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Abstract-It is well-known that the effect of inertia on the free convection boundary layer flow induced by 
a uniformly heated horizontal surface in a porous medium is weak, and modifies the heat transfer 
characteristics at second-order. In this paper we consider the case where the inertia effects are sufficiently 
large that the leading-order boundary layer theory is modified; this is equivalent to reconsidering flow 
sufficiently near to the leading edge that the induced velocities are large enough for inertia effects to arise, 
but sufficiently far from the leading edge that the boundary layer approximation remains valid. The 
resulting nonsimilar boundary layer equations are solved using the Keller-box method. Near the leading 
edge inertia effects are found to dominate, but Darcy-flow is re-established further downstream. Copyright 

0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Natural convection within fluid-saturated porous 
media has attracted considerable attention in the last 
three decades because of its importance in geophysics, 
oil recovery techniques, thermal insulation engin- 
eering, packed-bed catalytic reactors and heat storage 
beds. A number of similarity solutions and numerical 
studies of natural convection in porous media have 
been presented. A comprehensive review of relevant 
papers may be found in the recent monograph by 
Nield and Bejan [ 11. Most of the studies included there 
refer to configurations where Darcy’s law is valid. 
However, this law is known to be valid only for rela- 
tively slow flows through the porous matrix. In 
general, we must consider the effect of the fluid inertia, 
as well as viscous diffusion at boundaries which may 
well become significant for materials with very high 
porosities, such as fibrous media and foams. 

In this paper we consider the effect of fluid inertia 
on the boundary layer flow induced by an upward- 
facing uniformly heated horizontal surface embedded 
in a porous medium. The first study to deal with the 
horizontal plate problem was undertaken by Cheng 
and Chang [2], who assumed that Darcy’s law applied. 
They also assumed that the boundary layer approxi- 
mation applied, which is equivalent to setting the 
Darcy-Rayleigh number, Ra, to an asymptotically 
large value. Under these conditions the resulting 
boundary layer equations admit similarity solutions 
for the flow and temperature profiles. This analysis 
was extended later by Riley and Rees [3] who used the 
method of matched asymptotic expansions to obtain a 
more accurate solution. 

In ref. [3], the authors also investigated the effect of 
fluid inertia by including the nonlinear Ergun [4] 

model in the Darcy law formulation. The same model 
was also employed by Plumb and Huenefeld [5], Vas- 
antha et al. [6] and Lai and Kulacki [7]. The one 
aspect of the analysis of ref. [3] which is of interest 
here, and indeed motivates the present study, is that, 
for the horizontal plate, fluid inertia has only a weak 
effect on the flow, since the modification to the stan- 
dard Darcy law theory arises at second-order in the 
asymptotic theory. This fact may be explained by con- 
sidering the strength of the induced flowheld, which 
is weak compared with the equivalent inclined or ver- 
tical configurations for which non-Darcy effects 
appear at leading order. Thus, the fluid inertia is rela- 
tively unimportant at leading order for the horizontal 
surface. However, this statement can only be con- 
sidered to be true for distances sufficiently far from 
the leading edge. In the analysis of ref. [3], the slip 
velocity of the fluid on the horizontal surface varies 
as xm’j3 at leading order, where x is a nondimensional 
distance from the leading edge. Therefore, it is quite 
possible that when x is sufficiently small, the slip vel- 
ocity can be sufficiently large that inertia effects can 
influence even the leading-order profiles. An alter- 
native scenario, one that we shall use here, is to con- 
sider sufficiently large values of what we shall term 
the Darcy-Grashof number, Gr, a nondimensional 
measure of the strength of the inertia effects. Riley 
and Rees [3] considered values which were O(1) as 
Ra -+ co. Here, we show that inertia forces are non- 
negligible at leading order when Gr = O(RU”~). 
Although the resulting flow is nonsimilar, it is, some- 
what surprisingly, independent of the size of G~Ru-“~. 
We present the boundary layer analysis in Section 2 
and the results in Section 3. We conclude with a brief 
discussion in Section 4. 
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NOMENCLATURE 

u, b constants P coefficient of thermal expansion 

& 
particle or pore diameter 1: porosity 
reduced streamfunctions t. 11 pseudo-similarity variables 

V 
.4 acceleration due to gravity X? i pseudo-similarity variables 
Gr Darcy-Grashof number K thermal diffusivity of the porous 

k< effective thermal conductivity medium 
K permeability 0 dimensionless temperature 
R inertial parameter /’ dynamic viscosity 
1 macroscopic lengthscale density 

P pressure $ streamfunction. 

