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Summary. We consider the free convection boundary layer flow induced by a heated vertical cylinder which is 
embedded in a fluid-saturated porous medium. The surface of the cylinder is maintained at a temperature 
whose value above the ambient temperature of the surrounding fluid varies as the n th power of the distance 
from the leading edge. Asymptotic analyses and numerical calculations are presented for the governing 
nonsimilar boundary layer equations and it is shown that, when n < 1, the asymptotic flowfield far from the 
leading edge of the cylinder takes on a multiple-layer structure. However, for n > 1, only a simple single layer 
is present far downstream, but a multiple layer structure exists close to the cylinder leading edge. We have 
shown that the fully numerical and asymptotic calculations are in satisfactory agreement, especially for 
exponents n close to zero. Comparisons of the present numerical solutions obtained using the Keller-box 
method with previous numerical solutions using local methods are also given. 
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1 Introduction 

In this paper we consider the free convective boundary layer flow induced by a heated vertical 
cylinder embedded in a fluid-saturated porous medium. The surface temperature of the cylinder 
is taken to be propertional to x", where x is the dimensional distance from the leading edge/base 
of the cylinder. The Darcy-Rayleigh number, R, is assumed to be large, thereby allowing 
a boundary layer analysis to be undertaken. 

Minkowycz and Cheng [1] were the first authors to study this problem. In their paper 
numerical results for various values of n lying between 0 and 1 were presented and comparisons 
between the local similarity and local nonsimilarity methods of solution were given. Their 
detailed temperature profiles show that the boundary layer thickens dramatically as x increases. 
Merkin [2], on the other hand, confined himself to the constant temperature case, n = 0. He 
presented (i) a numerical solution of the governing nonsimilar boundary layer equations using 
a nonlocal marching method coupled to a parabolic solver, and (ii) an asymptotic analysis for 
large values of x. He found that the boundary layer evolves into a two-layer structure at large 
distances from the leading edge. In this paper we extend the work of [2] by considering a range of 
values of the power-law exponent, n. The governing equations are also solved numerically using 

the Keller-box scheme in order to assess the accuracy of the 'local' methods used in [1], and to 
compare with the present asymptotic results. 

Other papers which study variations of the present problem include that of Merkin and Pop 
[3], which analyses mixed convection from a uniformly heated cylinder, Kumari and Nath [4] 
which investigates non-Darcy mixed convection from a uniformly heated cylinder, and Hossain 
and Nakayama [5] which considers non-Darcy free convection from a constant heat flux 
cylinder. Both [4] and [5] contain only numerical results for their respective problems. 

2 Formulation of the problem 

We consider the cylindrical polar coordinate system, (x, 4, r) corresponding to the axial, 
azimuthal and radial directions, respectively, and denote the associated fluid velocities as 
(u, v, w); the configuration is shown in Fig. 1. Assuming axisymmetry, for which v = 0 and all 
other dependent variables are independent of qS, the eontinuity equation takes the form 

8 
(ru) + (rw) = O. Yr 

(1) 
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x = O  

I 
T = T~ - Tw xn 

I 
T = T  m 

r : a  Fig. 1. Definition sketch of the flow domain and coordinate system 

Furthermore,  Darcy 's  law subject to the boundary  layer and Boussinesq approximations may  be 
written as 

K 
u = - -  Qgf l (T--  T . ) ,  (2) 

# 

where T~o is the ambient  temperature of the fluid, K is the permeability of the medium, g is the 
gravitational acceleration, fl is the coefficient of thermal expansion, and Q and # are the density 
and viscosity of the fluid, respectively. The specification of the problem is completed by the 
energy equation, which can be expressed in the form 

+ + (3) 

where the boundary  layer approximat ion has again been invoked and e denotes the thermal 
diffusivity of the saturated medium. In (3) the first derivative term on the right hand side has been 

retained since we shall be considering those cases for which r is of the same order of magnitude as 
the cylinder radius. The boundary  conditions for a power-law surface temperature distribution 
are 

w = O, T =  T .  + Twx" on r = a,  (4.1) 

and 

u ~ 0 ,  T ~  T ,  as r--+ ~ ,  (4.2) 

where a is the radius of the cylinder. Thus the cylinder is assumed to be impermeable,  and there 
is no disturbance to the far-field, at least to leading order. We non-dimensionalise this problem 
using the scalings given by Merkin [2], and it is convenient to define a streamfunction $ ac- 
cording to 

