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Abstract

The effect of stationary surface waves on the free convection induced by a horizontal uniformly heated surface in
a porous medium is studied. Attention is focused on those cases where the waves have an O(Ra ~ 3} amplitude, where the
Rayleigh number, Ra, is based on the wavelength of the waves and is assumed large. Within this amplitude regime the
resulting nonsimilar boundary layer flow is described by a set of nonlinear parabolic partial differential equations whose
solution is effected by means of the Keller box method.

Extensive computations are presented for a wide range of wave amplitudes and phases, and some global heat transfer
rates are given. For all amplitudes and phases a thin near-wall boundary layer develops within the basic boundary layer
as the distance downstream increases; an asymptotic analysis is given which determines the structure of this layer. When
the wave amplitude is greater than roughly 0.95 Ra~!/3 localised regions of reverse flow occur at the heated surface, the
number of which depend on the amplitude and phase of the waves.

Nomenclature

a amplitude of the nonuniform surface

a, b, numerical values appearing in Eq. (22)

f reduced streamfunction

F reduced streamfunction (for near-wall layer)
g acceleration due to gravity

K permeability of the porous medium

l lengthscale associated with the surface waves
L long lengthscale used in Sect. 4

n unit vector normal to the wavy surface

Ra gBKI(T, — T, )/vk, the Darcy-Rayleigh number based on [
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s arc-length along the wavy surface

T temperature

X, y streamwise and cross-stream cartesian coordinates
X slow &-variable in Sect. 4

o scaled wave amplitude

B coefficient of thermal expansion

n similarity variable

K thermal diffusivity of the saturated medium
0 dimensionless temperature

® perturbation temperature (near-wall layer)
v kinematic viscosity

1/ streamfunction

¢ wave phase

& streamwise coordinate

{ near-wall cross-stream coordinate
Superscripts

- dimensional variables

) stretched variables (¢ < 1)

~ perturbed variables in Sect. 4

Subscripts

W condition at the wall

o0 condition at infinity

0 plane wall similarity solution

1. Introduction

The study of free convection heat transfer from uniform surfaces embedded in a saturated porous
medium has attracted a great deal of interest for many investigators over the last two decades; sec
Nield and Bejan (1992) for a comprehensive review of this topic. Studies have centred on those
cases where the thermal boundary conditions allow the use of similarity transformations to reduce
the governing boundary layer equations to a system of ordinary differential equations. In general
this means that the heated surface is plane. However, in practice, surfaces are sometimes roughened
intentionally in order to enhance the heat transfer. Roughened surfaces are encountered in several
heat transfer devices such as flat-plate solar collectors and flat-plate condensers in refrigerators.
Larger scale surface nonuniformities are encountered in cavity wall insulating systems and grain
storage containers. The only papers to date which study the effects of such nonuniformities on
thermal boundary layer flow of a Newtonian fluid are those of Moulic and Yao (1989) and Yao
(1983). In the parallel field of thermal boundary layers in porous media, which is of interest here, the
only papers to date cover convection induced by a vertical surface (Rees and Pop (1994a,b)). In this
paper we extend the study to a consideration of the effects of a wavy surface profile on convection
induced by a horizontal surface.

We consider the effects of stationary transverse waves on the basic boundary layer flow induced
by a uniformly heated horizontal surface for which the resulting flow remains two dimensional. The
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Rayleigh number, Ra, is based on the wavelength of the surface waves and it is assumed to be large
in order that the boundary layer approximation may be invoked. It is found that the amplitude of
the waves must be within an O(Ra~'/?) range in order to balance direct and indirect buoyancy
forces. Within this amplitude range is found the transition to flow separation. Unlike the corres-
ponding vertical configuration, where the O(1) amplitude waves can be accounted for using
a similarity solution, the flow here is described by a parabolic set of partial differential equations
whose solution cannot be described in terms of a similarity solution. These equations are solved
numerically using the Keller box method (Keller and Cebeci (1971)) for a wide range of wave
amplitudes and phases.