; 
rate of heat flux 
nondimensional velocity ; see equation 
(11) Superscripts 

RU Darcy-Rayleigh number based on 1 * dimensional variables 
T dimensional temperature _ transformed variables 
u, 1’ fluid velocities in the x- and y- transformed variables. 

directions, respectively 
u = (U, L.) velocity vector 
.y, .l streamwise and cross-stream Cartesian Subscripts 

coordinates. G global 
L local 

Greek symbols w condition at the wall 
c( measure of the strength of inertia ref reference value 

effects, see equation (16) x condition at infinity. 

2. GOVERNING EQUATIONS AND BOUNDARY the coefficient of cubical expansion of the fluid and K 
LAYER ANALYSIS the effective thermal diffusivity of the saturated 

We consider a horizontal surface which is embed- 
ded in a homogeneous fluid-saturated porous 
medium. The surface is held at the constant tempera- 
ture, T,, whilst the ambient temperature of the med- 
ium is T,. We assume that T, > T, and examine the 
resulting two-dimensional flow induced by buoyancy 
forces in the medium along the surface. We take as 
our governing equations, 

medium. To illustrate how the additional nonlinear 
term comes into play when the porosity is high we 
quote Ergun’s relations for K and R, 

K= 
d?$ 

g= 
1.75d 

150(1-E)’ 150(1-E) (5) 

(see ref. [4]) where t; denotes the porosity, and d is the 
characteristic pore or particle diameter. Clearly, when 
I: - 1 then I? is large and the nonlinear term is impor- 
tant. 

Equations (l)-(4) may be nondimensionalized by 
introducing the substitutions 

(x*,.v*) = I(x,.r). (u*, r*) = Y(u, V) (6a,b) 

u*T,w +c*T,. = ti(T,.,. + T,e,e) (4) p* =Tp T= T, +(T,-T,)fl (6c,d) 
lrcv mf 171) ,whm-e n‘\or,..i’E 10.X, ;Q r,X,V,.,0rnA ,.,han 

1, 
\c.“’ 1-1. LJ,, ““LlY... YCLLGJ J ,a** LO Iru”“ti,c-u “Vll.dll 
I? = 0. In equations (l)-(4) X* and y* are the Car- where lis a macroscopic lengthscale. If, in addition, we 
tesian coordinates along and perpendicular to the introduce the two-dimensional streamfunction using 
heated plate, respectively, u* and v* are the respective 
fluid velocity fluxes, p is the dynamic pressure and T (U> v) = ($3 > - II/Y) (7) 
is the temperature. Furthermore, K is the permeability 
of the porous medium, R is a material parameter 

then we obtain the equations, 

which may be thought of as a measure of the inertial 
impedance of the matrix, g is the acceleration due to 

Cl+ GrQIWW + (GrlQRa)(~f~,, 

gravity, p the fluid density, p the dynamic viscosity, fl +2@~:Ic/&,.+$:$J = -RUB, (8) 
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v2e = $,O, - ljxe,.. (9) 

In equations (8) and (9) the Darcy-Rayleigh 
number, Ra, and the Darcy-Grashof number, Gr, are 
given by 

Ra = PgWw - TJK 
w 

Gr = f 
0 

’ Kf?g/?(T,-T,) 

UOa,b) 

and the term Q is a fluid flux given by 

Q2 = $Z+$:. (11) 

If we assume that x = O(1) as Ra + co, then the 
boundary layer approximation is valid when y << 1. 
Subject to this approximation equations (8) and (9) 
reduce to 

(1+2J$,IGrRa-I)$, = -Rae,, 

Q,,. = ICI,.& - $d,., 

and are subject to the boundary conditions, 

(12) 

(13) 

$=O f3=1 ony=O (14) 

a+ 
5 

+O f3-+0 asy+co. (15) 

In ref. [3], the Darcy-Grashof number was taken 
to be O(1) as Ra -+ co, and, given the standard Darcy 
law boundary layer scalings, $ = 0(Ra”3) and 
y = 0(Ra-“3), the inertia term in equation (12), 
namely 2I$,(GrRa-‘, is formally negligible as Ra + 
03. However, if Gr = 0(Ra’j3), then the inertia term 

remains significant. Therefore we introduce the fol- 
lowing resealings : 

I(/ = Ra'13$ y = Ra-"3P x = 2 

and Gr = aRaIl (16) 

in equations (12) and (13). Here, tl is a constant which 
measures the strength of the fluid inertia. We obtain 
the following equations : 

(1 +2c(l+J,)$,i. = -fI1 (17) 

el; = &e* - &e, (18) 

in which we have dropped the modulus sign from the 
inertia term, since the function I&, will always turn out 
to be positive. 

