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ABSTRACT 

(Communicated by P.J. Heggs) 

A linear stability analysis is presented which determines how the presence 
of fluid inertia and a mean applied horizontal pressure gradient modifies the 
familiar Darcy-fiow criterion for the onset of convection in the porous-B6nard 
problem. It is found that, when both effects are present, the critical Rayleigh 
number is raised above 4~r 2, and increasingly so as either the strength of 
inertia effects or the magnitude of the pressure gradient or both increase. In 
general, spanwise periodic vortices are favoured with no change in the critical 
wavenumber. However, when the flow is restricted to being two-dimensional, 
the critical wavenumber is also modified. The result of this analysis provides 
a straightforward qualitative and quantitative means whereby experimental 
tests can be used to validate or otherwise the Forchheimer model of the effect 
of fluid inertia. 
© 1997 Elsevier Science Ltd 

Introduction 

In this note we consider the onset of mixed convection in a horizontal porous layer 

heated uniformly from below in the presence of inertial effects as modelled by Forch- 

heimer's extension to Darcy's law [1]. By mixed convection, it is meant that there is an 

overall horizontal fluid motion caused by an externally imposed horizontal pressure gradi- 
ent, and therefore the basic state we analyse consists of a horizontal plug flow and a linear 

temperature drop across the layer. In the absence of inertia, Prats [2] showed that, for 
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two-dimensional flows, the criterion governing the onset of convection is unchanged from 

the classical no-flow case considered by Lapwood [3] and Horton & Rogers [4], although 

the cellular pat tern moves at the same speed as the horizontal flow. In the absence of 

the horizontal pressure gradient, the onset criterion is also unchanged when Forchheimer's 

quadratic extension to Darcy's law is assumed (see Nield & Joseph [5], He 8z Georgiadis 

[6] and Rees [7]), although the post critical behaviour is modifed. 

When both effects are present the critical Rayleigh is changed, and, depending on 

the orientation of the rolls, so is the critical wavenumber - -  this is the subject of the 

present note. The value of the critical Rayleigh number depends on the orientation of 

the roll relative to the direction of flow. In an unbounded layer, roll axes are aligned 

with the flow with no change in the critical wavenumber, but these conclusions do not 

hold in suitably confined layers. As the critical Rayleigh number increases monotonically, 

and almost linearly, with increasing flow rate, this problem is clearly one which may be 

used to determine experimentally whether or not the Forchheimer quadratic drag term is 

appropriate for any chosen porous medium. 

Governin~ equations and two-dimensional stability analysis 

The nondimensional equations governing free convection flow in a porous medium are 

given by 

ux + vy + Wz =0, ( la)  

u(1 + Gq) = - p . ,  (lb) 

v(1 + Gq) : - p~ + RO, (lc) 

w(1 + Gq) = - pz ,  (ld) 

Ot + uOz + vOy + wOz =Ox~ + 0~ + Oz~, ( l e )  

where R = p g 3 d K A T / # / x  is the Darcy-Rayleigh number based on p, the reference den- 

sity; g, gravity; /), the coefficient of cubical expansion; d, the depth of the layer; K,  the 
permeability of the medium; AT, the temperature drop across the layer; #, the fluid vis- 

cosity; and x, the thermal diffusivity. In equations (lb),  (lc) and (ld) the fluid flux speed, 

q, is given by 
q2 = u2 + v 2 + w2, (2) 

where q is taken to be positive, and the inertia parameter, G, is given by 

G -  ti>~ (3) 
#d 

Values of K and the material parameter, /~, are given by Ergun's experimental relations 

[81, 
L 2 ~5 z 1.75L 

K - 1 5 0 ( 1  - ~ ) 2 '  / ~  - 1 5 0 ( 1  - ~ ) '  ( 4 )  
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where L is a characteristic particle or pore diameter and ~ denotes the porosity of the 

medium. In deriving equations (1) the Boussinesq approximation has been invoked, and 

it is assumed that  the velocity field adjusts instantaneously to changes in the pressure and 

temperature.  

