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SUMMARY

A linearized vortex instability theory for convection induced by a semi-infinite
horizontal heated surface embedded in a fluid-saturated porous medium is developed.
Due to the inadequacies of existing parallel-flow theories the problem has been
re-examined using asymptotic techniques that use the distance downstream of the leading
edge of the surface as the large parameter. The parallel-flow theories predict that at
each downstream location there are two possible vortex wavenumbers which lead to
neutrally stable modes. It is demonstrated how one of these disturbances is only weakly
dependent on non-parallel terms, whereas the second mode is crucially dependent upon
the non-parallelism within the flow. Consequently, this second mode cannot be described
by any quasi-parallel approach and its properties may only be deduced by numerical
computations of the full governing equations. We illustrate how our theory, which has
similarities with that employed in the analysis of high wavenumber Gértler vortices in
boundary layers above concave walls, may be used to isolate the most unstable vortex
mode.

1. Introduction

THE topic of thermal convection in porous media has been one of considerable
interest in the general areas of Auid dynamics and heat transfer. There are many
reasons for this--on the practical side there is concern with a new generation
of engineering projects dealing with topical issues like energy conservation and
the optimization of heat transfer. Meanwhile on the theoretical front there is
the need for a comprehensive framework which covers the field in much the
same way as the solutions of the Navier-Stokes and energy-conservation
equations cover thermal convection in fluids.

The study of convective instability in porous media has, with few exceptions,
concentrated on basic flows that are confined in one or more coordinate
directions and which are typically spatially uniform. For such problems a linear
stability analysis is performed by appealing to the spatial uniformity in order
to Fourier-decompose the disturbance into a sum of independent components
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(1). The ordinary differential equations governing each of the disturbance
components are solved to obtain the Darcy-Rayleigh number, say, as a function
of the wavenumber of the disturbance. The spatial periodicity arising in the
linear stability analysis is also used to extend the analysis into the nonlinear
regime, although it is usual to have to employ numerical methods to carry this
out (2 to 5). All the above-mentioned papers deal with the porous-medium
analogue of the Bénard problem, the study of which has now reached well into
the nonlinear regime with a detailed analysis of the transition to unsteady flow
appearing only relatively recently (6).

A corresponding study of thermal boundary layers induced by semi-infinite
heated surfaces embedded in a porous medium remains in its infancy, however.
The principal reason for this is that the growing boundary layer is spatially
non-uniform. As far as wave-like disturbances (or Tollmien—Schlichting waves)
are concerned (where the resulting flow remains two-dimensional) a naive
Fourier decomposition cannot be expected to give an accurate prediction of
where the boundary layer becomes unstable because the basic flow is growing
spatially and hence the disturbances will not be periodic. This type of
porous-medium problem is of interest and has been motivated mainly by
geothermal applications. The formation of geothermal reservoirs is thought to
be associated with the presence of recent volcanism or intense tectonic
movements. Such activity can result in the production of magmatic intrusions
in subterranean aquifers which cool to form impermeable dikes or can lead to
a large region of heated bedrock (7). These systems are often idealized in the
first instance to be flat and semi-infinite surfaces embedded in a porous medium.

We have been unable to find a paper which deals with wave disturbances in
porous-medium thermal boundary layers although there are a few analysing
isothermal and non-isothermal boundary layers in fluids, see (8 to 10). A recent
investigation by the present authors (11) has addressed the nonlinear evolution
of wave disturbances in horizontal boundary-layer flow using numerical
methods to solve the full governing equations. We found that the flow admitted
several different nonlinear phenomena such as cell-merging, the eruption of
plumes from the boundary layer, intermittent boundary-layer thinning and
chaotic motion. The formation of plumes rising out of the boundary layer was
seen to cause the temporary thinning of the boundary layer and the subsequent
inhibition of instability near the leading edge. Thus there is ample evidence that
an evolving instability influences conditions well upstream of itself, and we
conclude that should a linear instability analysis be performed then its validity
could, quite legitimately in view of the results of (11), be called into question.