The constant, GI, can be scaled out of the equations 
by introducing the transformation 

$ = &4$ 2 = t13/4R, p = ccl’2jj; (19) 

now equations (17) and (18) become, 

(1+2$,&V = -03 (20) 

eLiB = $,e,-$,e,. (21) 

A third transformation is introduced which defines 
the set of pseudo-similarity variables, (5, q), which, in 

the absence of inertia effects, correspond precisely to 
the similarity variables used in ref. [3] 

$ = U(5, rl) 0 = @(L V) (22) 

5 = p/3 r7 = g93. (23) 

Equations (20) and (21) reduce to the form 

(5+2L)f,, = t;(@,-f4@, (24) 

077 +& = ; rCf,e, -@,) (25) 

and the boundary conditions become 

f=O 8=1 on?=0 

and f,,&-+O as v-+co. (26) 

This set of nonsimilar boundary layer equations 
may be solved easily using the Keller-box method for 
moderate and large values of 5. However, when 5 is 
close to or equal to zero we have to introduce a further 
transformation since, in terms of ‘I, the boundary layer 
thickness may be shown to be infinite at 5 = 0. Hence, 
we define a second set of pseudo-similarity variables, 
(x, c), according to 

f = x&L 5) 0 = 0(X? 0 (27) 

x = l’/S { = &/5. (28) 

Equations (24) and (25) become 

(x3 +2Fc)Fcr = ~@&& (29) 

~&+(~+&x~)F& = &(FrQ,-Fx8J (30) 

which may be solved using the Keller-box method, 
since the boundary layer has finite thickness at x = 0 
using these variables. The boundary conditions are, 

F=O 8=1 oni= 

and F,, o-+0 as[-+cu. (31) 

Finally, it may be helpful to write the variables x, y 
and $, defined in equation (16), in terms of the two 
sets of pseudo-similarity variables defined in equa- 
tions (22), (23) and (27), (28) : 

x = ,39453 y = ~~-“3,$/2~~2 

$ = Ra %.W((5, V) (32) 

and 

X = a3!4x15 y = ~~-‘!3~‘/2~~~ 

II/ = Ra”3a”4x6F(X, c). (33) 

In turn, the variables [ and q are given by 

(34,35) 
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3. RESULTS AND DISCUSSION (a) 

Equations (24) and (25) and equations (29) and 
(30) were solved numerically using the Keller-box 
method (see ref. [S]). The former pair were solved over 
the interval 0 6 x d 1, while the latter were solved on 
a nonuniform grid in the interval 1 < ; < 10000. In 
the cross-stream direction a nonuniform grid of I3 I 
points was used over the range 0 d r~, ; < 50. At each 
streamwise station convergence to the solution of the 
nonlinear governing equations was deemed to have 
occurred when the maximum pointwise change in suc- 
cessive Newton-Raphson iterates was less than IO ’ ; 
this generally occurred after three or four iterations. 
The solution of equations (28) and (29) at x = 0, that (b) 
is, the ordinary differential equations. 

2F F”_ = $0. . \. (36) 

Q;;+;FO, = 0 (37) 

subject to the boundary conditions, (30) presented 
much greater difficulties since, for large values of i. 
the coefficient of FCC is exponentially small. Indeed, it 
is a very straightforward analysis to show that, if F --t 
a, a constant. as [ -+ x when x = 0, then 

3.5 - 

0 12 3 4 5 6 7 8 91011 
r 
5 

0 1 2 3 4 5 6 7 8 9 10 11 12 
c 

where b is also a constant. A satisfactory approach to Fig. I. Inertia-dominated profiles, (a) F(i) and I?([). (b) H(c) 
the numerical solution at x = 0 was obtained by using and Q,(i). 

a suitable initial iterate and iterating with under-relax- 
ation in order that numerical values of Fc remain posi- 
tive over the whole range of integration for all iterates. 

The global rate of heat transfer, qG. is given by 

The inertia-dominated profiles thus obtained are 
depicted in Fig. I. We note, for reference. that (42) 

@,(< = 0) = -0.4282, F;(i’ = 0) = 0.9624 
In terms of the pseudo-similarity variables, this 

and F(i) -+ 3.6124 as; + a. (39) becomes 

The local rate of heat transfer, q,~, is given by qc; = -k,(T,-T,)Ra’ ‘z’ ’ 

k,(T,.- T,) 8 
41 = - I ,_I 

-~~(.r = 0) (40) X 

I 

&,I 
15xsOC(x, < = 0) dX when 5 < I (43a) 

0 

where 
= -k,(T,-T,)Ra’ ‘z” 

80 Ra”O_ 
_=d 
ii L’ %I,2 9.5 5 

when 5 < I (41a) 

o.51 

Ra’ “’ when < > 1 (4lb) 
3 ’ 2t2 

at either [ = 0 or q = 0. Local heat transfer results are 
presented in Fig. 2 in the forms 

(i)H; for< < I and 5 ’ “H,, for < > 1 , and 

(b) 

(a) 

(ii) t”‘O: for t d 1 and 0, for 5 > 1. 