In Sect. 2 we derive the nonsimilar boundary layer equations which apply for the present
problem. The effects of different wave phases and (moderate) amplitudes on the surface slip-velocity
and rate of heat flux are presented in Sect. 3, as are details of global rates of heat transfer.
Numerically we find that the flow develops a pronounced near-wall layer as the distance down-
stream of the leading edge, x, increases. An asymptotic analysis is given in Sect. 4 which shows that
this sublayer has a relative thickness which is proportional to x “'/2 when x > 1 within the O(1)
range in terms of Ra. For wall amplitudes greater than about 0.95 Ra™'/* the flow separates, or
rather, the flow develops one or more regions of reverse flow at the heated surface—these results
are given in Sect. 5. The large-x analysis of Sect. 4 is used to show that there can only be a finite
number of such separated regions, and that there is no separation for sufficiently large values of x.
We discuss the results in Sect. 6.

2. Derivation of the boundary layer equations

Consider a horizontal surface with transverse sinusoidal undulations embedded in a porous
medium with constant ambient temperature, T,,, as shown in Fig. 1. In particular, we assume that
the surface profile is given by

= §(%) = asin(n%/l — ¢), 1)

where a is the amplitude of the surface wave, | is a characteristic length associated with the wave
and ¢, the phase of the wave. The temperature of the surface is maintained at the constant value, T,

)

|
+ - |

Fig. 1. Physical model and coordinate system depicting transverse surface waves.



154 D.A.S. Rees, 1. Pop | Fluid Dynamics Research 14 (1994) 151-166

which is greater than T . The basic flow is considered to be steady and two-dimensional. All fluid
and porous medium properties are assumed to be constant except for the buoyancy term and we
assume that the Boussinesq approximation is valid. In terms of dimensionless variables, the Darcy
and energy equations can be written as

oty oYy 00

o P o T T RGe @
20 20 opo0 oy a0

e i 1 (3)
O0x dy dydx 0x 0y

where Ra = gfKI(T,, — T, )/vk is the Darcy—Rayleigh number based on the temperature drop and
the wave lengthscale, I. The boundary conditions which apply are the following:

=0, =1 ony=s(x)=asin(nx — ¢), (4a)

oYy/dy—0, 0—->0asy— 0. (4b)
The dimensionless variables are defined as

x=%/l, y=7y/l, y=y/x (Sa)

O0=(T—-TH)/(T,—T,), a=all (5b)

Here i is the dimensional streamfunction which is defined in the usual way. In this paper we
restrict attention to those cases for which the nondimensional distance from the leading edge, x,
remains O(1) as Ra— oo and assume that the wave amplitude of the surface profile, a, is
O(Ra~ ') this is, in fact, exactly the order of magnitude of the boundary layer thickness. We note
that this condition restricting the maximum amplitude of the waves, and hence the maximum slope,
is identical to that employed by Rees and Riley (1985), and Ingham et al. (1985) in their study of
convection induced by a near-horizontal plane surface in a porous medium.

The effect of the wavy surface and the invoking of the usual boundary layer scalings are
incorporated into the full governing equations by means of the transformation given by

x=¢ y=¢EPRa P+ asin(nd - ¢) (6)
together with the substitutions
= EY3Ra3f(E ), 0=0(n) anda= Ra '3a (7)

It is straightforward to show that, at leading order in Ra, where Ra » 1, the following equations are
satisfied,

S = [20/3 + amcos(n¢ — ¢) &0, — &0:, (8a)

Oy = S0 — 1:0,) — 10,/3, (8b)
together with the boundary conditions

f=0, =1 ony=0, (9a)

S, 020 as n—- . (9b)
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As is usual for this class of problem the solution at £ = 0 is obtained by simply setting £ = 0 in
Egs. (8), since all terms involving ¢-derivatives are multiplied by . Furthermore the £ = 0 solution
is the plane surface similarity solution. In view of the singular derivative of the £!/° term in Eq. (8a)

at £ = 0 it was deemed necessary to rewrite Egs. (8) in terms of the stretched variable & = '3 when
¢ < 1. In such cases fand 6 satisfy
fon = [20/3 + ancos(né> — ¢)€16, — £6:/3, (10a)
On = E(fo0 = J20,)/3 — £0,/3, (10b)

and these equations are also subject to the boundary conditions (9).