In the present paper we analyse disturbances to the horizontal boundary
layer which take the form of longitudinal vortices. Unlike the case for wave-like
disturbances it is quite legitimate to Fourier-decompose the disturbances, but
only in the spanwise direction. Hsu and Cheng (12) and Hsu, Cheng and Homsy
(13) have performed linear stability analyses of convection from inclined
and horizontal isothermal surfaces, respectively, using the parallel-flow
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approximation. This means that the vortex disturbances have a prescribed
streamwise variation, thereby yielding a set of ordinary differential equations
for the disturbances. The sole advantage of the approximation is that neutral
curves may be calculated relatively easily, but it also has a major drawback. It
has been known for some time that in non-parallel flows the linear stability
properties of imposed disturbances are non-unique and depend to some extent
on how and where the disturbance starts. This was probably first commented
upon by Bouthier (14, 15) for wave-like perturbations in non-parallel flow and,
more recently, has been discussed extensively by Hall (16) in the context of
Gortler vortex disturbances in boundary layers. The studies of Hall have shown
that, except in the case of small spanwise vortex wavelength, the results of a
parallel-flow analysis are completely unreliable for Gértler modes and this
raises the possibility that a similar situation may occur for the vortex modes
considered here. As further evidence of this it is worthwhile to examine the
results of the parallel analysis for the thermal boundary-layer flow induced by
a horizontal heated surface embedded in a porous medium. Hsu et al. (13)
asserted that in this situation the longitudinal vortex is the favoured instability
mode, but although they stated that this assumption follows from experimental
evidence no reference to such work was given in their paper. The parallel-flow
calculation predicts that longitudinal vortices grow beyond a non-dimensional
distance of 3347 from the leading edge. However, a similar analysis for
wave disturbances by the present authors (17) shows that the corresponding
critical distance is only 29-80. This suggests that waves constitute the more
unstable of the two types of mode. This surprising result clearly means
that one has to question the use of the parallel-flow approximation for this
problem.

The result of the parallel-flow work described in (13) is that a unique stability
curve is obtained for the longitudinal vortex modes. Sufficiently far downstream
of the leading edge there are two vortex wavelengths (functions of the
streamwise distance) that are neutrally stable. We shall see here that the
parallel-flow results can only be relevant at asymptotically large distances from
the leading edge. Furthermore, of the two ‘neutral’ modes predicted by the
parallel theory one is indeed largely independent of the non-paraliel terms and
may be described in a manner akin to that in (18) for the Gortler problem; this
accounts for the weak non-parallelism without formal difficulty. However, the
second mode is sensitive to the non-parallel terms and we deduce that the
concept of a unique neutral stability curve for this second vortex type is
untenable. In addition, in the course of our investigation we are able to
determine the most unstable mode, that is, the wavenumber and structure of
the most rapidly growing longitudinal vortex.

The basic configuration we consider is shown in Fig. 1. A wedge-shaped
region of angle « is composed of a fluid-saturated porous medium and is
contained between two semi-infinite impermeable surfaces. One bounding
surface (y = 0, x = 0) is inclined at an angle 6 from the vertical whilst the other
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is insulated; the ambient temperature of the medium is zero. All of our
calculations will be confined to the case when § = {n, a = 3r so that the heated
surface is horizontal. Although this may appear to be a very specialized choice,
the main attraction is that for this particular geometry we do have an exact
solution for the underlying basic flow; see (19). Thus we can concentrate in this
paper on assessing the effects of the non-parallelism of the vortices without
resorting to an approximation of the basic flow. For other values of o and §
the boundary-layer flow can only be obtained approximately except for the one
vertical case, d =0, a = m; see (19). We are currently investigating this more
general problem which necessitates both approximating the underlying flow
and describing non-parallel stability properties. It should be emphasized that
our asymptotic description is only formally justifiable at large distances from
the leading edge (this is completely analogous to the situation described by
Hall (20) where the asymptotic analysis is valid only for large values of the
Gortler parameter). In order to provide a complete description of the stability
propertics of the flow over the complete range of streamwise distances a
numerical approach is required.