Both graphs are plotted against < = .Y’ ‘ix’ 4. The 
first form displays clearly the behaviour of the local 0 1 2 3 4 5 6 7 8 9 10 
rate of heat transfer for small values of <, where non- 5 
Darcy effects dominate, whereas the second form Fig. 2. Local rates of heat transfer as a function of 5: (a) 
shows the approach to the Darcy flow limit as 5 + x8. PRa-’ ‘5’.’ (&I/+)(<, 0), (b)a12Rn~‘,3[* (CM/ay)(t,O). 
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0 1 2 3 4 5 6 7 8 9 10 11 12 
#3 

Fig. 3. Scaled global rates of heat transfer, -qG/ 
[k,(T,- T,)Ra”‘a”), as a function of x”’ = ~“~5, for 

a = 0.01, 0.1, 1.0, 10.0 and 100.0. 

Lr 
X S” 38,(5,q = O)d< when 5 > 1. (43b) 

0 

In Fig. 3 we display qG as a function of x$ for 
various values of a, where it should be noted that, in 
view of the transformation (19), only one com- 
putation is necessary ; graphs for different values of c( 
are obtained by a suitable resealing. When c( = 0, the 
Darcy flow case is recovered and qG is a linear function 
of x$. As a increases, the region over which the 
inertia effects modify the Darcy-flow profiles becomes 
larger, but it always includes the leading edge. The 
presence of inertial forces causes an increased bound- 
ary layer thickness near the leading edge compared 
with the Darcy flow case [cf. the definitions of [ and 
q in equations (34) and (35), respectively] and this, in 
turn, reduces the global rate of heat transfer as c( 
increases. 

Due to the absence of boundary effects in the model 
we have used here, there is a wall slip-velocity. In 
nondimensional terms the slip-velocity is given by 

Ra2i3 

= -&xc>” = ‘3, (5 > 1). (Mb) 

Figure 4 displays the slip-velocity, again in two 
forms 

(i) F; for 5 < 1 and <-“‘& for r > 1 and 

(ii)t2’5F; for 5 < 1 and f, fort > 1. 

The first form allows us to see clearly the behaviour 
of the slip-velocity in the strongly non-Darcy region 
near the leading edge. The second shows the dim- 
inishing effect of inertia at increasing distances from 
the leading edge. 

(a) 

0.2 - 

o- ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 1 2 3 4 5 6 7 8 9 

5 
Fig. 4. Local slip-velocity as a function of 5 : (a) a”“R~~~‘~t~” 

(~fi/&~)(L 01, @I a”4Ra-Z’35 (W/%%L 0). 

4. CONCLUSIONS 

We have investigated how the presence of inertia 
modifies the flow and heat transfer from a horizontal 
heated surface in porous media. This has been 
achieved by assuming that the Darcy-Grashof num- 
ber is sufficiently large that fluid-inertia terms enter 
the boundary layer equations at leading order, rather 
than at higher orders as is the case in ref. [3]. More 
specifically, we have taken Gu = O(Ra’13) as Ra + co. 

Inertia effects are found to dominate the flow near 
the leading edge, but become progressively weaker at 
increasingly large distances from the leading edge. 
Eventually the well-known Darcy-flow profiles are 
recovered. 

Although the presence of fluid inertia serves to 
decrease both the local rate of heat transfer and the 
slip-velocity near to the leading edge, it is insufficient 
to stop these quantities becoming infinite as x -+ Of 
[cf. equations (41a) and (44a)l. However, the strength 
of the singularity is reduced : as x + Of the local rate 
of heat transfer becomes proportional to xm3j5 as com- 
pared with x- 2’3 for Darcy flow, and the local slip- 
velocity becomes proportional to x-“~ as compared 
with x-If3 for Darcy flow. It might be conjectured that 
a detailed analysis of the region sufficiently close to 
the leading edge, where the governing equations are 
fully elliptical, could yield a rate of heat transfer and 
a slip-velocity which are finite, and which would be 
matched asymptotically onto our present solutions. 
However, the exact solutions for Darcy flow given in 
ref. [9] show that the strength of singularity at the 
origin depends ultimately on the angle between the 
heated surface and a second bounding surface. 
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