These two sets of partial differential equations were solved using the now well-known Keller box
method (Keller and Cebeci (1991)). Unless otherwise stated in the text the solutions were obtained
using a uniform streamwise step of 0.02 in the é- or &-directions, and a nonuniform grid of 116
points in the #-direction. We took #,., = 20, a value well outside the plane surface boundary layer,
and concentrated the grid points towards n = 0. At each step convergence was assumed to have
taken place when the maximum absolute change in any quantity was less than 1078 and double
precision arithmetic was used throughout. In general convergence was not difficult to achieve
whenever a < 0.5, and four Newton-Raphson iterations were usually required to obtain conver-
gence. For larger values of o convergence was assured whenever ¢ lay outside the range from 120°
to 150°. Within that small range of phases, solutions beyond ¢ & 1 could not be obtained even with
extremely fine grids in the £- and/or y-directions.

3. Solutions for moderate amplitudes

In Figs. 2 and 3 are displayed respectively the slip velocity ( f,) and the rate of heat flux (6,) at the
heated surface (4 = 0) for scaled wave amplitudes, « = 0, 0.1, 0.2, 0.3 and 0.4 and phase ¢ = 0°.

IlIIlIIIIIg
0 2 4 6 8 10 12 14 16 18 20

Fig. 2. Variation of the slip-velocity, f,(, 0) with ¢, for wave amplitudes, « = 0, 0.1, 0.2, 0.3 and 0.4 and phase, ¢ = 0°.
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Fig. 3. Variation of the heat flux, ¢,(£ 0) with &, for wave amplitudes, a =0, 0.1, 0.2, 0.3 and 0.4 and phase,
¢ =0°.

Note that our nondimensionalisation implies that the stationary surface waves have nondimen-
sional period 2. Given that the surface waves have maximum slope at £ = 2n, where n is an integer,
it may be seen that slip velocity takes its maximum values just downstream of these positions.
Similarly the minimum slip velocity occurs just beyond the positions of minimum slope,
¢ =2n + 1. For the vertical counterpart of the present problem such maxima and minima of the
slip velocity are precisely at the positions of extreme slope. Although the boundary layer flow is
inherently nonlinear, the effects of increasing the wave amplitude can be seen to be roughly linear in
terms of its effects on the slip velocity.

The heat flux takes its maxima (minima) at positions just beyond where the waves take
their minimum (maximum) slopes. When the slope is positive the usual pressure-gradient
mechanism for producing the boundary layer is aided by the additional contribution due
to buoyancy forces along the heated surface. This results in the local thinning of the
boundary layer and an increased rate of heat transfer. On the other hand the two mecha-
nisms oppose one another when the slope is negative, resulting in a local thickening of
the boundary layer and a decrease in the rate of heat transfer. As we will see later flow
reversal at the surface does occur when the slope is sufficiently large; to our knowledge this is the
first time that flow separation and reattachment has been found for thermal boundary layer flow
in porous media.

The effect of varying the phase of the heated surface is given in Fig. 4. Here the scaled wave
amplitude is 0.4 and plots are presented for the phases 0°, 90°, 180° and 270°. Of these four cases the
maximum positive response is given by the ¢ = 90° curve where the configuration corresponds to
a precisely horizontal leading edge followed by a section of length 1, the maximum possible length,
of positive slope. A similar statement can be made concerning the maximum negative response
being related to the negative slope of the boundary when ¢ = 270°.