1 ~ b  1 ~ 
u = -- - -  w . (5.1, 2) 

r c~r r dx 

The co-ordinates are rescaled by 

x = a R ~ ,  r = a f ,  (5.3, 4) 
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where the Darcy-Rayleigh number  R is defined to be R = KgQfla T~/(8"#e). The transformations 

0 = 2  aaR~f(~'q)' T - T ~ =  T~'o(~'q)'8" q = ~ - ~ ( r  ~ = 2 ( 1 / ~ ) '  

reduce Eq. (2) to the relationship O = J~, and the energy equation (3) becomes 

(1 + + + = 

which is to be solved subject to the requirements that  

j @ ) = 0 ,  f ' ( 0 ) = ~ 2 "  on q = 0 ;  f ' - - , 0  as q - - ' o c .  

(6} 

(7) 

(8) 

When n = 0 this system is identical to that obtained in [2], and we now rescale by writing 

= 2 4 ,  0 = 2 - ~ q  and f = 2 2 " - ~ f ,  (9) 

w h e r e  )2(1-n) = 2. This is possible whenever n # 1, and then we are left with 

( ll) 1 
{1 + ~,)L.. + ~ + g L.  = g ~(GL -L.f~), (10.1) 

subject to the conditions that  

f ( 0 ) = 0 ,  f~(0)=r  on t / = 0 ;  f ~ o 0  as t / ~ o e .  (10 .2-4)  

The principal reason for making this t ransformation is that, when n = 0, the solution near the 

leading edge is identical to leading order to the similarity solution for a vertical flat plate given by 
Cheng and Minkowycz [6]. 

In view of the boundary  condition (10.3) onf , ,  it is clear that  the solution of Eq. (10) at the 
origin would seem to be precisely zero when n > 0. This indicates that  the definition of the 
pseudo-similarity variable, t/, has the wrong form near the leading edge. I t  is necessary, then, to 
introduce one more re-definition of co-ordinates in order to avoid this difficulty. We therefore 

define 

= tl{", X = { l - . ,  f =  X hI(l-n) F(X,  ~), (11) 

in Eq. (10) to obtain the system 

(1 + X~) F ~  + X + ~ f F~ = ~ (1 -- n) X(F~Fx~ - Fxf~) + ~ n(2F~ 2 -- FF~O (12.1) 

F(0) = 0, F~(0) = 1 on ~ = 0, (12.2, 3) 

F~ ~ 0  as ~ ~ oc. (12.4) 

This latest form is the one most  suitable for numerical computat ion for two main reasons. First, 
the solution for F at the origin is now clearly non-zero. Secondly, the subsequent development of 
the flow profile is expressible in terms of a power series in X which is composed of integer powers 
for all values of n, rather than fractional powers. Furthermore,  Eqs. (12) are exactly equivalent to 
Eqs. (21)-(24) of Minkowycz and Cheng [1]. 
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3 Asymptotic solution far downstream from the leading edge 

We now consider the structure of the boundary  layer at large distances along the axis of the 
cylinder. It  is found that the form of the solution of (7) and (8) for ~ >> 1 is critically dependent 
on the value of the power law exponent n. It  was pointed out by Minkowycz and Cheng [1] 

that  when n = 1 then this system admits an exact similarity solution, for if 0 = ~q and 

f =  ~/~(O) then 

(1 + 0) F " '  + (1 + 2F) F "  = 2(ff')2; F(0) = 0, F'(0) = 1, P ' ( ~ )  = 0. 

To explain the structure of the boundary  layer for large ~ when n ~ 1 it is convenient to revert 
to system (10). When n > 1, we define a new variable ~o = ~/r therefore for ~o = 0(1) we are 
considering a zone which is asymptotically thinner than that for the n = 1 case discussed 
immediately above. We seek a solution of (10) which commences 

F = ~"[Foo(CP) + ...], (13.1) 

and it is a routine task to verify that  

1 
Fg~ + ~ (1 + n) FooF(~'o - n(FDo) 2 = O; 

Foo(0) = 0, F~o = 1, (13.2) 

F~o --* 0 as ~ o ~ .  

