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Abstra¢l--We consider the Blasius boundary-layer flow of a micropolar fluid over a flat plate. Due to 
inadequacies in previous studies a full derivation of the boundary-layer equations is given. The 
resulting nonsimilar equations are solved using the Keller-box method and solutions for a range of 
parameters are presented. It is found that a two-layer structure develops as the distance downstream 
increases. An asymptotic analysis of this structure is presented, and the agreement between the 
analysis and the numerical solution is found to be excellent. 

1. I N T R O D U C T I O N  

A micropolar  fluid is one which contains suspensions of rigid particles such as blood, liquid 

crystals, dirty oil and certain colloidal fluids, and which exhibits a microstructure.  The theory of 
such fluids was first formulated by Eringen [1] and has very recently been applied to a wide 
range of classical flows. For  example,  Gor la  [2-4] and Arafa  and Gorla  [5] have considered the 
free and mixed convection flow of a micropolar  fluid f rom flat surfaces and cylinders, and the 
effect of stationary surface waves on free convection f rom a vertically aligned heated surface 
has been investigated by Chiu and Chou [6]. 

Of  more  interest to the present  work are the papers by Unsworth  and Chiam [7] and Ahmadi  
[8]; these authors, independently,  have studied the micropolar  analogue of the Blasius 
boundary  layer (although it should be noted that the analysis of [7] was for the more  general 
configuration of flow past a wedge). Their  respective results, where they can be compared,  do 
not agree because the initial assertions are at variance. For  example,  in [7], it is assumed that 
the microrotat ion vector is zero on a solid surface, whereas in [8] it is proport ional  to the fluid 
shear stress, a result which is now generally accepted as being more  realistic. A second major  
difference between the papers lies in the fact that the microinertia density is assumed to be a 

constant in [7], but is allowed to vary in [8]. Unfortunately,  the insistence in [8] that the flow 
should be self-similar leads to the unphysical result that the microinertia density varies as the 
square of the perpendicular  distance f rom the surface once outside the boundary  layer. Clearly 
a re-examinat ion of this fundamental  flow is in order, and this motivates the present  paper.  

We derive and solve the full boundary  layer equations for the Blasius boundary-layer  flow of 
a micropolar  fluid over  a flat plate. The resulting equations are different from those of both 
Unsworth  and Chiam [7] and Ahmadi  [8]. Detailed numerical results are presented,  as is an 
asymptotic  analysis for large distances f rom the leading edge; such an analysis is necessary 
because the numerical results indicate that the boundary layer develops a two-layer structure at 
sufficiently large distances f rom the leading edge. Following [4] we consider a variable ratio of 
gyration component  and fluid shear stress at a solid boundary; when this ratio is exactly ~ we 
demonstra te  that there is a similarity solution and no two-layer structure forms. 
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2. G O V E R N I N G  EQUATIONS 

The full equations governing the isothermal two-dimensional flow of a micropolar fluid are, 

& +  G =  0, (1) 

p(a, + aa;  + 55~) = - f ;  + (~ + ,,)(a.~ + a;;)  + '~R~, (2) 

p(~;+ a~;+  ~ y )  = - G +  (~ + * ) ( G  + G~) - *U;, (3) 

pj(N; + ~]V; + fiN~) = -2KN + K (5~-  ~y) + div(yVN), (4) 

j , +  a j ; +  5j; = 0 (5) 

(see Ahmadi [8]). Here, (2, y) are the coordinates parallel with and perpendicular to the flat 
surface, (G ~) is the velocity vector, fi the pressure, N the component of the gyration vector 
normal to the x - y  plane, and j is the microinertia density. Further, p is the fluid density,/~ the 
viscosity, K the micrototation parameter (also known as the coefficient of gyroviscosity in [9] 
and as the vortex viscosity in [6] and [10]), and 3' is the spin-gradient viscosity given by 
3" = (tz + K/2)j (see [8]). We follow the work of many recent authors by assuming that j is a 
constant and therefore it shall be set equal to a reference value, j0; consequently equation (5) is 
trivially satisfied. The remaining four equations are to be solved subject to 

u = v = O ,  N = - n a ~  on y = O ,  (6) 

and 

li--->Uo, 5-->0, and ~/---~0 as )7--.~c. (7) 

In equation (6) we have followed [4] by assigning a variable relation between A/and the surface 
shear stress. The value n = 0 corresponds to the case where the particle density is sufficiently 
great that microelements close to the wall are unable to rotate. The value n = ½ is indicative of 
weak concentrations, and when n = 1, we have flows which are representative of turbulent 
boundary layers (cf. [11]). We shall consider values of n which lie between these two extremes. 