The procedure in the remainder of the paper is as follows. In section 2 we
introduce the equations of motion and derive the linear stability equations for
vortices in a boundary-layer flow above a horizontal surface. We briefly review
the parallel analysis of the stability problem and then, in section 3, obtain the
non-parallel solutions far downstream of the leading edge. This demonstrates
how accounting for the effects of non-parallelism influences significantly the
stability characteristics of the flow and, as a by-product, we are able to obtain
the form of the most unstable vortex. In section 4 we close with a brief discussion
and draw some conclusions.
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2. The linear stability equations for longitudinal vortices

The basic configuration we consider is as described in the introduction and
shown in Fig. 1. The bounding surface y == 0, x > 0 is horizontal whilst the
second surface is vertical and insulated. We denote the fluid velocities in the x,
y, z directions by u, v, w respectively, the pressure by p and the temperature by
6. Assuming that Darcy’s law and the Boussinesq approximation are both valid
the non-dimensional equations governing steady flow take the forms

du 0Ov Ow
__+__=

— 4 0, 2.1a
Ox 0y Oz @12
15}
uz_a_p, 1):0—_’7, w=—-(?£, (21b,C,d)
Ox dy 0z

00 a0 00 @_620 9*0 %0

-+u—+v— +w + + . 2.1e
ot ox Oy dz  dx* oy*  9z? (2.1e)

Details of the non-dimensionalization involved may be found in (21). Since
there is no natural length scale in the problem we have set the Darcy—Rayleigh
number equal to unity; this defines a dimensional length scale in terms of the
material parameters of the problem. In the absence of the vortex disturbance
the basic flow is two-dimensional so that we write

(u,v) = (d(x, y), 5(x,y)), p=p and 0=4. (22)

The continuity equation (2.1a) implies the existence of a streamfunction Y such
that & = —y,, # = . and elimination of the pressure between (2.1b, ¢) yields
the governing equations for the basic steady flow:

lpxx + 'I’yy = _éx’ gxx + éyy = J’yéx - Ipxgy' (2.33, b)

In terms of polar coordinates, x = r cos ¢, y = r sin ¢, the boundary conditions
may be written as

Y =0, =1, on¢=0, (2.4a)

. 0

Y =0, 6¢~=0, on ¢ = 3n, (2.4b)
60, y=o(r) asr— x,0<¢ <. (2.4¢)

We can solve for the basic flow by appealing to the exact solution given in
(19). Equations (2.3a, b) subject to the boundary conditions (2.4a to ¢) are
satisfied by

=3,  0=4), (253, b)
where the coordinates ¢ and 5 are defined by & = 3rd cos(¢p/3), n = 3rs sin(¢/3)
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or, alternatively, by

¢

_ 5 (g2 a2 _ M2 2
X—27(§ 3%, vy 27(35 n“). (2.6a,b)

The functions f and § satisfy

f"=4ng'=0, g +1fg =0, (2.7, b)
subject to
fO=0, §gO)y=1, f,§—0 asn— oo, (2.7¢)
Equations (2.7a, b) and boundary conditions (2.7c) were first obtained and
solved numerically by Cheng and Chang (22) in their study of the leading-order
boundary-layer flow far downstream of the leading edge.

2.1 The disturbance equations

We now perturb the basic flow (2.2), (2.3) in order to deduce the equations
which govern linearized vortices within the boundary layer. We write

(u,0,w, p,0) = (&,5,0, p, 0)
+e(U(x, y, 1), V(x, 5, 1), W(x, y, 1), P(x, , 1), T(x, y, ))E,  (2.8)

where we define E = exp(iaz) and suppose that ¢ « 1. This form of disturbance
allows us to investigate the properties of vortices with spanwise wavenumber
a. On substituting (2.8) in (2.1), linearizing and then eliminating the disturbance
velocities U, ¥ and W from the five perturbation equations, we are left with
the final coupled equations for the disturbance pressure P and temperature T

2 2
0P oP ap T (2.92)
ox?  oy? dy
n P 0 n 2 2
OT | ;00 OT T oPob_aPod _OT T _ .. o

Y DAy SR
ot dy Ox dy 0xdx 0dydy oOxr  9y?

