £+ 2k [ A} sin (k. E+a)+ Ay sink, {] sink, 7, (5.100)

0, = §(n) cosk £+ Ay, sin (k,E+a)+ Ay sink Clcosk,, (56.10b)
where
. cosh 4/ 3k, 9
h(n) = —4k2 92—k, cosk,n++/3k, ¢ sinh v/3k, (5.11a)
IS 1 sinh/3k.n ]
d(n) = 2[sm kcn+———-———-———smh 3k, 2 (56.11b)

and 4, , A denote the amplitudes of the longitudinal and transverse rolls respectively.
Again omitting all the details, it is found that Ra, = 0 and

ddy _ . s :

d%L=%AL[Ra2 Ray— ki A% — 10k 42), (5.12a)
deT_;g Ba — Ba— kb A2 1058 72 (5.12b)
d3 - 2 T[ Ay Ap— Ko Ap—F K¢ L]’ '

where Ra, is identical with Ra,, given by (5.4) and Ra, is found numerically to have
the value —22.504a?; the equation for the phase « is again given by (5.5). A stability
analysis shows that the longitudinal mode with & = (n+1) 7 is unstable, whilst the
pure transverse mode is stable. For Ra, > Ra; there is also a longitudinal mode with
a = nw, which is unstable until it suffers a secondary bifurcation to an unstable mixed
mode at

a, = }[10Ra;, —TRa), (5.13)

see figure 8. For an infinite cylinder formed by inserting vertical insulated boundaries
into the infinite varicose layer as described in §5.1, type II is the only possible
longitudinal mode. Its bifurcation diagram has the same form as in figure 8, but with
Ra;, having the appropriate value.
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6. Numerical solution: varicose configuration

Thus far, we have concentrated upon the stability of longitudinal and transverse
rolls in a slightly undulating layer. The asymptotic solutions that we have found are
valid for small boundary amplitudes and for Rayleigh numbers varying from zero
to slightly supercritical, i.e. Ra < Ra,. In order to obtain two-dimensional solutions
for finite wall amplitude and for larger Rayleigh numbers, we have made recourse to
numerical techniques.

The first numerical study of supercritical motion in the plane porous layer was made
by Elder (1967), who calculated finite-difference solutions with which to compare his
experimental results. Elder restricted his attention to two-dimensional roll solutions
with wavenumber k,; stability with respect to three-dimensional disturbances was
not considered. Straus (1974), using a Galerkin method, considered general distur-
bances and showed that, at a given value of the Rayleigh number, stable two-
dimensional flow is possible for a finite band of horizontal wavenumbers provided
that Ra, < RBa < 9.5Ra,.

Other literature related to the two-dimensional case is concerned with steady and
unsteady convection in rectangular boxes: Horne & O’Sullivan (1974, 1978),
Caltagirone (1975) and Schubert & Straus (1979, 1982). In these studies, the
computational region fixes the range of possible wavenumbers. For unicellular
convection with wavenumber k,, the flow is steady for Rayleigh numbers that are
mildly supercritical, but eventually becomes oscillatory as the Rayleigh number
increases. The critical value for the onset of this fluctuating motion has been variously
reported to have a value ranging from about 7Ra, (Horne & O’Sullivan 1974) to about
9.5Ra, (Caltagirone 1975); see Horne (1979) and Schubert & Straus (1982) for
interesting discussions. Moreover it appears that all two-dimensional multicellular
patterns of convection become oscillatory with increasing Rayleigh number and the
larger the number of cells is, the higher is the value of Ra at the onset of oscillatory
behaviour (Schubert & Straus 1979).

When the effects of boundary variations are included in the numerical analysis,
we shall see that there is a stabilization to the convective instability and also that
the low becomes oscillatory at much lower Rayleigh numbers. We have found three
distinct types of periodic motion depending upon the exact configuration and upon
the boundary amplitude and Rayleigh number.