Global rates of heat transfer are of interest to the engineer; in Figs. 5-7 we show how this rate
varies with distance downstream of the leading edge. Unlike Fig. 3, which shows the local rate of
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Fig. 5. Global rate of heat transfer, Q, as a function of the downstream distance, &, for different wave amplitudes when
¢ =0

. ds(@) | _
Q= O(n VvT) i da,

heat transfer, these figures depict the total rate of heat transfer obtained by integrating the local rate
from the leading edge. Hence the total rate, Q, is given by

where n is the normal to the wavy surface and 5(x) is the arc-length along the surface. It is
straightforward to show that

(11)
&
Q=Ra1/3(Tw~Tw)J u=20,(u,0)du + ,
0

(12)
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Fig. 6. Global rate of heat transfer, Q, as a function of the downstream distance, &, for different wave amplitudes when
¢ = 90°,
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Fig. 7. Global rate of heat transfer, Q, as a function of the downstream distance, &, for different wave phases when

o = 0.3.
when @ = 6(&, n), or when 6 = 6(¢, ),
£
Q = Ra'(T, — Tw)J 36,(u, O)du + ... . (13)
0

Fig. 5 shows how Q varies with ¢ for different wave amplitudes when the wave phase is zero. Also
shown, for comparison, is the plane-surface result. It is clear that the presence of a wavy surface
profile serves to increase the total rate of heat transferred into the medium for this wave phase.
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When the wave phase is 90° the corresponding change in the rate of heat transfer is greater; see
Fig. 6. For ¢ = 180° and ¢ = 270" it proves very difficult to obtain solutions for the full range of
wave amplitudes and values of ¢ shown in Figs. 5 and 6. However, when o = 0.3, we see in
Fig. 7 that the heat transfer rate is decreased from the plane surface value (not shown), at least for
values of & greater than roughly 2. Clearly both the amplitude and the phase of the wave are
important in determining the precise total rate of heat transfer between the leading edge and some
specified point on the wavy surface. But it is evident from examining Figs. 5 and 6 that the ‘mean’
£1/3 leading order behaviour is retained. Hence the relative effect of the presence of waves on the
total rate of heat transfer is greatest at stations near to the leading edge.

4. Solutions for large distances from the leading edge

In Figs. 2 and 3 we see that the local effect of the surface waves decreases slowly as &, the distance
from the leading edge, increases. We have investigated this further by integrating the equations for
an amplitude « = 0.3 and phase ¢ = 0° from & = 0 to & = 50. The streamlines, isotherms and
contours of the function

are given in Fig. 8. The effects of the surface waves are clearly seen in the streamline and isotherm
plots and can be seen to diminish as ¢ increases. From these two plots there would seem to be no
evidence for the existence of the thin, near-surface layer mentioned earlier. However, contours of
the function given in Egs. (14) clearly display the developing nature of a near-wall layer and we
proceed now to perform an asymptotic analysis for this phenomenon.

First we subtract out the plane wall similarity solution, f = f, (1), 8§ = 0,(n), by setting

fEn) =1 n) + foln), (15a)
0(& 1) =0(,n) + 0o(n), (15b)

T : == ==——————W

0 10 20 30 40 50

Fig. 8. (a) Streamlines, (b) isotherms and (c) contours of the perturbation slip-velocity, f, (£, n) — 1,(0, 1), for configuration
o = 0.3 and ¢ = 0°. Streamlines are at an interval of 0.5 and isotherms at an interval of 0.05.
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Fig. 8. (Continued).

in Egs. (8). Secondly, we define X to be a “slow” length scale given by X = &/L where L > 1. The
resulting multiple-scale equations are
Fon=[20/3 + an(LX)"3cos(né — $)10, — LX [0 + 0x/L]
+ an(LX)'3 cos(né — )00y, (16a)

O = XLL(Fy + fo) O + Ox/L) = (Je + T/ L)@, + 00,)] — [f0, + fo0y + fO0, 1. (16b)
Given that L > 1 the two largest terms in (16a) are

— LX0, and an(LX)?cos(né — $)bo,. (17)
These terms must balance one another and hence, at leading order in L, we obtain

0 = (LX) 2Psin(né — $)0oy- (18)
To leading order in Eq. (16b) we must have

f0n0~<§ =j:§00n (19)
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and hence fis given by

f=a(LX)"¥3sin(ré — ¢) fon- (20)