The above equations are nondimensionalized using the definitions 

(a, O) = Uo(u, v), (2, y) = l(x, y), 

fi = pU~p, 7 = (I/Uo)t, N = (Uo/l)N, (8) 

where jo = 12 defines the lengthscale, l. We then obtain the following: 

ux + Vy = 0, (9) 

K_K_N / I  + K \  
u, + uu~ + vuy = -p~ + R e  y + ~R-e-e ) (u~ + uyy), (lO) 

K /1 + K \  
v, + uvx + UVy = -py  -Ree Nx + [--R~-e )(V~.~ + v,y), (11) 

(4) I + - -  

N , + u N ~ + v N y =  - Ree N +  Ree ( v . - u y ) +  (N~x+Ny,), (12) 

and these equations need to be solved subject to the boundary conditions 

u = v = O ,  N = - n u y  on y = 0  (13) 

and 

u--->l, v -*0 ,  and N---~0 as y---~w. (14) 

Here Re is the Reynolds number defined in the usual way and K =- Kip.. 
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We now invoke the boundary layer approximation by formally letting the Reynolds number 
become asymptotically large and setting 

x = R e X ,  y = Y ,  u=~bv and o = - R e - 1 0 x  (15) 

in equations (9)-(12). (It should be noted that we have taken x to be O(Re) here. If we had 
assumed that x is substantially smaller than this, then it may be shown that the resulting 
boundary layer is always self-similar; this may be seen by taking a small-X expansion in the 
non-similar equations given later in (19) and (20). Within the O(Re) range of values, the flow is 
generally nonsimilar, and therefore this range is the appropriate one to study.) Under the 
assumption that the flow is steady, the leading order equations for the streamfunction ff and the 
gyration component N may be written as 

qJxOxr-  OxtPvv = (1 + g)~Jyyr + KNy,  (16) 

/ K \ 
~OvNx - ~OxNv = - 2 K N -  K~Ovv + {1 + -#)Nvv. (17) 

\ z ~  

The reduced streamfunction, f, the reduced gyration component, g, and the pseudo-similarity 
variable, 71, are defined according to 

tl, = X' /2 f (X,  r/), N =  X- ' /2g(X,  r/), 71 = Y X  ,/2, (18) 

and hence (16) and (17) become 

(1 + K ) f "  + ~ff" + Kg'  = X ( f ' f ' x -  f" fx) ,  (19) 

1+ g"+ (fg +gf')=xff'g -fxg')+KX(2g+f"), (2o) 

where primes represent derivatives with respect to r/. The boundary conditions are 

f = f ' = g + n f " = O  on 7/=0; f '---~l, g---~O as r/---~. (21) 

Thus we have derived a set of parabolic partial differential equations which govern the 
development of the boundary layer and, in general, these require numerical solution. 

Before presenting the computed results it is convenient to draw attention to two cases for 
which equations (19)-(21) admit similarity solutions. When n = ½ we can set f ( X ,  r/) =fo(r/) 
and g(X, 77) = go(r/) where 

K\  ,,, + 1 ,, 1 
l + - ~ ) f ~  ~ f o f o = 0  and go= -~f6' .  (22) 

This similarity solution can be written in terms of the standard Blasius boundary layer 
equations by simply rescaling the similarity variable. Thus 

1 \1/2 

where r /=  (1 + ½K)~/2O, and ~ satisfies 

1 
+ = 0 (24)  

subject to 

j~(0)=0, j?~(0)=0 and )~ ,~1  as , j~o¢.  (25) 

A second similarity solution arises when K = 0 for which 

f ( r / ) = f ( r / )  and g(r l )=-n~"(O)e  -l/2-rg'j(e)d~ (26) 
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In this case the flow field is unaffected by the microstructure of the fluid and hence the gyration 
component  is a passive quantity. 

3. N U M E R I C A L  S O L U T I O N  

The full non-similar boundary-layer  equations (19) and (20) were solved numerically using 
the Keller-box method.  A nonuniform grid of 157 points was used in the r/-direction with the 

grid points concentrated towards ~7 = 0 in order to resolve adequately the developing near-wall 
layer ment ioned previously. In the ~:-direction a nonuniform grid of 187 points was used and in 

all cases we chose ~max = 100 and 'lTmax ~ -  100; a larger value of ~max was found to result in a 
poorly resolved near-wall layer, whilst the value of T/max is well outside the main boundary 
layer. N e w t o n - R a p h s o n  iteration at each streamwise station was used to solve the nonlinear 
difference equations, and convergence was deemed to have taken place when the maximum 
absolute pointwise change between successive iterates was 10 -1°. Double  precision arithmetic 
was used throughout.  