In order to solve these perturbation equations we need to specify appropriate
boundary conditions. From relations (2.6) and the basic flow solutions (2.7) it
is clear that the thickness of the boundary layer which develops above the
horizontal surface y =0 is O(xg). We shall be concerned with vortices within
this layer so it is sufficient to state that, since the perturbation temperature and
velocity normal to y = 0 must both vanish, we require that
T=a—P—O onx>0,y=0.
ay

We also demand that 7, P —» 0 as we move out of the boundary layer. In
addition, to solve (2.9) we must specify suitable initial conditions for the
particular problem at hand. In the following analysis we shall be exploring the
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possible vortex structures for a prescribed vortex wavenumber a and shall not
need to give detailed initial conditions.

Given the transformations (2.6) and the solution (2.7) for the basic flow it is
straightforward to rewrite the disturbance equations (2.9) in the (¢, n)-
coordinate system;

2 2 2 2532
OT OT (M) ap
08 on? 81

2_.

_( n)gT+éf@T for _op

5% (2104
9 39 3o Yo M

P P (&4 L, (€ —n)oT  2ndT

gkl 272 2.10b
oer " on? 81 9 a9 (2.105)

It should be emphasized at this point that these disturbance equations are
precise; for the particular configuration examined here no approximations have
been invoked. A parallel-flow analysis of (2.10) involves specifying the form of
the &-derivatives and thus reducing the governing partial differential equations
to an ordinary differential form. We shall see how a formal asymptotic solution
may be developed far downstream of the leading edge (£ » 1) which allows the
non-parallel terms to be taken into account without difficulty. We also note
that in (2.10) we have taken the vortex to be stationary; thus we have suppressed
the temporal-derivative term. This is because we shall be interested in examining
the properties of the initial stages of the instability and, as in previous studies
of longitudinal vortices (see (8, 9)) and of Gortler vortices (18, 20), we assume
that in these initial stages the spatial evolution of the vortex structure is
dominant over the temporal evolution.

Before moving to the non-parallel account of the problem it is useful to
quickly summarize the parallel-flow results. This serves two purposes: first, it
will enable us to see the importance of non-parallelism later and, secondly, it
motivates many of the scalings in the following section.

Of importance in linear-stability studies is the neutral-stability curve which
indicates the parameter combinations for which the vortex disturbance neither
grows nor decays. A parallel-flow argument assumes that the ¢-dependence in
the coefficients of the stability equations is suppressed so that we can effectively
put ¢/¢¢ =0 in (2.10b). If in addition it is assumed that the vortices are not
‘wavy' then we are left with the linked equations

2T (E+9h)? ~dT  _,dP
— a’*T =32 —n»g'T -} -g . 2.11a
dn? 81 o(C* = n*)g 3 in "9 ay (2.112)
d*P (& + n?)? dT

2p =12 - n? s 2.11b
dllz 81 a 9(¢ n )dﬂ ( )
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Fic. 2. The ‘neutral curve’ arising from solution of the parallel equations (2.11)
subject to boundary conditions (2.12). Shown is the dependence of the vortex
wavenumber a on the streamwise location ¢

subject to the boundary conditions

T=dP=O onn=0; T,P—>0 asn—o w. (2.12)
dn

This constitutes an ordinary differential system in n and is an eigenvalue
problem for the streamwise coordinate ¢ in terms of the wavenumber a. A
numerical solution of (2.11) is easily accomplished and results in the ‘neutral
stability curve’ depicted in Fig. 2. For each downstream coordinate ¢ > & = 9-7
(or x > ~33in agreement with the result of (13)) there exist two wavenumbers
corresponding to neutral stability. The critical wavenumber is a. = 0-059 and,
for wavenumbers a > =0-094 the vortices are predicted to be linearly stable at
all distances downstream. Furthermore, it is clear from the numerical results
that, as ¢ — o, the neutral wavenumbers approach zero; the ‘left-hand’ branch
corresponds to a = O(1/&3) and the vortex structure then extends across the
entire boundary layer (n = O(1)) whereas on the ‘right-hand’ branch
a = O(1/¢) and the vortex is compressed into the thin region where 5 = O(E™1).
Detaiis of these asymptotes will be postponed as they can be deduced as special
cases of the non-parallel work to which we turn now.

