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Abstract. The effect of an anisotropic permeability on thermal boundary layer flow in porous media
is studied. The convective flow is induced by a vertical, uniformly heated surface embedded in a fluid-
saturated medium. A leading-order boundary layer theory is presented. It is shown that the thickness
of the resulting boundary layer flow is different from that obtained in an isotropic porous medium.
In general, an anisotropic permeability induces a fluid drift in the spanwise direction, the strength
of which depends on the precise nature of the anisotropy. Conditions are found which determine
whether or not the boundary layer flow is three-dimensional.
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1. Introduction

Thermally driven convection in porous media is of importance in a variety of geo-
physical and technological problems such as the modelling of geothermal reser-
voirs and thermal insulation systems, packed-bed catalytic reactors and heat storage
devices. Work on the theory and modelling of porous media flows began nearly
fifty years ago. So far, the substantial part of theoretical and experimental investi-
gations have dealt with isotropic media. However, in many practical problems, the
porous matrix is anisotropic in its mechanical and thermal properties. An example
of such a medium is loft insulation which usually has a lower permeability across
the insulating layer than it has in the perpendicular directions. Wooding (1978) also
notes that, under certain circumstances, the horizontal permeability of a geothermal
system can be up to ten times as large as the vertical component.

The first studies on natural convection in anisotropic porous media appeared
in the middle of the seventies and have concentrated exclusively on the porous
medium analogue of the Bénard problem, sometimes called the Lapwood problem.
Castinel and Combarnous (1974) found the criterion for the onset of convection in
a horizontal layer with anisotropic permeability. They also reported experimental
results which agree fairly well with their theoretical predictions. Epherre (1975)
extended the stability analysis by including anisotropy in the thermal diffusivity.
It was shown that anisotropy in the mechanical and thermal properties affects
the marginal stability criterion as well as the preferred width of the convection
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cells. On the other hand, Kvernvold and Tyvand (1979) showed that even a three-
dimensioinal anisotropy does not lead to any essentially new flow patterns at onset
compared with the isotropic case. But this is true only if one of the principal
axes of the anisotropic medium is normal to the layer. Such a restriction has been
maintained in almost all the former work in the field; see the review article by
McKibbin (1984) and the monograph by Nield and Bejan (1992).

Tyvand and Storesletten (1991) seem to be the first to have studied natural
convection in a horizontal porous layer where none of the principal axes is vertical.
They considered the situation where the anisotropic permeability is transversely
isotropic but the orientation of the longitudinal axis is arbitrary. This was sufficient
to achieve qualitively new flow patterns with tilted planes of motion or tilted as
well as curved cell walls; this depends, respectively, on whether the transverse
permeability is larger or smaller than the longitudinal permeability. Storesletten
(1993) has studied the analogous problem for a horizontal layer with anisotropy
in the thermal diffusivity. There are again two different types of convection cells
depending on whether the transverse diffusivity is smaller or larger than the lon-
gitudinal diffusivity. In the former case the convection cells have a rectangular
cross-section with vertical lateral walls just like isotropic convection. In the latter
case, however, the lateral cell walls are tilted as well as curved. Thus far, studies of
natural convection in porous layers indicate that the effect of anisotropy in either
the mechanical or the thermal properties of the medium has a much greater influ-
ence on the resulting convection pattern when none of the principal axes is normal
to the layer.

The above-quoted papers all deal with Rayleigh-Bénard convection in anisotrop-
ic media. At present, the effect of anisotropy on thermal boundary layer flow in
porous media is unknown; this is the subject of the present paper. The first papers to
appear dealing with thermal boundary layer flow in porous media were by Cheng
and Chang (1976) and Cheng and Minkowycz (1977). In these papers, certain
geothermal formations are modelled by assuming that they are represented ade-
quately by semi-infinite surfaces which are horizontal and vertical, respectively.
Cheng and co-workers assumed further that the boundary layer approximation 1s
valid and analysed the flow and heat transfer by determining the leading-order
boundary layer flow. Later, this work was extended to higher-order by Chang and
Cheng (1983), Daniels and Simpkins (1984), and Cheng and Hsu (1984) using the
method of matched asymptotic expansions. These authors were able to obtain more
accurate accounts of the rate of heat transfer into the porous medium.

