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Summary. The effect of spatially stationary surface waves on the forced convection induced by a moving 
surface in an otherwise quiescent fluid is examined. We consider the boundary layer regime where the 
Reynolds number Re is very large, and assume that the surface waves have O(1) amplitude and wavelength. 
The boundary layer approximation is valid and the resulting parabolic equations are solved using the 
Keller-box scheme. Detailed results for the local skin-friction coefficient are presented, as are results for the 
local Nusselt number for both the cases of a constant wall temperature and a constant wall heat flux. 

Notation 

a amplitude of the wavy surface 
C I skin friction coefficient 
f reduced streamfunction 
g, h reduced temperatures 
k thermal conductivity 
l lengthscale associated with the surface waves 
n unit vector normal to the wavy surface 
Nu local Nusselt number 
p pressure 
Pr Prandtl number 
q rate of heat flux 
Re Reynolds number based on l 
Re x local Reynolds number 
s t surface profile 
T temperature 
u, v fluid velocities in the (x, y)-directions 
x, y streamwise and cross-stream cartesian coordinates 

Greek symbols 

4, t/ pseudo-similarity variables 
a notation; see equation (5) 
0 dimensionless temperature 
# dynamic viscosity 
v kinematic viscosity 
Q density 
z skin friction 
~k streamfunction 
q5 wave phase 

* Dedicated to Professor Dr.-Ing. Dr. techn. E. H. Jtirgen Zierep on the occasion of his 65th birthday 
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Superscripts 

-- dimensional variables 
^ transformed variables (4 < 1) 
" boundary layer variables 
' differentiaition with respect to 2 or 

Subscripts 

w condition at the wall 
co condition at infinity 

1 Introduction 

The study of the flow and heat transfer created by a moving wall in an otherwise quiescent fluid is 
relevant to several applications in the fields of metallurgy and chemical engineering. A number of 
technical processes concerning polymers involve the cooling of continuous strips or filaments by 
drawing them through a quiescent fluid. In these cases the properties of the final product depend 
to a great extent on the rate of cooling which, in turn, is governed by the structure of the boundary 
layer near the moving strip. Due to the entrainment of the ambient fluid, this boundary layer is 
different from the Blasius boundary layer flow past a flat plate. Sakiadis [1] was probably the first 
to study the boundary layer flow due to a moving wall in fluid at rest. Subsequently, many 
investigators have studied various aspects of this important problem, but we mention here only 
the papers in references [2]-[15]. 

The present analysis aims to study the flow due to and the heat transfer from a moving wavy 
surface in a fluid which is at rest. The effects of the amplitude of the wavy surface is studied in the 
forced convection regime where the boundary layer approximation is valid. We consider two 
different cases, namely, (i) that of a prescribed constant wall temperature (CWT), and (ii) 
a prescribed constant heat flux (CHF). Such surfaces can been considered to be good 
approximations to many practical geometries for which flow and heat transfer characteristics are 
of interest. The resulting non-similar boundary equations form a set of parabolic partial 
differential equations which is solved using the Keller-box method. The distribution of the 
velocity and temperature fields, as well as the skin friction coefficient, Nusselt number and the 
wall temperature along the wavy surface are presented. We note, in passing, that the method used 
in this paper is similiar to that used by the authors [16], [17] for the problem of free convection 
flow from a vertical wavy surface embedded in a porous medium. 

2 Governing equations 

Consider a wavy surface moving tangentially to itself with a constant speed U o through a stag- 
nant incompressible fluid of constant temperature To~ as shown in Fig. 1. We assume either that 
the surface temperature remains uniform at Tw(T~, #~ T~), or that the heat flux at the surface 
remains uniform at qw. The basic nondimensional equations governing steady flow are 

~ ~21~ ~/J~21/l__ ap 1 V2f~@" ~ 
t?y ax ay t?x ~y2 ~x + Ree k-~y ]' (1) 
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} 2t { 

Fig. 1. Physical model and coordinate system depicting transverse surface waves 

(?~k(?zlp (?lp (72~ (?p 1 V2f(?lp'~ 
(?y (?x 2 88x OxOy = (?y +Ree \Ox / l '  (2) 

(?0 (?0 (?0 00 1 
(?y (?x Ox (?y (Pr Re) 

- -  V20. (3) 

The boundary  conditions at y = sdx) = a sin (nx - 4)) are 

0 = 0, (?0 (?o (?o (?y = a -1 ,  0 = 1 (CWT), (?Y s t '~x  - a ,  (CHF) (4.1) 

whilst we have, as y ~ oo, 

- -  0, (p - p o o) ~ 0. (4.2) 
(?x' Oy' 

Here, a is defined according to 

= l /1  + (s,') a. (5) 

The nondimensional variables are obtained using the following scalings: 

:g y ~ p a Uol 
X = l '  Y = l '  ~ t =  ~o / '  P - 0 U o  2' a = ~ ,  R e -  u ' 

T - T o o  T - - T ~  
0 -  T~, -  Too' (CWT) 0 = qwl (CHF).  (6) 

Here ~ is a nondimensional  streamfunction which is defined in the usual way: (u, v) = (Or, - ~0x), 
and ~i is the amplitude of the wavy surface. 