Thus far, the analysis shows that the streamfunction and temperature should become indistin-
guishable from their plane surface counterparts fairly quickly since the leading order perturbations
decay as L2/, or equivalently as &~ 2/3. However, neither of these expressions for fand § satisfy
the correct boundary conditions at # = 0. This problem is overcome by determining a scale for # in
terms of L in order that the second y-derivatives in Eq. (16a) and (16b) are retained at leading order.
On balancing theff,,, and LX 6‘); terms in Eq. (16a) we are led to the scaling, § = O(L~/?) for large
values of L. Setting n = L™2¢, f=L™23F and § = L 23 in Egs. (16a) and (16b) yields the
following equations at leading order,

Fy= — X0, — anb, XY3cos(né — ¢), (21a)
@gg = X[a1@¢ + b1Fé]> (21b)

where a; = 1.055748 and b, = 0.430213 (cf. Rees and Bassom [10]) arise in the Taylor series
expansion of f, an 6,:

fomy=an+ ..., 6om)y=1—bn+ .... (22)

The solution of Egs. (21) must satisfy the boundary conditions, F = @ = 0 on { = 0, and should
match the solutions (20) and (18), respectively, as { — oo . These equations are easily solved but the
solutions are fairly lengthy to present and are therefore omitted. It should be noted that, although
the amplitudes of f and 6 are O(L ™~ 2'?) for large values of L, the slip velocity and rate of heat flux
corresponding to these terms are O(L ~!/°) since account has to be taken of the near-wall layer
variable, {, when determining these values. Working back through the various scalings we have
introduced eventually gives the following expressions for the slip velocity dnd rate of heat transfer
at the wall surface (y = 0):

fo = 1055748 + (1.1548270/E1%) sin(n& — ¢ + n/4) + o(& ~V6), (23)
0, = — 0.430213 — (0.2994500/¢ /%) sin(né — ¢ + 1/4) + o(&~1/6), (24)

for large values of £&.

5. Separation and reattachment

In this section we consider the flow which arises for larger values of the scaled wave amplitude, o,
than was considered above. When « is sufficiently large (but note that a remains within the
O(Ra'"?) range) regions of reverse flow occur. In view of the above arguments concerning the
roles of direct and indirect buoyancy forces it is to be anticipated that separation, if it arises in any
one particular configuration, will occur when the wave slope is negative. We pursue this aspect
numerically in this section and we have used a slightly modified code to obtain the results given
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270°
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Fig. 9. Positions of separation and reattachment as a function of ¢ for selected values of a.

below. The Keller box code is run from £ = 0 until the value of f, changes sign. The final steplength
is then adjusted iteratively to obtain a zero value of f; to 6 decimal places. A similar procedure is
used to obtain the value of ¢ at which reattachment occurs. It is necessary to note that we have not
modified the basic Keller-box procedure to integrate through the separated region. The point of
separation is regular, as was found by both Rees & Riley (1985) and Ingham et al. (1985) for the case
of a near-horizontal heated surface. Numerical experiments confirmed that the weakness of
the recirculating regions and their small streamwise extent allowed a safe integration through
the separated region, and that the numerical results remain accurate. The Keller-box method
becomes numerically unstable when integrating in a more extensive and powerful region of
separation.

In Fig. 9 we show the positions of separation and reattachment as a function of ¢ for certain
discrete values of . It is clear from this figure that the first point of separation becomes increasingly
close to the leading edge when o increases and ¢ = 180°. For other values of ¢ the trend is not so
straightforward. Taking the « = 2 curve, for example, shows us that a decrease in ¢ from 180°
eventually results in the sudden disappearance of the region of separation close to ¢ = 150°. Also
plotted on this figure is the locus of those values of ¢ at which separation first occurs and
reattachment last occurs for any given wave amplitude; the locus to the left of the bullet symbol, @,
denotes separation, while that to the right denotes reattachment. The bullet itself corresponds to
where separation and reattachment no longer exist; this corresponds to the values: a = 0.948,
¢ = 253.5° and & = 0.612. Thus we conclude that separation cannot occur when « is below 0.948,
and may occur above this value only within certain ranges of values of ¢. An alternative view of
Fig. 9 is given in Fig. 10 where the points of separation and reattachment are given as a function of
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Fig. 10. Positions of separation and reattachment as a function of « for selected values of ¢.

o for discrete values of ¢. Again, we mark the point of the first appearance of separation using the
bullet symbol.