In common with all the authors quoted in this paragraph we shall assume that the
heated surface is maintained at a constant, steady temperature. However, we relax
the assumption that the porous medium is mechanically isotropic. We consider
a vertical heated surface and determine the resulting boundary layer flow. Our
results can be shown to extend to generally inclined surfaces (except for small
inclinations from the horizontal which results in a nonsimilar profile; see Rees
and Riley (1985)) and to an upward-facing horizontal surface. Attention will be
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restricted to the leading-order boundary layer flow; preliminary results already
completed indicate that a higher order analysis is quite involved and therefore
different inclinations may have to be treated separately.

In Section 2 we derive the governing equations for anisotropic flow induced by
a heated vertical surface. The leading-order boundary layer analysis is presented
in Section 3 and the results are discussed briefly in Section 4.

2. Mathematical Formulation

We consider the free convective flow induced by heating uniformly a semi-infinite
vertical surface embedded in an anisotropic fluid-saturated porous medium. The
heated surface is maintained at a dimensional temperature 77, whilst the ambient
temperature is 7o, where T; > Tp. A Cartesian frame of reference is chosen, where
the z-axis is aligned in the upward vertical direction, the y-axis is normal to the
heated surface, and the z-axis is in the spanwise direction. The permeability tensor,
K, is given by

K = K,ii + Ko2j'j + K5KK, (1)

where the right-handed set of unit vectors, i’, j' and k' are obtained by rotating the
unit vectors in the z,y and 2 directions (respectively, i, j and k) by an angle «
about the z-axis, followed by a rotation of an angle 3 about the y-axis and an angle
~ about the z-axis, in that order. In other words we have,

i’ = (cosfcosy, cosfsiny, —sing),
j = (—cosasinvy + sinasin§cos,
cos o cos ¥ + sin a sin 8 siny, sina cos ),
k' = (sinasiny 4 cos asin/j3cos7,
— sina cosy + cos a sin §sin+y, cos & cos 3). (2)

The resulting permeability matrix in its most general form is rather complicated to
present, but we can write it in the form

.K]l Iflz I(13
K=| K12 Knn Ky |, (3)
K 13 I(23 I(33

where the K;; values are given in the Appendix. We note that K is symmetric.
Using K| as a reference permeability we can rewrite (3) as

Ly Ly L3

K=K\L=K| Lia Ln Lz |, 4)
Lz Lys L33
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where the various L;; values (¢ = 1, 2, 3, 7 = 1, 2, 3) are defined appropriate-
ly.

Steady flow in a porous medium for which Darcy’s law and the Boussinesq
approximation are both valid is governed by the equations

diva = 0, (5a)
1

u= _l_tK -(Vp+ (T = To)podg), (5b)

u- VT = kV?T, (5¢)

where p is the fluid viscosity, , the thermal diffusivity of the saturated medium,
po, the density of the fluid at temperature T}, b, the coefficient of cubic expansion,
g, the gravity vector, u, the velocity ﬂux T, the temperature, and p, the dynamic
pressure. We nondimensionalise by settmg

/'I/R * * %
r,Y,2) = - T,Y,2 ), 6a
u=(u,v,w)= pogbﬁl(#Tl — TO)(u*,v*,w*), (6b)
T -Ty 1K
6 = d 6¢,d
o1, M r= K]p (6¢,d)

into (5). On omitting the asterisks we obtain

divu = 0, ‘ (7a)
L1

u=-L-Vp+ | Lip |6, (7b)
L3

u-VvVé =v2, (7¢)

We note that there is no nondimensional parameter in this problem. This is a
consequence of the fact that there is no natural length scale, but rather that the
material parameters of the fluid and the medium define a length scale according to
(6a). -
Although the medium is anisotropic and hence fluid motions will, in general, be
induced in the z-direction, there is no reason to suppose that the resulting convective
boundary layer exhibits z-variations. Hence Equations. (7) reduce to

Uy + 0y =0 (8a)
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U Dz Lll
v |=-L-|py | +| L12 |9, (8b)
w 0 Lis

ufy + vy = Ozp + Oy (8¢c)

In view of the simplified continuity Equation, (8a), we define a stream function, P,
according to

w=1y, V=Y. 9)
Finally, Equations (8) reduce to

Li1¥ss + 2L12%0y + Lty = (L11Loa — Li)0y, (102)

Oas + 0y = Pz — Vb, | (10b)

“ — (L13Lay — L12L23)Yy + (L12L1z — LiiLa3)¥s

10
LiLyn - 1%, (10c)

The coefficients of 1, and ¥, appearing in the numerator of (10c) are given in the
Appendix.