The effect of the wavy surface can be transferred from the boundary  conditions (4) to the 
equations by means of the t ransformation given by 

2 = x ,  ~ = y -- &(x). (7) 

Equations (1) to (3) then become 

(?0 (720 (?0 (72~ (?p 
Oy ~2 8y 8~ 8y 2 82 

(?p 
+ s,'(~) ~-y + R e - '  ~1~' ,  (8) 
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(04, 324, 04, (024, 
(033 (0~ 2 (02 (02 (033 

(04, (024, 
+ s,'(~) ~ (033 2 

(04, 320_  ((04,y 3p e 4, 
(033 (02 (033,1 + s,"(2) \(033] = ~ + R ~ '  (9) 

(04, (00 (04, 30 LP30 

(033 32 32 3r Pr Re 
(lO) 

which are to be solved subject to 

__(00 = a - 1  , 0 = 1 ( C W T ) ,  a 2 = __(00 _ s / (2)  (00 = 
r = 0, (0)) (033 ~ - a ,  (CHF) (11.1) 

on 33 = 0, and 

(00 30 0~' (0~' 0, (p - p . )  --. 0 (11.2) 

as 33 --> oo. In (10) the three operators,  2#1, ~~ and &'r are defined as follows: 

(0 3 (0 3 3 3 3 2 
~ = a 2 - -  + 2 s , ' ( 2 )  - -  st"(2) ( 1 2 . 1 )  

(0r 3 (0y (022 (0r 2 (02 (0r 2, 

(0 3 3 3 0 3 
~ a  = -s , ' (2 )  cr 2 (033--- ~ + (1 + 3s/'(2)) ~ + ~ g  - 3s/(2) - -  

3 2 (0 
+ 3s,'(~) s,"(~) (0~-- ~ - s,'"(~) (0-r 

(0 3 (0 2 
(0~(0~ ~ 3s;'(e) (0~(0~ 

(12.2) 

(0 2 (0 2 (0 2 (0 
s = a 2 -  + - -  - 2 s t ' ( 2 ) - -  - st"(2) (12.3) 

3~ 2 (0~ ~ (0~ (0r ~ 

Next we introduce the boundary  layer scalings, 

92 = 2, 37 = Re~/233, ~ = ReX/2O, ~ = p -- P~o, (13.1) 

0 = 0 (CWT) 0 = Re~/20 (CHF).  (13.2) 

Thus, on introducing (13) into (8) to (11) and formally letting Re -~ 0% we obtain the following 
boundary layer equations, 

(0~ 32r 0~ (0z~ 3~ st'(x') ~ (0p a 2 (03~ (14) 
(037 (0~& (0~ 337 2 - 0~ + ~ + (037 3, 

s/(x) ~ (037 (037 (0~ (037/ s"'(x) 2(0U + s/(x) ~ 2  = - (0373 1~ ~, ( 1 5 )  

(0~00 0 5 3 0  1 (020 
a 2 -  (16) 

(037 0~ 0Y (037 Pr  (037 2, 

together with the boundary  conditions, 

= 0 ,  0~ _ a - 1  0 = 1  (CWT), a2(00 30 (037 ' ~ - st'(Y) ~ = - -a ,  (CHF) (17.1) 
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on )7 = 0, and 

0_~ 0, ~--+ 0 as 37 ~ oo. (17.2) 
837' 

Equation (15) indicates that the pressure gradient in the y-direction must be O(Re-1/21. This 
implies that the lowest order pressure gradient in the x-direction can be determined from the 
inviscid flow solution. For the present problem, the inviscid flow field is at rest and hence the 
pressure gradient is zero. For the present problem, Eq. (15) shows that Re 1/2 ~3/~/~337 is O(1) and is 
determined by the left-hand side of the equation. Elimination of this pressure gradient Eqs. (14) 
and (15) results in the following equations, 

01~ 02t~ 0~ 021~ 0" 2 (Ot~'~ 2 = 0" 2 031~ 

037 0~ a37 a~ 037 ~ + 0- kaY) 0373, 

0~ 00 a~ 00 1 020 
0-2 _ _  (19) 

037 0~ 0~ 037 Pr 037 2, 

where 0-' = d0-/d:~. These equations are subject to the boundary conditions (17). 
To solve Eqs. (18) and (19), we introduce the further transformation, 

(18) 

= Y, ~ = 0- l /~f(r r/), (20.1) 

0 = g(~, r/) (CWT), 0 = V ~ h(~, r/) (CHF), (20.2) 

where 

37 
q - , _  (20.3) 

V~ 0- 

is the pseudo-similarity variable. Substituting (20) into Eqs. (18) and (19) gives 

ff•q 0-t 
L,,  + 7 -  + -o- ~(fL, - L  21 = ~(f,L~ - hL, ) .  (21) 