A numerical solution of this equation is given in Fig. 2 for various values of n. We should 
point out that, for large values of n, it is possible to identify the asymptotic  structure which 

is taken on by Foo. In this limit it turns out that Foo = O (1/Vn) ,  and the region over which 

it adjusts itself to the requisite final asymptotic  from shrinks to become ~o = O(1/~/n) .  If  we 

here define ~0 = ~b/~/~ and Foo(Cp) = ffoo((O)/Vn + . . .  then problem (13.2) becomes, at leading 

1,0-  

0 .8 -  

0 .6 -  

0 .4 -  

0 .2 -  

0.0 

J / 
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I I I T F ] I I F# 
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n =1.01 

Fig. 2. Solutions of Eq. (13.2) for Foo(q~) cor- 
responding to the far-downstream boundary 
layer profile when n > 1. Shown are the cases 
n = 1.01, 2, 3, 4 and 5 
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order, 

^ t i t  I t  Foo + ~ FooFoo - (F;o) z = 0; 

/%0(0) = 0 ,  F;o(0) = 1, (13.3) 

where dashes in Eq. (13.3) represent differentiation with respect to ~. We can conclude from 
Eqs. (13) and Fig. 2 that, whenever n > 1, the flow structure for ~ >> 1 is relatively simple, for the 
flow is confined to a single region of asymptotic thickness O(r immediately adjacent to the 
cylinder surface. However, this simplicity does not carry across into the n < 1 case for which, 
remembering that ~ >> 1, it is found (after some experimentation) that it is convenient to define the 
large parameter G according to 

G = 32(1 --n) In G. (14) 

It is then easily shown, using an extension of the argument presented in [2], that we would expect 
the flowfield to take a two-layered form. The outer zone has depth O(G-1~); here we define the 
scaled variable ( = ~rl/G and look for a solution of (10) which takes the form 

f =  ~[/ro(0 + (ln G) -1/71(() + ...1- (15) 

An analysis of (10) then shows that Fo and ffl satisfy the equations 

~Fo"' + (1 +/70) Fo" = n(/7o') 2, (16.1) 

~/71"' + (1 + Fo) FI"  - 2n/7o'/71' + Fo"F1 = (n - 1) (t5o') 2 . (16.2) 

In order to satisfy the far-field conditions as t / ~  oo we require that Fo', FI '  ~ 0 as ~ -+ o% but it is 
straightforward to verify that the derivative boundary condition (10.3) on the cylinder surface 
cannot be satisfied using these functions. Therefore some kind of inner structure is suggested and, 
in order to examine this, it is necessary to consider the behaviour of 15o and 151 as ( -* 0. It may be 
shown that in this limit these functions develop series solutions of the form 

Z X a,j~'(-- In ()J, (17) 
i j 

where alj = 0 when i < j. It is a routine task to obtain recurrence relations which link these 
constants but, for the purpose of matching between/7o,/71 and the inner solution, it is sufficient to 
note that 

_ 1 n(2(ln02 + , and F o - ~ - ( l n (  + 7 (+  ~ ... (18.1) 

t7, __, K ( l n  ( + .... (18.2) 

as ~ -+ 0, where 7 has to be determined numerically and K is specified below. In Fig. 3 we show the 
form of/7o(~) for various values of n; these curves were computed using a modified form of the 
Keller box method which uses the series solution (17) at ( = 0.2 to provide initial conditions in 
terms of 7, which is computed as part of the solution procedure. 
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Fig. 3. Solutions of Eq. (16.1) for/7o(() cor- 
responding to the far-downstream outer- 
layer boundary layer profile when n < 1. 
Shown are the cases n = 0, 0.25, 0.5, 0.75 and 
0.99 