Given our difficulty in obtaining solutions in the range 120° < ¢ < 1507, as mentioned in Sect. 2,
it is worth considering the form Fig. 9 would take should larger values of £ be used. To answer this
question we can use an expression similar to (23) for the slip velocity obtained above. In Fig. 11 we
show a schematic of where separation occurs using the formula

1 +asin(@é — ¢ + n/4)/(& + 1/E)Y2, (25)

which not only retains the decaying sinusoidal behaviour at large values of & but also
accounts for a finite cut-off at small values of ¢, unlike Eq. (23) which is strictly valid
only for large ¢. Fig. 11 shows that the individual regions of separated flow for any par-
ticular phase can be considered to be related to one another by means of changing ¢
smoothly through multiples of 360°. Moreover, in view of the fact that the denominator
in the second term in Eq. (25) (and also Eq. (23)) increases as ¢ increases, there will always
be a distance from the leading edge beyond which separation cannot occur for any given value of
o and ¢ and therefore there can only be a finite number of separated regions for any one
configuration.

Finally we present a figure showing a case where repeated separation and reattachment occur. In
Fig. 12 we show the streamlines and isotherms for the case, ® = 2 and ¢ = 0°. The regions of
separated flow are clearly evident but their size and strength decrease with each subsequent
appearance. Eventually separation ceases to take place, in line with the qualitative analysis
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above. Associated with the appearance of separated flow is a substantial enlargening of the
boundary layer thickness locally. When the wave slope is negative the rate of heat transfer
rises very markedly, as seen by the closeness of the isotherms, but this effect also wanes further
downstream,

@ (degrees)
350°r

300°r

250°r

50°

Fig. 11. Schematic corresponding to Fig. 9 showing the qualitative behaviour of the regions of separation using the
formula (25).

£

Fig. 12. (a) Streamlines and (b) isotherms for the configuration & = 2 and ¢ = 0° showing repeated regions of separated
flow.
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Fig. 12. (Continued).

6. Discussion

We have investigated the effects of a small-amplitude wavy surface profile on the free convective
boundary layer flow induced by a constant temperature, horizontally aligned, semi-infinite surface
embedded in a porous medium. Results have been presented which give the local slip velocity and
heat flux as functions of both the amplitude of the waves, «, and the phase, ¢, and the qualitative
nature of these results are related to the local conditions at the wall. It has been shown that an
internal, thin, near-wall layer develops as the distance downstream of the leading edge increases
within the O(1) range of values considered here. Strictly speaking, this asymptotic analysis is valid
only within the frame-work of the boundary layer scalings, y = O(Ra~!?) and x = O(1) as
Ra— oo . The next step in the study is to relate the large-x lengthscale, L, to some power
of Ra in order to obtain an analysis with only one limiting process, and which is valid far
downstream of the leading edge. Such an analysis would be equivalent to looking at the effects of
small wavelength waves, a configuration more closely related to the study of the effects of surface
roughness.

Attention has also been given to the flow resulting from sufficiently large wave amplitudes within
the O(Ra~'"?) range. Following extensive computations we have delineated those regions where
reverse flow occurs and found the wave amplitude below which separation is guaranteed not to
occur. Clearly, for asymptotically larger wave amplitudes (with an O(1) wavelength) the present
analysis does not apply, but the implication is that regions of separation will persist for substantial
distances downstream of the leading edge. For such configurations the present boundary layer
scalings are unlikely to apply, and we suspect that, given a sufficiently large wave amplitude, the
direct buoyancy forces will be strong enough to produce pairs of boundary layers which collide at
each wave crest to form plumes. These plumes would presumably rise in an unsymmetrical manner
and deflect away from the leading edge following the overall motion in the positive x-direction.

It is our intention to extend the results of this paper in various directions, one of which is given in
the first paragraph of this section. A second extension is to consider the effects of a constant heat
flux surface. However, another configuration of great interest is a heated surface with longitudinal
waves; preliminary results are available in Rees & Pop (1994c).
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