We consider only two-dimensional convection in a varicose layer with k =k, as
this is a relatively simple but interesting case to study. The numerical study of Straus
(1974) concerning the stability of rolls to three-dimensional disturbances in the
Lapwood problem shows that rolls with wavenumber &, are stable up to about 5Ra,.
Whilst recognizing that the roll-stability region of Straus will be modified by the
presence of boundary undulations, we expect that, if these undulations are small,
there will be Rayleigh numbers for which stable longitudinal rolls are realizable
physically. Furthermore, the stability analysis of §5 indicates that for large enough
Rayleigh number both longitudinal and transverse rolls may exist and are stable. In
view of figure 8, it seems more likely that transverse rolls will be observed. However,
for a layer that is of finite extent in the y-direction, with vertical insulated boundaries
that are not an integer multiple of the critical cell width (n/k, = 2) apart, we can
show that stable longitudinal rolls appear at a lower Rayleigh number than
transverse rolls. Geophysically this situation could occur where an undulating rock
stratum is bounded by vertical faults. In view of this latter observation, we consider -
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a two-dimensional study not only to be a starting point for a full three-dimensional
study, but also worthwhile in its own right.

The governing nonlinear time-dependent equations (3.8), (3.9) with § =1 and
a, = a; = a were discretized using a uniform square grid. The solution domain
consisted of one wavelength of the varicose layer or, equivalently, a 4 X 2 rectangle
in the transformed (£, #)-plane. The Dufort—Fraenkel scheme was used for the
temporal and diffusion terms in (3.9), whilst a second-order Arakawa method (1966)
was used for the advection terms. Roache (1972) points out that the conservation
properties of the Arakawa scheme make it ideally suited to hydrodynamic stability
problems.

The stream-function equation (3.8) was discretized using second-order central-
difference approximations. For a given temperature field, the resulting linear
equations were solved by successive over-relaxation with an optimum relaxation
parameter which varied little for the range of amplitudes considered. Due to the
presence of single and mixed derivatives in the transformed Laplacian, the iteration
matrix lacked diagonal dominance, but no consequential difficulties with convergence
were experienced. To accelerate the convergence, a pointwise quadratic extrapolation
procedure was employed to provide an initial iterate. On testing the program, it was
found necessary to ensure high accuracy in the solution to (3.8) in order to avoid a
time-splitting instability in the solution to (3.9).

A grid of 41 x 21 points was used with a mesh length of 0.1. The time step varied
between 0.0025 and 0.01 depending on whether the flow was steady or not, and on
the Rayleigh number. Starting with either the conduction solution or a converged
temperature field from a neighbouring parameter case, (3.8) was solved to determine
a stream function . This was then used in (3.9) and the temperature distribution
updated. This process was iterated until a pointwise convergence criterion was
satisfied by the stream function.

Various checks were first made in order to verify the numerical procedure. First
the Lapwood problem was considered. It was found that:

(i) the critical Rayleigh number was 9.95, an error of less than 1%}
(ii) the supercritical growth rate was almost exactly }(Ra— Ra,);

(iii) the heat-transfer results were in good agreement with those of Elder (1967).
The results of Straus (1974) are dependent on the roll wavenumbers, which were
chosen to maximize the heat transfer at any given Rayleigh number, and in
consequence they are in an inconvenient form for easy comparison. Secondly, the
subcritical heat transfer for @ = 0.1 was calculated and found to be in close agreement
with that given by (3.18a, b).

We shall present numerical results for two cases, which are related to the type-1
and type-IT modes introduced in §5.1. The first type corresponds to stable flows in
infinite layers, whilst the second corresponds to stable flows in, say, infinite cylinders.
For type I flows the full 41 x 21 computational grid was used, whereas for type 11
flows it was reduced to 21 x 21 by using symmetry about § = 0.