3. Non-parallel analysis of induced vortices

Here we shall examine how non-parallelism can modify the conclusions of
the simple parallel-flow analysis alluded to above. In common with other
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problems of this type we can only expect to be able to obtain an asymptotic
description of the stability properties far downstream of the leading edge, & > 1.
Clearly when £ = O(1) the £-derivatives in equations (2.10) are potentially as
important as any of the other terms so that the stability characteristics of any
particular disturbance at O(1) downstream location are wholly dependent on
how and where the disturbance commences. Thus we shall consider a position
far downstream from the leading edge, say & = & (»1). Let us investigate how
a vortex evolves in the neighbourhood of ¢ and concentrate first on modes near
the right-hand branch of Fig. 2. From the results of the parallel analysis we
suppose that such perturbations are confined to the region where n = O(£™})
and that the vortex wavenumber a is O(&~ ). These choices reflect the need to
provide a viscous balance and can be verified a posteriori. Furthermore, we
shall not restrict ourselves to neutral modes alone and it is straightforward to
show that for these modes the growth rate is O(¢). Finally, we need to consider
the effects of non-parallelism, and the easiest method to deduce the appropriate
scale is to demand that the non-parallel terms enter the governing equations
at the stage at which the ‘vertical’ (that is, n-) structure of the modc is
determined. This point will become clearer as the analysis proceeds but for the
moment it suffices to say that the vortices evolve in a non-parallel manner
within an O(1) distance of ¢.
Based on the discussion above we define the coordinate { by writing

E=E+¢. (3.1)

We anticipate that the disturbance is confined to the region where n = 0 1)
so we define the coordinate Y by

Y = péi (3.2a)
and seek solutions of (2.10) in the forms
a? =81(Aé 2+ A3+, (3.2b)
[
T=[T,N+E'TE Y+ ] exp{éj ﬁdl}, (3.2¢)

.1 ¢
P=&[P(L )+ &P Y +-- ] exp{fj ﬂdC}, (3.2d)

subject to the boundary conditions

P
T=Zy=0 on Y =0, T,P-0 asVY - . (3.2¢)

The parameter f gives the leading-order growth rate of the vortex and we shall
determine how f§ varies with the wavenumber parameter A, It is worth
mentioning at this point that in physical space the scaling n = 0(é %) suggests
that at a distance x >» 1 from the leading edge of the heated surface the vortex
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i1s concentrated in an O(xi) depth region. We note that since the thermal
boundary layer itself is of thickness O(xi) the vortex is confined well inside
this layer.

As we are concerned with small values of  we need to expand the basic flow
functions f, § about n = 0. Thus we write

f) = fion + fron® +. gn) = gi1on + gson> + ... (3.3a,b)

for small n where, from (19), g, = —0-43021, f,, = 1-05575 and we observe

that f3, = §g,0 (<0) and g3 = —f;09,6/18 (>0).
Substitution of (3.2) and (3.3) in (2.10a) yields at leading order

ﬂz'%floﬁ_(/“o'*'?}sgno):(), (34)

which serves to give f as a function of the scaled wavenumber A,.
Equation (2.10b) gives that

10T,
— AP, = -2,
(p? o)Po 3%

and thus P, is determined once we have T;,. We can find the latter by considering
next-order terms in (2.10a) and so

02T0 (g10+3f10ﬂ)(ﬁf10 3930)

ArJ10 Y2T, + (28 — 3 f10)0(g10 + 3/10P) ?BQ

ay? (2410 + 3/10P) ° (2910 + 3/10H) o
_ (3910 + 3Bf10 + 4A45)(g10 + 3/10P) (T, - (g10 + 3/10P)A, T,=0. (3.5)
(2910 + 3/10P) (29,0 + 3/108)