3. Boundary Layer Analysis

In this section we develop the leading order boundary layer theory for convection
induced in a porous medium with an anisotropic permeability tensor. We follow
the same procedure as that of Riley and Rees (1985) who considered the flow at
asymptotically large distances from the leading edge. It turns out that the boundary
layer flow in an anisotropic medium can be expressed in terms of the isotropic
solution, at least to leading order, and therefore we review the latter solution very
briefly.

The isotropic case corresponds to when L;; = 1 when ¢ = j and L;; = 0 when
i # j. On invoking the boundary layer approximation (that is, on taking z > )
Equations (10) reduce to

Pyy = by, (11a)
oyy = "pyg:c ._ %9@;, (1 lb)
w =0, (11¢)

which are to be solved subject to the boundary conditions, » = 0,6 = 1 when
y = 0, and ¥, — 0 as y — oo. Equations (11) admit the similarity solution

= 2F(n),  0=G(n), (12)
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where 7 = y/z1/? is the similarity variable and where F and G satisfy
F"=G", G"43FG =0 (13)
subject to the boundary conditions
F(0) =0, F'(n) >0 asn— oo, (14a)
GO)=1, G(n)—0 asn— co. (14b)

The solution to (13) and (14) is well-known and first appeared in the context of
convection in porous media in Cheng and Minkowycz (1977).

We consider three special cases first before looking at the general case of arbi-
trary permeability ratios, K,/ K and K3/ K, and rotations, a, 3, and . Respec-
tively, the four cases correspond to (i) rotation but the z-axis only, (ii) rotation about
the z-axis only, (iit) rotation about the y-axis only, and (iv) arbitrary rotations. Case
(1) corresponds to when the coefficients of both 1, and 1, in (10c) are both zero,
case (i1) to when the coefficient of v, is zero but that of 1, is nonzero, and cases
(iii) and (in general) (iv) to when the coefficient of 9, is nonzero.

CASE 1. Rotation about the z-axis
Sincebotha = Oand 8 = 0, it follows from (A7) and (A8) that w = 0. Consequent-

ly there is no fluid drift in the z-direction and hence the flow is two-dimensional.
On invoking the boundary layer approximation, Equations (10) reduce to

Vyy = >y, (15a)

Oyy = Vybz — V0, (15b)
‘where

K

@ = K/ sin? y +2K2 cos2y’ (16)
The boundary conditions are

Y =0, =1 wheny=0, (17a)

Py, 0 = 0 asy — oo. (17b5

Equations (15) admit the similarity solution

P = axl/zF(an), 6 = G(an), (18)
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where F' and G satisfy Equations (13) and (14) corresponding to the isotropic
case.

The primary effect of the anisotropic permeability, at leading order, is to change
the boundary layer thickness from that of an isotropic medium. The boundary layer
is thicker when a < 1, which is satisfied if and only if K| > K and v # O, 7.
Conversely, the boundary layer is thinner when K| < Kj and v # 0, 7. However,
it is of the same thickness, and hence indistinguishable from the isotropic case,
when K| = K; orwheny = 0, 7.

As might have been anticipated, the magnitude of K3 does not affect the flow
at leading order.

CASE 2. Rotation about the z-axis

Since both # = 0 and v = 0, it follows from (A7) that the coefficient of %, in
(10c¢) is zero, which implies that

Ly, 1 (K= Ky)sin(2a)
Ly ™ 2Kycos?2a+ Kisinfa

(19)

On invoking the boundary layer approximation equations (10a) and (10b) reduce
to (11a) and (11b), respectively, which corresponds to the isotropic case. Thus,
a rotation of the principal axes about the z-axis yields (1) a flow in the z and y
directions which is unchanged from the isotropic case, and (ii) an induced fluid
drift in the z-direction which is positive when (K, — K3)sin(2a) < 0 as the
induced flow into the boundary layer, v, is negative. Hence w has the same sign as
v if (K, — K3)sin(2a) > 0. There is no drift in the z-direction if K, = K3 or if
a= %mr,n =0,1,20r3.