Now in order to satisfy boundary  condition (10.3), we need to examine an inner layer of depth 
0(4 - 1), which is the appropriate  scaling on which the necessary viscous balance holds. If we now 
define -c = i t / =  O(1), then the limiting forms (18.1, 2) suggest that 

f =  ~2"- lifo(z) + (ln G ) - l f l ( z )  + (ln G)-2 f2 ( z )  + ...]. (19) 

Substitution of (19) in (10.1), imposition of (10.2, 3), and suitable matching with the outer 
solutions Fo and /v l  yield 

f o = z ,  f ~ = r - ( l + z )  l n ( l + z ) ,  f 2 = ( 1 - ? ) f l ,  (20) 

and the matching process forces us to the conclusion that the constant K in (18.2) is related to 7 by 
the simple relation 7 - 1 = K. In the next Section we shall consider the heat flux coefficient for 
the boundary  layer, and, in terms of the variables in (10), this coefficient is proport ional  to 
dZf/dqZl,=o. Consequently, for r ~> 1 this function takes the form 

drl 2 , = o dz2 ~= 0 - In G -- 1 + ln-----G + . . . .  (21) 

We shall examine the comparison between this prediction and the corresponding, numerically 
determined, heat flux in Section 4. However,  we could expect to improve the accuracy of the 
comparison by taking further terms in expansion (19) which proceeds, a least initially, in inverse 
powers ofln G. In order to compute  the necessary constants which arise it would be necessary to 
numerically solve higher order equations for the outer layer ((  = O(1)) flow of which (16.2) is the 
next in the hierarchy. This particular equation was solved by Merkin [2] for the constant  cylinder 
temperature case, n = 0, but in this work we shall not examine these further orders for general 
values of n. 

It  should be remarked that, when n > 1, the asymptotic  form of the solution of(10) for 4 ~ 1 is 
very similar to that for the far-downstream behaviour of the flow when n < 1, as described 
immediately above. For  n > 1 and 4 r 1, the boundary  layer again divides into two distinct 
sublayers; the inner region is of depth O(~-1) and the outer is of extent O(4-1G), where G is as 
defined in (14). In the inner zone it is easy to show that  F = O(4"- 1) and thus is small. Given this 
outline, it follows that the details of the structure are completely analogous to those presented in 
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(13) - (21), so they will not be presented for the sake of brevity; however the most important point 
is that as ~ -* 0 the thickness of the boundary layer appears to grow without limit. This fact, 
together with the two-layer asymptotic structure, represents an insurmountable barrier for 
solving numerically the equations as posed here. The simplest way to avoid such a numerical 
difficulty lies in modifying the problem to one where the heated cylinder has a temperature at the 
leading edge which is above the ambient temperature of the medium, and where the surface 
temperature profile has a power law variation relative to the leading-edge value. In this case the 
leading edge problem is well-posed, numerically, and the large distance asymptotic structure 
remains intact. 

4 Numerical solution 

In this Section we present a selection of numerical solutions of Eqs. (12). We shall restrict 
attention to those cases for which 0 < n < 1 since when n = 1 the transformation (9) is invalid 
and the flow is self-similar, as was shown in [1]. Furthermore, for larger values of n, the boundary 
layer develops a two-zoned asymptotic structure as ~ ~ 0 which becomes infinitely wide as ~ -~ 0 
so it is clearly impossible to begin a numerical computation of the flow near there. However, the 
analysis of the last Section has demonstrated the precise form of the asymptotic structure far from 
the leading edge of the cylinder whenever n > 1 (see (13)). Finally we note that when n < 0 the 
temperature becomes infinite at the leading edge, an effect which clearly cannot be realised in 
practice, although it is quite possible to obtain numerical solutions for negative values of n which 
are not too large in magnitude. Thus we concentrate on those cases for which 0 =< n < 1. 