In Fig. 1 we display profiles of the reduced gyration component ,  g, as a function of 7/ at 
various streamwise locations X with the pa ramete r  choice K = 0.5 and the two cases n = 0 and 
n = 1. When n = 0 the value of g at 7/= 0 is zero, in accordance with the appropriate  boundary 
condition in (21). On the other hand, the value of g at r / =  0 when n = 1 varies with X. For both 
values of n, (and also for other values not equal to ½), the g profile varies with increasing X. As 
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Fig. 1. Prof i les  of  the r educed  gyra t ion  c o m p o n e n t ,  g, as a funct ion  of "q at  d i f ferent  s t r eamwise  
loca t ions  for K = 0.5 and  for  bo th  n = 0 and  n = 1. The  va lues  of X used  are: X = 0, 0.5, 1.0, 2,0, 5.0, 

10.0, 25.0 and  100.0. 
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X becomes large, g becomes independent  of n and equal, in fact, to the n = ½ similarity profile, 
in most of the main boundary layer. Deviations from the n = ½ similarity profile can be seen to 
occur in an increasingly narrow region close to ~/= 0. An analysis of this sublayer is presented 
in the next section, and detailed results, including numerical comparisons, are given there. 

It is difficult to show clearly the corresponding streamwise velocity profiles, f ' ,  on the same 
plot, and therefore these are presented separately in Figs 2(a) and (b), for n = 0 and n = 1, 
respectively. There  seems to be very little variation in the velocity profiles as X increases. 
When n < ½ the velocity at any one chosen value of T/increases slightly as X increases, whereas 
it reduces when n > ½. 

Having seen the evolution of the velocity and gyration component  profiles we now consider 
the variations of both the shear stress and of the rate of change of the gyration component  at 
the solid boundary with X. In Figs 3(a) and (b) are shown f "  at 7/= 0 as a function of X for 
various values of K, and for n = 0 and n = 1, respectively. Larger initial variations of f "  would 
seem to be associated with increasingly large values of K, suggesting that the asymptotic results 
could be valid for fairly small values of X. In these figures, we have only shown the variation 
over the interval from X = 0 to X = 2; thereafter the curves are very close to being horizontal 
lines. The corresponding figures for the quantity, g'(X, T/= 0)X 1/2 are shown in Figs 4(a) and 
(b). The value of g'  at the boundary is positive or negative depending on whether n is greater 
than or less than ½, respectively. Again, as K increases, the approach to the steady state occurs 
at decreasing distances from the leading edge. The values of this function at X = 100 will be 
compared later with the results of an asymptotic analysis in the next section. 

In Figs 3 and 4 we considered a range of values of K with n fixed. We now present the 
corresponding graphs where K = 0.5 is taken, and n is varied between 0 and 1; these appear as 
Figs 5 and 6, respectively. The similarity solution corresponding to n = 0.5 is evident as a 
straight line in both these figures. 

4. A S Y M P T O T I C  S O L U T I O N  

We turn our attention now to the solution of equations (19) and (20) at increasingly large 
distances downstream of the leading edge. 

When X is very large a simple order-of-magnitude analysis of equation (20) indicates that the 
final term is much larger than all the others if "q is O(1), unless the coefficient of X, 2g +fnn, is 
zero. That  this is indeed the case is supported by the graphical evidence of Fig. 7, which shows 
successive profiles of (g + f"/2) as a function of "q at increasing values of X. Of interest now is 
the behaviour of this function near 77 = 0 as X increases and Fig. 7 shows the development  of a 
near-wall layer of decreasing thickness. It is straightforward to check that setting g -- - ~f" in 
(19) and (20) yields a consistent pair of equations and f is then given by the solution of 

(1 +K)f"+~f f "=X( f ' f ' x - f " f v ) .  (27) 

However,  the boundary condition for g, now set equal to - ~f", is not satisfied unless n = ½. 
This suggests that for n ~ ½ a narrow layer forms near ~7 = 0 which allows the transition 
between an "ou te r "  solution (which is the similarity solution (22) corresponding to n = ½) and 
an " inner"  solution which is required in order  to satisfy the correct boundary conditions; again 
this conjecture is supported by Fig. 7. In this near-wall layer g cannot be equal to - ~f" and 
hence the final term in the right-hand side of (20) must be large. The only means of balancing a 
term of this size is to assume that g" is as large, which it will be if 77 is sufficiently small. Hence 
if 