1 h . .  -~ Jh, - f . h  0-' 
p~ ~ + --0- ~fh,~ = {(f,~hr -fch,~), (23t 

for the (CHF) case. The corresponding boundary conditions are 

1 
f = O ,  f ~ = - ,  g = l  (CWT), h , = - I  (CHF) at i / = 0 ,  (24.1) 0- 

and 

f , , g , h ~ O  as r/--+ oo. (24.2) 

for the (CWT) case and 

1 . fg~/ 0 "I 

er  g,m -P T + --0- {fg" = {OC'~gr --fcg~)' (22) 
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Important  physical quantities are the local skin friction coefficient and the local Nusselt 
number defined as 

% 2qw 
C I - eUo2, Nu  k ( T . , -  To~) (25) 

where 

z~, = #n.Va, q~ = - k n . V T  (26) 

and n = ( - s / ( x ) ,  1)/o- is the unit vector normal to the wavy surface. Using (6), (7) and (13), we 
obtain 

Cy 
R ] / ~  - af~,(~, 0), (27.1) 

NH 
- g,(~, 0), (CWT) (27.2) 

where the local Reynolds number is Rex = Uo2/V. For  the CHF case the wall temperature is 
given by Tw - T~o = (qJ/k) Rex- 1/2 r 0) and hence 

Nu 1 
]//-~ h(r 0)" 

(27.3) 

3 Results and discussion 

Equations (21) to (23) subject to the boundary conditions (24) were solved numerically using the 
Keller-box method for different values of the wave amplitude, a and wave phase, qS. In all the 
computations presented here we used a step size of 0.01 in the i-direction and we took a 
nonuniform grid comprised of 80 points over the range 0 < q < 40; we claim that our solutions 
are accurate to between the 3rd and the 4th significant figure. Using a Prandtl  number of 0.7, to 
which we restrict ourselves in this paper, we find that the code reproduces the plane-walt (a = 0) 
solutions given by 

f~(~, 0) = -- 0.443 8 (see Ref. [11]), (28.1) 

g,(~, 0) = -0 .3492  (see Ref. [2]), (28.2) 

h(~, 0) = 2.863 3, (28.3) 

where the final figure has been computed by ourselves. 
In Figs. 2 a, b, c we present the variations off,~(~, 0), g~(0), and h(~, 0), respectively, for various 

wave amplitudes when the wave phase is q~ = n/2; this phase corresponds to the surface being 
parallel to the x-axis at the origin. As the wave amplitude increases the skin-friction coefficient 
and the Nusselt number for both the (CWT) and (CHF) cases decrease. The graph of f,~(~, 0) 
seems to settle very quickly into a periodic state, whilst the graphs ofg,(~, 0) and h(r 0) both have 
a periodic component which decays, the decay being very slow in the (CWT) case but quick in the 
(CHF) case. The corresponding graphs for the wave phase, q~ = 0, are given in Figs. 3 a, b, c. For  
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Fig.  2. Variation of  a the skin-friction, 
f , , (~,  0), b the local  rate of  heat  transfer, 
g~(~, 0) (CWT),  and e the wall  tempera- 
ture, h(~, 0) (CHF),  for wave  amplitudes,  
a = 0, 0.1, 0.2, 0.3 and 0.4 and phase, 
~b = 90 ~ 



156 

f~ (~,o) 

D. A. S. Rees and I. Pop 

a : 0./,. 

a : 0.3 

e :0,2 

o :0 . I  

(1=0 

0 1 2 3 4 5 6 7 8 9 10 

g,~ (2,0) 

- 0 . 2 6 - -  

-0.28-  

-0.3 - 

- 0 . 3 2 -  

- 0 .34 -  

-0.36 

o :  0.3 

Q: 0.2 

cl = 0.1 
- - c t = O  

I I t i i t I i t I ~ 
1 2 3 4 5 fi 7 8 9 10 

h ('~,0) 

3 .8 -  

3 . 6 -  

3.4-  

3 .2 -  

3 .0 -  

2.8 

C 

I I ] I I I I I I 

1 2 3 4 5 6 7 8 9 

a : O A  

a :O.3  

o.=0.2 

Q= 0.1 
G=O 

IZ 
10 

Fig. 3. Variation of a the skin-friction, 
f~,(~, 0), b the local rate of heat transfer, 
g,(~, 0) (CWT), and c the wall tempera- 
ture, h(~, 0) (CHF), for wave amplitudes, 
a = 0, 0.1, 0.2, 0.3 and 0.4 and phase, 
@ = 0  ~ 
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Fig. 4. Variation of a the skin-friction, 
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ture, h(C, O) (CHF), for waves phases, 
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this wave phase, and indeed for all others, the skin-friction coefficient and the Nusselt  number  

decrease with increasing ampli tude and exhibit correspondingly identical behaviour  as ~ be- 

comes large. 

The variat ion of the solut ion with changing wave phase is given in Figs. 4 a, b, c for the wave 

ampli tude a = 0.3. We note that  solutions for wave phases ~b and ~b + n are identical. Again we 

see the approach  to spatial  periodicity for the skin-friction coefficient and the differing rates of 

decay of the sinusoidal components  of the Nusselt  numbers.  

I t  is our intention to extend this work  to considering the effect of longitudinal  surface waves 

on the flow and heat  transfer from a moving surface in a quiescent fluid. 
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