We have used the Keller-box scheme to solve system (12); the particular version used a 

numerically computed Jacobian in the Newton-Raphson part of the algorithm, rather than one 
which is defined explicitly within the code. Thus only the right hand side of the matrix/vector 
iteration scheme is entered into the code, thereby reducing both the code development time and 
the risk of programming errors. Convergence of the Newton-Raphson algorithm was deemed to 
have taken place when the maximum absolute change between successive iterates was less than 
10 -8. Double precision arithmetic was used throughout. In the X-direction a uniform grid of 
constant step 0.05 was chosen, and integrations up to X = 20 were performed. A nonuniform 
basic grid of 116 points in the ~-direction was specified in which ~ varied between 0 and 106; such 
a large value of ~m,x was necessary because the boundary layer thickness increases dramatically 
whilst marching downstream. Checks were made that ~max = 106 is sufficiently large by 
repeating the calculations with ~m,x = 103, 104, and 105. Typically, it was found that values of 

F~(X = 20, ~ = 0) vary in only the sixth significant figure when changing ~max from 105 to 106. 
Highly accurate solutions were then obtained by solving the equations on successively finer grids 
and using Richardson Extrapolation, 

In Fig. 4 a - c  we display the developing profiles of F; as X increases; the respective 
power-law exponents n = 0, n = 0.5 and n = 0.99 are shown. Following from definitions (6), the 
function F~ is both a scaled temperature and a scaled vertical velocity. All three subfigures 
comprising Fig. 4 illustrate that the boundary layer thickness grows very quickly as the distance 
from the leading edge increases. Further, the slope of the profiles at ~ = 0, which is proportional 
to the local rate of heat transfer, becomes increasingly negative as X increases. These qualitative 
features of the developing profiles are also true for other values of n whenever n < 1. Thus the 
numerical results confirm the asymptotic prediction of a two-layer structure. 
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Fig. 4. Profiles of F~, the scaled temperature, 
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b n = 0.5, e n = 0.99 
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Fig. 5. Variation with X of the computed 
local rate of heat transfer, F~r (X, ( = 0), for 
the following values of n: n = 0, 0.25, 0.5, 0.75 
and 0.99 
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Figure 5 shows the variation of F~;(X, 0), the scaled local heat flux at the surface of the 
cylinder, for various values of n. The increasing slopes of the temperature profiles shown in Fig. 4 
are reflected in the behaviours shown in Fig. 5. Detailed comparisons of some of these values with 
those obtained by Minkowycz and Cheng [1], who used a local similarity method and a local 
non-similarity method, are shown in the following tables. In these, LS and NLS refer respectively 
to the local similarity and local nonsimilarity solutions given in [1], and KB to the present 
Keller-box computations. The results indicate that, while the local methods of [1] give quite 
accurate results for the scaled rate of heat transfer for small values of X when compared with the 
present Keller-box computations, they begin to diverge as X increases above about 6. As the 
maximum value of ~ used by Minkowycz and Cheng [1] (termed I/in their paper) is not quoted, we 
do not know at this stage whether the divergence is caused by the inadequacy of local methods or 
by an insufficiently large ~m,x in their results. 

If we recall definition (14) for the large parameter G and transformations(11) for the variables, 



Free convection from a heated vertical cylinder 149 

it is an elementary task to verify that  the asymptot ic  result (21) for the heat  flux translates 

to 

X (_1+(7-1) )  
F~(X, o)= i-ff-6 l n ~  + . . . .  

(22) 

where ~ = 7(n) is defined by having the solut ion of (16.1) satisfy the boundary  condi t ion (18.1). 

The var ia t ion of ? with n is shown in Fig. 6. In  Table 4 we give a compar ison between (22) and the 

numerical ly determined values for F~c(X, 0) at X = 0. As the series solution, (22), proceeds as an 

inverse logari thmic series, it is not  to be expected that  close quanti tat ive agreement between the 

asymptot ic  and numerical  solutions should be found at  a value of X as low as 20. However,  it is 

clear from Table 4 that  we have surprisingly close results. When  n = 0 the agreement is excellent; 

the numerical  and asymptot ic  results agree to within 1.2 percent, but  this agreement worsens 

with increasing n. 