CASE 3: Rotation about the y-axis

Although both oo = 0 and v = 0, the coefficient of 1, in (10c) is not necessarily
zero; see (A7). We find that

_ Lz, 1 (K- Kj3)sin(28)

- T . 20
v I AT 2K1C082,B+I{3sin2ﬁu (20)

On invoking the boundary layer approximation, Equations (10a) and (10b) reduce
to a system of the same form as (15), where a is now given by

a® = L1y = cos? B + (K3/K,) sin® 5. 21)

As in Case 1, there exists a similarity solution given by (18), where F’ and G
satisfy (13) and (14) which correspond to the isotropic case. Thus, a rotation of the
principal axes about the y-axis yields a flow where the thickness of the boundary
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Fig. 1. Loci of values of § and v for various values of o for which there is no O(1) spanwise
fluid motion: K; = Kv1, K; = %Kyl.

layer is greater than in the isotropic case when a < 1, i.e. if and only if K, > K;
and § # 0, 7. Conversely, the boundary layer is thinner when K, < K3 and
B # 0, . It is of the same thickness when either K} = K3, B=0orp=m,.

In addition, there is a fluid drift in the z-direction given by (20). There is no
drift when Ky = K3 or 8 = inw(n = 0,1,20r 3). As [¢py| > ||, the fluid drift
is much stronger than in Case 2 (rotation about the z-axis). However, the leading-
order drift is confined to the boundary layer in the present case as w is proportional
to u, but in Case 2 it persists outside the boundary layer as w is proportional to v
(however, this statement might need to be modified when higher-order effects are
taken into account).
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CASE 4. Arbitrary Rotations

The boundary layer approximation applied to Equations (10a) and (10b) yields
equations of the same form as (15a,b) where

2 - fulan-— L}
L2
K1 K5(cos acos 3)% + K1 K3(— sinacosy + cos o sin 3 siny)?
+ K, K3(sinasiny + cos a sin 3 cos y)? -
B K [K1(cos Bsiny)? 4+ K,(sinasinBsiny — cos acosy)? (22)
+ K3(cos asin 3sin7y + sina cosy)?]

As in Cases 1 and 3 there exists a similarity solution given by (18) where F’ and G
satisfy (13) and (14). Thus the boundary layer is thicker than, as thick as, or thinner
than the isotropic boundary layer whena < 1,a = 1 ora > 1, respectively.

Since z >> y has been assumed as part of the boundary layer approximation,
it follows that |¢,| > |92/, in general, and therefore the ¢, term in (10c) can be
neglected. To leading order, then, the fluid drift in the z-direction is given by

Ly3Loy — L L3
7 ¥y
Lyl — Ly,
cos B[ K (K3 — K3)sinacos asiny
+Ky(K3 — K1) cos? asin 3 cos
K3(K, — K1) sin® asin 3 cos
_ 7,+ 3( K2 21) B cos ] " 23)
K1 K(cos acos f3)
+ K K3(— sina cosy + cos a sin 3 sin-y)?
+ K, K3(sinasiny + cosa sin 3 cosy)?

In general, then, arbitrary rotations of the principal axes of the permeability tensor
lead to an induced drift in the spanwise direction with a magnitude which is of O(1)
as ¢ — oo. Although we have already dealt with two cases above (Cases 1 and 2)
for which this O(1) drift is absent, there are other configurations for which this is
also true. Given the number of free parameters (three angles and two permeability
ratios) we can not give a general statement about when this drift is absent except
to make the obvious point that the numerator of (23) has to be zero. However,
in Figures 1 and 2 we present some examples of configurations where the O(1)
drift is absent. In Figure 1 we set K, = K and K3 = %K 1 and plot loci in the 3-v
plane of where the drift is absent, for various values of a. We note that this drift is
absent for all values of o when (3 is an odd integer multiple of a right angle. Figure
2 is more complicated and represents a case where K, = %Kl and K3 = %I(l. In
both cases the figures are identical modulo 180 degrees in a.
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Fig. 2a.  Loci of values of 8 and v for various values of « for which there is no O(1)
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When the O(1) drift is absent we have to consider the %, term in (10c). In such
cases the induced drift is proportional to =12 as x — oo and is given by

LiaLy3 — Liily
Inln—1% °
11L22 — L1
cos B[K1(K3 — K;)sinocosacosy
—K»(K3 — K1) cos? asin 3siny
~ —K3(K, — Ky)sin® asinfsiny]
K1K(cos acos 3)?
+ K1 K3(—sinacosy + cos a sin 8 sin-y)?
+ K, K3(sina siny 4 cos asin 8 cos y)?