( l + ~ K' )g" - KX (2g + f") (28) 
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Fig.  2. Prof i les  o f  t he  r e d u c e d  s t r e a m w i s e  ve loc i ty ,  f ' ,  as  a f u n c t i o n  o f  rt a t  d i f f e ren t  s t r e a m w i s e  
l o c a t i o n s  fo r  K = 0.5 a n d  fo r  b o t h  n = 0 a n d  n = 1. T h e  va lues  o f  X u s e d  a r e  as g iven  in Fig.  1. 

for large values of X ,  then 77 = O(X -~/2) defines the depth of the near wall layer. Within this 
region, wherein we assume that the coordinate, ~', defined by 

= r t X  1/2, (29) 
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Fig. 3. Development of the wall shear stress f"(X, ~ = 0), as a function of X for (a) n = 0 and 
(b) n = 1, and for various values of K. 

is O ( 1 )  as  X---~ ~ ,  t h e  n = ~ s o l u t i o n  g i v e n  b y  ( 2 2 )  e x p a n d s  as 

fo = - x - ' ~ 2 g o ( O )  + . . . .  

U s i n g  t h e  a r g u m e n t  p r e s e n t e d  a b o v e  w e  a n t i c i p a t e  tha t  w i t h i n  th is  

(30) 

n e a r - w a l l  l a y e r  t h e  
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Fig. 4. Deve lopment  of the rate of  change of the gyration componen t  at the wall, g'(X, ~7 = 0), as a 
function of X for (a) n = 0 and (b) n = 1, and for various values of  K. 

s o l u t i o n s ,  f(X, rl) and  g(X, rl) are  p e r t u r b e d  f r o m  the  n = ½ case .  T h e r e f o r e  w h e n  n ~ ½ w e  
s e e k  s o l u t i o n s  w i t h  the  f o r m ,  

f(X, n) = x - l [ -  ~.2go(0) + f~ (p]  + O(X-3,2), 

g(X, r/) = go(O) + g , (~' )  + O ( X - ' / 2 ) .  (31)  
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F i g .  5. Development of the wall shear stressf"(X, ~ = 0)  as  a function of X for K = 0.5 a n d  a range of 
values of n. 

Substitution of these forms into (19)-(21),  suitably modified by means of the transformation 
(29), yields the equations 

(1 + K ) f ~ ¢  + Kg~ = 0, (32) 

(1 1 + ~ K)glcc = K(2g, + f~¢,), (33) 

at leading order. The appropriate boundary conditions for 3~ and g~ are: 

f~(O) = O, f~c = O, g~(O) + nf~(O) = (2n - 1)go(0),  (34) 

and 

fl¢¢,gl---~O as ~ ' - - - ~ .  (35) 

It is necessary to point out that we have set f~c, rather than f~c to tend to zero as ( ~  ~.  The 
reason is simply that f ~  0 is too restrictive, and that if f ~ ¢ ~  constant then the perturbations 
to fo in (27) is still asymptotically small in the main boundary layer. This small perturbation will 
eventually contribute to a second-order, that is an 0(X-1/2), correction to the leading order 
main-layer solution denoted by the zero subscript and satisfying (22). 

It is straightforward to show that equations (32) and (33) subject to the boundary conditions 
(34) and (35) are satisfied by the solutions 

3~ = A[1 - A~ - e - ~ ] ,  (36) 

gl = 2Ae -a~, (37) 
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_ _ J  
10 

where 

( 2K ~1/2 
A - (2n - 1)(K + 1)go(0) and A = (38a,b) 

211 + (1 - n)K] \ ~ - K /  " 

From (38b) we see that the near-wall layer has a thickness which depends only on the value of 
K, and not  on  n. Its thickness decreases as K increases, but tends to a constant as K increases 
indefinitely. 

5. C O N C L U S I O N  

A wide selection of numerical results have been presented giving the evolution of the 
velocity and gyration component  profiles, and the shear stress and rate of  change of  gyration 
component  at the solid surface. These  numerical results have indicated that a near-wall contact 
layer develops as X--~ ~ but only if n ~ ½. A n  asymptotic analysis has shown that this inner 
layer has thickness of  magnitude O(X -in) in terms of  ~7, or, alternatively, of  magnitude O(1) in 
terms of Y (see equation (17c)). When either n = ½ or K = 0 the solution is self-similar and 
there is no  near-wall layer. 