As the amplitude increases from zero to some small finite value, the analyses of
§3 and §5 should give accurate qualitative and quantitative predictions. This is
confirmed by the numerical results. In particular, for low Rayleigh numbers, the only
flow that we could determine numerically was a weak convection consisting of four
cells, which corresponds to the quasi-conduction flow discussed in §3. For higher
Rayleigh numbers this flow became unstable and bifurcated supercritically into
strongly convecting steady two-cell solutions, thus confirming the results in §5.1. In
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Ficure 9. The marginal stability curves for (a) the infinite layer (I5) and (b) the infinite cylinder
(ILg), as determined by numerical experiment. Also shown are the respective boundaries I, IT,
between steady and periodic flows.

figure 9, we have traced out the curves of marginal stability, labelled Ig and IIjg,
for type-I and -II modes respectively. On using a non-negative functional JJ which
filters out the motion due to the baroclinic effect:

. 1 /Ko
r=f 7w mepe —nragan 6.1
we find that )
J oc |Ra— Ra,lt, (6.2)
and )
J oc |a;—alz, (6.3)

where ¢ = I or 11. Here Ra,(a), Ra;;(a) are the critical Rayleigh numbers and a,(Ra),
ar(Ra) the critical amplitudes corresponding to the curves Ig, 1Ig respectively. The
behaviours along I and 1Ig as a—0+ are

Ray ~ 9.95+8.5a2, (6.4)
Rag ~ 9.95+9.6a2, (6.5)

which may be compared with the analytical formulae (5.6) and (5.7). On using simple
linear extrapolation, it seems that lim, _, Ra; = 15.3 (see figure 9a). It should be
stressed, however, that our numerical method is not able to deal with the singular
limit of upper and lower boundaries touching.
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Type I Type II

Ficrre 10. Comparison of the types-I and -II solutions for selected Rayleigh numbers at a = 0.2.
For each pair, the streamlines are on the left and the isotherms on the right — this convention applies
also to figures 11, 17, 18 and 19. The streamlines and isotherms are drawn at equal intervals
between their respective extrema.

It is of interest to compare the type-1 and -1I modes as the Rayleigh number
increases, and these are shown in figure 10 where we have taken a = 0.2 as a typical
amplitude. For the infinite layer (shown on the left in figure 10), the large cell in the
hollow is always tilted due to the action of aiding buoyancy forces along one half of
both boundaries and opposing forces on the other halves. This is in contrast to the
Lapwood problem where the streamlines first distort near the centre of the layer as
Ra increases (cf. Elder 1967, figure 5). This buoyancy-force action also affects the
type-1I flow (shown on the right in figure 10), but now produces a vertical asymmetry
by opposing the motion along the upper boundary (as we have shown it) and aiding
it on the lower. It should be noted that the solutions found by reflecting in 5 = 0
those in figure 10 also satisfy (3.8) and (3.9) and are equally likely to occur.

In figure 11, we have shown, for a fixed Rayleigh number, the effects upon the
modes of varying the boundary amplitude. As a increases, the strength of the flow
decreases until Ig or IIg is crossed, at which point the weakly convecting four cell
solutions are re-established. This reappearance is not surprising in view of the
increased baroclinic effect. A typical plot of the extreme values taken by the stream
functions is shown in figure 12; the point of coalescence for the type-1 case
corresponds to a point on Iy in figure 9.
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Type 11

Freure 11. Comparison of the types-I and -II solutions for selected wall amplitudes at Ra = 15.
The streamlines and isotherms are equally spaced.

Heat-transfer results for steady flow are shown in figures 13-15. A plot of —Nu
as given by (3.17) would not approach unity as Ra—0 because the resultant value
would be for the heat transferred between wavy, rather than plane, boundaries. Thus
for a simpler graphical representation, we have plotted

_ Nu(a, Ra)

=T o) (6.6)

A graph of the denominator is shown in figure 13, whilst graphs of Q for modes T and
IT are shown in figures 14 and 15 respectively. The plots in figures 14 and 15 terminate
at either Ra = 40 or the occurrence of periodic flow. It is of interest to note that just
before the flow becomes oscillatory, the flow strength and heat transfer decrease.