When considering two-dimensional flows, we introduce the streamfunction, ¢, accord- 

ing to 

= ~',y, v = - ¢ = ,  w = o,  ( 5 )  

and hence equations (1) reduce to 

(1 + Cq)(~b~x + Cyy) + G(¢~:q~ + ¢yqy) = no~=, (6a) 

/gt + ¢~/9~ - Cytg~ = 0 ~  + Oyy. (6b) 

where the fluid flux magnitude, q, a positive quantity, is given by 

q2 = u2 + v: + w 2 = ¢~ + ¢~. (6c) 

The basic flow we shall consider is given by 

= Qy, 0 = 1 -  y, (7) 

and therefore we solve equations (6a,b) subject to the boundary conditions, 

y = 0 :  0 = 0,  ¢ = 0 (Sa )  

y = l :  0 = 0 ,  ¢ = Q  (8b) 

This basic profile which we shall analyse for stability corresponds to a linear temperature 

drop across the layer and a uniform horizontal flow induced by a constant applied horizontal 

pressure gradient. The flow is in the positive x-direction when Q is positive. It proves 

convenient to work in terms of the flow rate, Q, which corresponds to an imposed horizontal 

pressure gradient, - Q ( 1  + GIQ]), than to specify the gradient and determine the flow rate. 

If we now subtract out the basic solution, (7), using 

¢=q2+Qy ,  O = O + l - y ,  (9a, b) 

and linearise the resulting equations, then the linear stability equations are 

(1 + G[Q[)V2k 9 + G[Q[q2yy = RO~, (10a) 

V~-O -- Ot - ¢~ + QO~ (lOb) 
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and the b o u n d a r y  condit ions are that  kO = O = 0 at  bo th  y = 0 and y = 1. The  deta i led 

der ivat ion  of (10) uses the fact that  

q = IQI - s ign(Q)gy  + higher order  terms; (II) 

this  expression is precise except in the very near  ne ighbourhood of those points  where 

qy  = 0. As such regions are asymptot ica l ly  small  - -  for this is a l inear s tabi l i ty  analysis  

- -  we may  neglect  their  presence. However, should the present analysis  be extended to a 

considera t ion  of weakly nonlinear  stabili ty,  then it may be necessary to account for these 

regions. 

It is now a very s t ra ightforward ma t t e r  to determine  the cri t ical  Rayleigh number  

above which d is turbances  grow. On sett ing,  

c( ems in  k(x - Qt)sin~ry, (12a) 

O o¢ emcos  k(x - Qt)sinTry, (12b) 

we find tha t  neu t ra l i ty  corresponds to A = 0 and tha t  the critical Rayleigh number  corre- 

sponding  to a cell of wavenumber,  k, is 

R = (~2 + k2)2 + GIQI(~.2 + ~:2)(2=2 + k2) ~ (13) 

Clear ly  the  immed ia t e  consequence of this result  is tha t  the combined presence of iner t ia  

and  a mean  hor izonta l  pressure gradient  serves to raise the cri t ical  Rayle igh number  for 

any given wavenumber .  All neut ra l  modes move with speed Q, a result  which is identical  

to tha t  of P r a t s  [2] for Darcy flow. The critical wavenumber  is found by minimis ing R over 

k, and  it is given by 
[1 + 2GIQI'~ I/4 

The  cri t ical  Rayle igh number  may be wr i t ten  in the form, 

Rc = rr2[(1 + G]QI) ~/2 + (1 + 2GIQI)1/212/ (14b) 

vskip lOpt W h e n  GQ is small ,  we obta in  

kc ~ 7r(1 + ~GIQI) a n d r e  ~ 7r2(4 + 6GIQI), (15a, b) 

and  therefore in this  l imit  we recover the Darey  flow results.  But when GQ is large, then 

kc ~ 2~/47r and Rc ~ 7r2(3 + 2v~)GIQ].  (16a, b) 

W h e n  GQ is nonzero convection cells at onset do not have a square aspect  rat io,  and it 

is clear t ha t  convection may be deferred to increasingly high Rayleigh numbers  s imply 
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increasing the net flow along the layer. We also note that  the slope of Rc against GIQ I 
changes vary little as G[Q[ varies; it is close to 67r 2 when GIQ I is small, and decreases to 

(3 + 2x/2)~r 2 ~ 5.828rd when GIQ[ is large. The resulting graph of Rc against G[Q[ does 

not therefore deviate greatly from that  of a straight line, and therefore we do not present 

it here. 