Table 1. Values of - F ~  (AT, ~ = 0) for n = 0 

X LS LNS KB 

0.00 0.443 8 0.443 8 0.443 8 
0.25 0.485 5 0.489 9 0.4901 
0.50 0.527 2 0.533 2 0.534 7 
0.75 0.566 4 0.574 7 0.577 6 
1.00 0.6049 0.6149 0.6191 
2.00 0.7517 0.766 8 0.775 0 
3.00 0.8915 0.908 5 0.9191 
4.00 1.024 1.044 1.055 
5.00 1.154 1.176 1.185 
6.00 1.283 1.305 1.310 
7.00 1.413 1.435 1.431 
8.00 1.544 1.565 1.549 
9.00 1.678 1.696 1.665 

10.00 1.815 1.830 1.777 

Table 2. Values of -F~r  (X, ~ = 0) for n = 0.25 

X LS LNS KB 

0.00 0.626 6 0.626 6 0.626 6 
0.25 0.674 8 0.672 9 0.672 6 
0.50 0.718 6 0.717 5 0.717 2 
0.75 0.760 9 0.7604 0.760 4 
1.00 0.8021 0.802 3 0.802 5 
2.00 0.958 7 0.960 7 0.9616 
3.00 1.106 1.110 1.110 
4.00 1.268 1.252 1.250 
5.00 1.381 1.391 1.385 
6.00 1.518 1.529 1.514 
7.00 1.655 1.667 1.640 
8.00 1.795 1.806 1.763 
9.00 1.937 1.947 1.882 

10.00 2.083 2.091 1.999 
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Table 3. Values of -Fr162 (X, ~ = 0) for n = 0.5 

X LS LNS KB 

0.00 0.770 4 0.770 4 0.770 4 
0.25 0.8177 0.8167 0.8162 
0.50 0.8620 0.8616 0.8610 
0.75 0.905 0 0.905 2 0.904 5 
1.00 0.9471 0.947 8 0.947 0 
2.00 1.106 1.110 1.109 
3.00 1.259 1.263 1.260 
4.00 1.405 1.409 1.404 
5.00 1.549 1.553 1.541 
6.00 1.691 1.696 1.674 
7.00 1.835 1.839 1.804 
8.00 1.980 1.984 1.930 
9.00 2.127 2.130 2.052 

10.00 2.278 2.280 2.173 

Table 4. Comparison of numerically and asymptotically determined predictions of 
F~ (X = 20, ff = 0) for various values of n 

n 7 Asymptotic Numerical % Difference 

0.00 - 0.26168 - 2.8614 - 2.824 9 1.2 
0.25 - 0.642 42 - 2.978 0 - 3.088 9 3.7 
0.5 - 0.924 75 - 3.064 4 - 3.293 9 7.4 
0 . 7 5  -1.14772 -3.1327 -3.4644 10.6 
0.99 -1.32463 -3.1869 -3.6065 13.2 

5 Closing remarks 

In this paper  we have presented a combined asymptot ic  and numerical  analysis of the flow and 

heat  transfer induced by a vertical cylinder which has a surface temperature  given by a power-law 

distribution. Asymptot ic  results have been found relating to the whole of the power-law 

exponent range which makes physical  sense and it thereby extends the constant  surface 

temperature  analysis of Merkin  [2]. Various asymptot ic  propert ies  of the flow have been detailed, 

and we have shown that  the quanti tat ive agreement between asymptot ic  predictions and 

numerical  computat ions  is generally satisfactory, and is especially good for small values of the 

exponent  n. Apar t  from the n = 1 case, for which the flow is self-similar, the resulting nonsimilar  

flow always has a two-layer structure merging into a single layer structure, or vice versa. When  

n < 1, the two-layer  structure appears  as ~ ~ 0% whereas when n > 1, it appears  as ~ ~ 0 +. 

Attent ion has been given to producing an accurate set of numerical  results, and we have 

therefore improved on the earlier study of Minkowycz and Cheng [1] in two ways. Firstly, we 

have made use of a nonlocal  marching method (the Keller-box scheme) to solve the parabol ic  

governing equations, and, secondly, we have taken great care to ensure that  the outer  edge of the 

evolving boundary  layer is contained well within the computa t ional  domain.  We have confirmed 

that  techniques based on local similarity and local nonsimilar i ty  methods,  used in [1], are quite 

adequate  for small distances downstream of the leading edge of the cylinder; however these 

methods are of decreasing accuracy as the streamwise co-ordinate  increases. 
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