For values of (Ra, a) lying to the right of curves I, and IT, in figure 9, convection
ceases to be steady and a periodic flow results. On the lower branch of II, and the
whole of I, the period #, satisfies

t, ~ const.|Ra—Ra,|~% as Ra->Ra, fixeda, (6.7)

and
t, ~ const.la—a,|": as a—a,, fixed Ra, (6.8)
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Ficure 12. Plots of the extreme values taken by the stream function as a function of the wall
amplitude a: ——, ¥ ., and —y,;, for type-I flows; --------- » ¥ max for type-11 flows; —————— s Y max
for the weakly convecting solution.
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Fieure 13. The average heat transfer per unit wavelength at Ra = 0.

where Ra, and a, denote the critical Rayleigh number and critical amplitude for the
onset of periodicity at fixed amplitude and Rayleigh number respectively, and where
the limits in (6.7) and (6.8) are approached from within the unsteady region. Near
the intersection of I1g and I, the determination of these curves became difficult due
to the presence of both monotonic and oscillatory modes which decay or grow very
slowly. Along the upper branch of 11, the bifurcation is of Hopf type.

The extrema of the stream-function values as a function of time are shown in figure
16 for the three cases: (i) Ba = 25, a = 0.45, type I (note that for type 1 flows |t/ a4l
is not equal to | ;,l, in general), (ii) Ra = 20, a = 0.45, type II and (iii) Ra = 19,
a = 0.6, type II. The corresponding instantaneous streamlines and isotherms are
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FroUrE 14. The Nusselt number based on the heat transfer at Ra = 0 for type-I flows.
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Ficure 15. The Nusselt number based on the heat transfer at Ra = 0 for type-1I flows.
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Fieure 16. Variations of the extreme stream-function values with time: (a) i/, and — Y min for
Ra = 25, a = 0.45, type 1; (b) Yy for Ra = 20, a = 0.45, type 11; (c) ¢,a, for Ra =19, a = 0.6,
type 11.

shown in figures 17-19, where in each of the initial and final plots || takes on a
maximum. The three periodic flows displayed in these figures are representative of
all those found in the range of boundary amplitudes and Rayleigh numbers
considered.

In figure 17, case (i), the flow is characterized by essentially four phases: the
creation of cells in the constrictions, the migration of these cells into the hollows, the
merging of the cells and the final dissipation of the resultant cells as the next
generation of cells grow and migrate from the constrictions. Note also that the flow
changes its sense as the cell in the hollow oscillates, and that there is symmetry in
each half-cycle. A similar picture of creation and annihilation of cells is seen in figure
18, case (ii). The main differences for this type-II flow being the symmetry about the
vertical centreline, the number of cells and the absence of vortex splitting. Whilst
the symmetry and number of cells for case (iii) are similar to case (ii), the character
of the oscillatory flow shown in figure 19 is distinct from cases (i) and (ii). The flow
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Ficure 17. Instantaneous streamlines and isotherms for Ra = 25, a = 0.45, type I, for half a cycle.
(a) t = 1.285, (b) 1.67, (c) 1.95, (d) 2.855, (e) 3.25, (f) 3.38, (g) 3.515, (k) 3.645.

is an oscillatory form of the four-cell solution and there is no generation or
annihilation of cells.

Finally it is natural to try to relate the three modes of oscillatory flow discussed
here with the oscillatory flows that have been determined for configurations with
plane sides. Caltagirone (1975) finds a periodic flow which has a pronounced
streamline deformation in the centre of the cells. A similar pattern was found by Frick
& Miiller (1983)in astudy of the related problem of unsteady convection in a Hele-Shaw
cell heated from below. This particular flow, termed type A by Frick & Miiller, is
attributed to an instability of the thermal boundary layer, and is quite unlike any
of our modes. Frick & Miiller also find a second periodic flow, termed type B, which
bears certain similarities to our case (i) but it does not involve cell creation. To our
knowledge, type-B flow has not been observed in porous-media studies.

A further fluctuating state observed experimentally by Combarnous & Le Fur
(1969) and Caltagirone, Cloupeau & Combarnous (1971) is similar to our case (ii).
However, the numerical work of Horne & O’Sullivan (1974) shows that, unlike ours,.

—~
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FigurE 18. Instantaneous streamlines and isotherms for Ra = 20, a = 0.45, type 11, for half a cycle.
(@) corresponds to the maximum of ¥,,,, and consecutive plots are at equal time increments.

the flow is not periodic. The evolution of the streamlines and isotherms was not
displayed in the numerical work, but may be found in Combarnous & Bories (1975)
for the experimental work.