Onset of rolls at other orientations 

For rolls whose axes are at an arbitrary inclination to the direction of the mean flow the 

overall fluid mot ion and temperature field must  necessarily be three-dimensional.  There- 

fore we return to the primitive variables equations given in (1). The basic flow about  which 

we per turb is given by 

u = Q, v = O, w = O, 0 = 1 - Y, and Px = - Q ( 1  + GIQI). (17a-e) 

Denoting the perturbat ions to fluid velocities, the temperature and pressure by their re- 

spective upper-case  letters, we obtain the following system of equations for the linearised 

perturbat ions,  

u~+v~+wz=o  

U(I + 2GIQI)=- P~ 

v ( 1  + GIQI) = - Py + R O  

w ( 1  + GIQI) = - P~ 

Ot + QO~ - v = O ~  + Ovy + Ozz. 

(18a) 

(18b) 

(18c) 

(lSd) 
(18e) 

These equations admit  solutions of the form, 

(!) U* c o s  l r y  \ 
V* sin try | 
W* cos Try [ 
®* sin ~-y 
P* cos try / 

(19) 

where (~ is the inclination of the roll away from the direction of mean flow, and the starred 

quantities appearing on the right hand side of the equation are constants. Once more 

neutral  stability corresponds to when A = 0, and we find that  the critical Rayleigh number  

for given values o f ,  and k is 

R = (Tr 2 + k2)(1 + GIQI) + =2(~2 + k2) . (20) 
cos 2 c~ sin 2 

For general orientations of the roll axes the minimising value of the wavenumber is 

[3_~alQi .]-1/4 
kc = 7r l l  + 2G[Q[ c°s2 " + sin2 (21) 



282 D.A.S. Rees Vol. 24, No. 2 

and the corresponding critical Rayleigh number  is 

[1 + 2alol] ~/~ ~. 
nc = rr~(1 + GIQI)[1 + [1 + GQ(1 + sin 2 a)]l/2 ] (22) 

When  c~ = i~r /2  we have the smallest possible value of the critical Rayleigh number,  

R~ = 4¢r2(1 + GIQ[) (23) 

and kc = 7r. The two-dimensional results of the last section are recovered when c~ = 0. 

Conclusions 

In this note we have sought to determine how the combined presence of fluid inertia, as 

modelled by the quadratic Forchheimer terms, and a horizontal mean flow serve to modify 

the criterion for the onset of cellular convection in a horizontal porous layer heated from 

below. Given that  both  these effects appear in the results quoted for the critical Rayleigh 

number  and wavenumber only in terms of the product,  GQ, we see that  the presence of 

both  is essential to modify the stability criterion. 

We have seen that  the preferred axial orientation is in the direction of the mean flow if 

the layer is unbounded  in horizontal extent. In these circumstances the critical wavenumber 

is unmodified from the free convection Darcy-flow case, but  the critical Rayleigh number  

rises linearly with GIQ[. When the layer is sufficiently restricted spatially to allow only 

two-dimensional  motion, the critical wavenumber also increases with increasing values of 

G[QI, but  it is bounded above by the value 21/47t -. 

From an experimental point of view, the results we present provide a relatively straight- 

forward quanti tat ive means whereby the validity of the Forchheimer model of inertia effects 

may be tested. This is especially so for media where inertia effects are relatively weak, for 

in these cases an increased flow rate through the medium will raise the critical Rayleigh 

number  to levels which are easily distinguished from the Darcy-flow value. 
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