The easiest quantity which we can use to compare the numerical and symptotic results is 
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Fig. 7. Profiles of the function, g + ~f", as a function of r / a t  different streamwise locations for K = 0.5 
and for both n = 0 and n = 1. The values of X used are as given in Fig. 1. This figure demonstrates  
(i) the diminishing size of the developing near-wall layer, and (ii) the approach to g = - ~ f "  outside the 

near-wall layer, as X increases. 

gn(0). Using (23), (29), (31), (37) and (38), it is possible to show that 

[K(1 + K)]  1/2 (2n - 1 ) f~(0)  X~/2 ' 
g ~ ( r / = 0 ) -  / 2+--K J ~ +  ( - 1 - - - - - ~  (39) 

as X --~ ~, where f,~,~(0) = 0.3321. In Figs 4 and 6 we have shown some graphs of the behaviour 
o f  X-1/2g n (77 = 0) as a function of X. According to the theory of the last section, resulting in 
(39), this function should asymptote to a constant as X--~ ~. These figures demonstrate that 

Table 1. Comparison of numerical and asymptotic values of 
X ~/2g. at X = 100 and r / = 0  for n = 0 and different values of K. 

Asymptotic values were obtained using equation (39) 

K Numerical Asymptotic 

0.1 - 0.06895 - 0.06906 
0.3 -0.1050 -0.1051 
0.5 -0.1211 -0.1212 
1.0 -0.1354 -0.1355 
3.0 -0.1285 -0.1285 
5.0 -0.1145 -0.1145 
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t h i s  is i n d e e d  t h e  c a s e ,  a n d  f u r t h e r ,  t h a t  t h e  a p p r o a c h  to  t h e  a s y m p t o t i c  v a l u e  t a k e s  p l a c e  

i n c r e a s i n g l y  q u i c k l y  as  K i n c r e a s e s .  T a b l e  1 c o m p a r e s  v a l u e s  o b t a i n e d  n u m e r i c a l l y  a t  a v a l u e  o f  

X -- 100 a n d  t h o s e  g i v e n  b y  (39 ) ;  t h e  a g r e e m e n t  is  s e e n  t o  b e  e x t r e m e l y  g o o d .  A n o t h e r  q u a n t i t y  

o f  i n t e r e s t  is t h e  f l u id  s h e a r  s t r e s s  a t  t h e  s o l i d  s u r f a c e .  I t  m a y  b e  s h o w n  t h a t  

(1 + ½ K ) l / 2 f , ~ ( 0 )  (40 )  

f ~ " -  [ l + ( 1 - n ) K ]  ' 

as  X ~ ~ ,  t h e r e b y  i n d i c a t i n g  t h a t  t h e  s h e a r  s t r e s s  is a f f e c t e d  b y  t h e  p r e s e n c e  o f  m i c r o r o t a t i o n a l  

e f f e c t s  a n d  v a r i e s  w i t h  b o t h  K a n d  n.  
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N O M E N C L A T U R E  

A = constant used in equations (36)-(38) 
f = reduced streamfunction 
f~ = reduced streamfunction for n = 
f~ = perturbation to the reduced streamfunction in 

the near-wall layer 
)~ = reduced streamfunction for the classical Bla- 

sius boundary-layer flow 
g = reduced gyration component  

go = reduced gyration component  for n = 
g~ = perturbation to the reduced gyration com- 

ponent  in the near-wall layer 
j = microinertia density 

J o  - reference value of the microinertia density 
K = ratio of the gyroviscosity and the fluid 

viscosity 
1 = length scale 

n = ratio of the gyration vector component  and 
the fluid shear at a solid boundary 

N = the gyration vector component  perpendicular 
to the x - y  plane 

p = pressure 
Re = Reynolds number,  pUol/Ix 

t = time 
u,v = fluid velocities in the x and y directions, 

respectively 
U~ = free stream velocity 

x,y = streamwise and cross-stream Cartesian 
coordinates 

X, Y = nondimensional streamwise and cross-stream 
Cartesian coordinates 

G r e e k  s y m b o l s  

77 = pseudo-similarity variable 
= scaled pseudo-similarity variable 

y = spin-gradient viscosity 
jx = dynamic viscosity 
K = coefficient of gyroviscosity 
A = constant used in equations (36)-(38) 
p = density 
g, = streamfunction 

= scaled pseudo-similarity variable 

S u p e r s c r i p t s  

' = differentiation with respect to 
- = dimensional variables 

S u b s c r i p t s  

X = differentiation with respect to X 
Y = differentiation with respect to Y 

= differentiation with respect to ~" 