(24)
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In general the coefficient of t, will be nonzero and therefore there will be a
spanwise fluid motion.

Despite the complexity of the formulae (23) and (24) it is quite straightforward
to derive the conditions for which there is no spanwise fluid drift. These conditions
are as follows:

(i) K1= K= K3 (isotropic medium)

(i) K, = K3, B =nnx (i’ in the z—y plane)

(iii) K; = K3, a =nmw (j' in the z—y plane)

(iv) K1=Kz, a=(n+1)r (K inthe z—y plane)

(v) a=nr, f=mn (both i’ and j’ in the z—y plane)
(vi) a=(n+3)r, B=mr  (bothi’ and k' in the z—y plane)
(vii) 8= (m+ )« (both j' and K’ in the z—y plane)

where both n and m are integers.
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4. Discussion

In the main body of the paper we have considered the effects of anisotropic perme-
ability on convection induced by a vertical, uniformly heated surface embedded in
a fluid-saturated porous medium. In particular we have focused on the effects of
anisotropy on the leading order boundary layer flow. There are two primary effects
which are evident when considering this flow, namely, (i) a changed boundary layer
thickness (which has important ramifications for the rate of heat transferred into the
porous medium), and (ii) an anisotropically induced fluid drift in the z-direction.
It has been shown that the presence or absence of either or both of these effects is
dependent on the precise nature of the anisotropy. In the case of the induced span-
wise drift the asymptotic strength of the w-velocity is either of O(1) as z — oo or
else it is of O(z~!/2). Conditions have been presented which determine when drift
is present or absent, and, if present, how strong it is.
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An almost identical analysis can be presented for the equivalent horizontal
thermal boundary layer flow in a porous medium even though the definition of the
similarity variable is different for this case (see Cheng and Chang, 1976). When
the heated surface is inclined from the horizontal with its leading edge below the
rest of the surface an identical analysis to the above can be undertaken if account
is taken of the reduced buoyancy force along the surface by means of a simple
rescaling of the similarity variable.

It is our intention to extend the work of this paper to higher order in order
to obtain a more accurate account of the effects of anisotropy on free convective
boundary layers in porous media.
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Appendix

The definitions of the entries of the permeability tensor given in Equation (3) are
the following,

Ky = K;cos?fcos?y+ K(sina sinf cosy + cosa sin 7)?
+ K3(cos asin 3 cosy + sina sin 7)?, (A1)

Ky = Kjcos? sin®y + Ka(sina sin siny — cos a cos v)?
+ K3(cos o sin 3 siny + sina cos 7)?, (A2)

Ks3 = K sin® 8+ K, sin? a cos? 8 + K3 cos” o cos® 3, (A3)

Ky, = Kjcos®f siny cosy + K(sina sin§cosy + cos o sinvy)
X (sina sin 8 siny — cos a cos )
+ K3(cosa sin 8 cosy — sina sinvy)
x (cos a sin 3 siny + sina cos ), (Ad)

K3 = Kjsinf cos 8 cosy — Ky(sina sin3 cosy 4 cos asinvy) sina cos 3
—K3(cosa sinf cosy — sina sin-y) cosa cos 3, (AS)
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K33 = Kjsinf cosf siny — Kj(sinc sin 3 siny — cosa cos<y) sina cos 3
—K3(cos a sin 3 sin+y + sin a: cos ) cos a cos f. (A6)

The coefficient of 1, appearing in the numerator of Equation (10c) is

cos B[K (K3 — K)sina cos a siny + Kp(K3 — K) cos? asin Bcosy
+K3(K, — Ki)sin® asin 8 cos ]/ K2, (A7)

and the corresponding coefficient of 1), is

cos B[K1 (K3 — K)sina cosa cosy — K(K3 — K1) cos® asin (3 siny
~K3(K, — K;)sin? asin 8 siny]/K?. (A8)
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