7. Conclusions

An analytical study of three-dimensional convection within an undulating porous
layer heated from below has been presented. For Ra < Ra, the convection is weak
and shares any symmetries of the geometrical configuration. For Ra ~ Ra,, the flow
bifurcates: when the layer is varicose, there is a supercritical bifurcation at a Rayleigh
number which is dependent on the orientation of the resultant rolls, whilst for
non-varicose configurations there is a smooth transition to a strongly convecting flow.

When the layer is varicose, there exists a purely transverse mode, the onset of which
occurs when

Ra = Ra,—22.504a%6*+ 0(6?).
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FicUure 19. Instantaneous streamlines and isotherms for Ra = 19, a = 0.6, type 11, for half a cycle.
(a) corresponds to the maximum of ¥,., and consecutive plots are at equal time increments.

This Rayleigh number is less than those for the onset of types I and IT longitudinal
rolls, given by

Ra = Ra,+7.414a%5*+ 0(4?)
and

Ra = Ra,+9.380a2%0%+ 0(0*)

respectively. It is expected, but we have not proved it, that the critical Rayleigh
numbers for oblique rolls lie between the above values for transverse and longitudinal
rolls. Thus stable transverse rolls appear at the first bifurcation. At a higher Rayleigh
number (determined by (5.13)), stable longitudinal rolls may also exist. As regards
the heat transfer, the mean Nusselt number for the supercritical regime is given by

Nu = —1+4a?8Nuy, —1e2k2(A2 + AL) +o(e?, 6?),

where Nuy ~ —0.214 and A;, Ap are the amplitudes of the longitudinal and
transverse rolls. It is clear from figure 8 that the transverse mode transports more

heat than the longitudinal mode.
For non-varicose configurations, there is a smooth transition to strong convection
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in the form of stable longitudinal rolls, and when the Rayleigh number exceeds
Ra,+ 8 [(357)3 k2 cf)—%ﬁz Ra,], there is also a stable mixed-mode solution. The mean
Nusselt number is given by

Nu = —1—188k2(A2% + A2) +o(S%);

the mode which maximizes the heat transfer is dependent upon the Rayleigh number
and the amount of boundary detuning.

It should be noted that, although the results have been presented for boundary
wavenumbers ~ k., the perturbation schemes may also be employed for more general
wavenumbers. For example, when k is not a rational multiple of k., the double
expansions of §5 may be used. The subharmonic and superharmonic cases generally
require more subtle treatment (see Pal & Kelly 1978).

A numerical study of two-dimensional convection has also been presented for the -
varicose case only. Six types of flow have been highlighted. The first, for low Rayleigh
numbers, consists of four cells per wavelength and corresponds to the steady
quasi-conduction solution (3.16). The second and third are also steady flows and
correspond to the types-1 and -1I solutions of §5.1 respectively. The final three are
periodic and are typified by the cases (i), (ii) and (iii) presented in §6. Cases (i) and
(ii) are examples of unsteady flows with the types-I and -II symmetries respectively.
Case (iii) is an oscillatory form of quasi-conduction solution and has type-11
symmetry. The boundary between the steady and unsteady flows has been determined
in the parametric space of Rayleigh number Ra and boundary amplitude a.

Finally it is of interest to determine the thickness of a rock stratum so that the
convective instability at Ra, = n® may occur. For example, if we take a moderately
permeable rock, such as sandstone, saturated with pure water, we have K = 10712 m?,
k=10"%m?s7!, p=0.9923x10kgm™3, £ =0.654x10"2kgm™s™!, where the
properties have been evaluated at 40 °C. Thus assuming a geothermal gradient
of 0.025 °C m™!, the stratum must be about 16 m thick for the onset of Lapwood
convection.

The authors wish to express their gratitude to Professor Philip Drazin for many
stimulating discussions on this problem and for comments on the draft of this paper,
and to Dr Ian Walton for useful discussions on some aspects of the work. D.A.S.R.
also wishes to acknowledge SERC support.
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