In view of the boundary conditions (3.2¢) we seek solutions of (3.5) of the type
F({)G(Y) and such solutions are

[Ggi0 + :lsﬂflo + 440)¢ — 4] 3 !
o= e""{2(2/1 $fio)Eg10 + 380 + 4Ao>} U= n 2,207, (362)
where
A= (Y10 + 3/10A(BS30 + %gao)' (3.6b)
(29,0 + 3/10P)
the constant 4 is such that
a‘z+Al=—(4n+3)(zg'°+3f’°ﬂ), n=012,... (3.6¢)

(10 + 3/10P)

and U is the usual parabolic-cylinder function, see (23). However, we do need
to impose the restriction on A that it should not be negative for in this case
the parabolic-cylinder function defined in (3.6a) does not have acceptable
exponential decay as ¥ — «. Further, we note that relation (3.6¢) relates the
constant 4 in the [-part of solution (3.6a) to the correction term A, in the
vortex wavenumber expansion (3.2b).
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F1G. 3. The scaled vortex growth rate f as a function of the wavenumber
parameter A, (defined in (3.2b)). The solid lines denote Re(f) and the dotted
lines Im(f}). (The dotted line is only shown for wavenumbers at which
Im(B) # 0.) The points labelled A,,, Ag;, Ag; and N are referred to in the text.
The last of these denotes the one neutral mode within this wavenumber regime

We are now in a position to find § as a function of 4,. We simply solve the
quadratic equation (3.4) for f as a function of A, and then ensure that A is
not negative. The acceptable solutions of this problem are shown in Fig. 3.
Briefly, we can summarize the results as follows. For 0 < 4, < 4y, (=0-01683)
the two roots for f§ are complex and the growth rate of the modes Re(f) is
Lfio = 0:17596. For A, just greater than A,, the two values of f§ are purely
real and the growth-rate curve develops two branches. The upper of these
increases with A, until Ay = 4,, = 0-02598 at which point f = 0-27161. As
Ao = Ay, the coefficient A becomes infinite and so solution (3.6a) indicates
that the vortex structure is compressed into a very thin layer in which
Y = O(A™+) next to the wall. A consequence of this is that when Ay > Ag, the
upper branch cuts out, for A becomes negative and so this particular solution
of (3.6) ceases to be acceptable. Meanwhile, on the lower branch we do not
obtain permissible structures until A, reaches Ay; = 001844 —thereafter on
this branch the growth rate diminishes with 4, and passes through a neutral
point at A, = 0-04780 (and is denoted by N on Fig. 3).

On the basis of the evidence so far we would conclude that the most unstable
mode occurs at 4, = 0-02598 (or a ~ I-45/(f +---) and we should consider
whether there is a faster growing mode elsewhere. In passing we should note
the role that non-parallelism plays in determining the structure of the modes



12 A. P. BASSOM AND D. A. S. REES

in the vicinity of the right-hand branch of the parallel-theory curve in Fig. 2.
A parallel analysis follows the same lines as described above except that all
{-dependence in Tp, Py, T}, P,, ... is ignored. Then the computed neutral point
is precisely that prediced by our work and so the effects of non-parallelism are
not significant here. However, solution (3.6a) shows that the (non-parallel)
exponential part of the vortex solution will grow or decay as it progresses
downstream depending on whether (28 — 1f,0)34g,0 + $B/f10 + 4A,) is positive
or negative. (It should be emphasized that the dominant change to the growth
rate as a result of downstream evolution arises parametrically through (3.1),
(3.2b) and (3.4).) As would be expected in view of Fig. 3, growth of the
exponential term is found to occur for modes on the upper branch whilst for
lower-branch disturbances the exponential factor decays.

3.1 The behaviour of the upper branch mode as Ay — Ay,

It is of importance to determine the fate of the upper-branch mode as
Ay, — Ay, and it is not difficult to examine the structure of the vortex in this
limit. In the process of doing this we show that another family of vortex modes
exist which are characterized by being confined to an O(1) depth region in terms
of the n coordinate. Let us choose n = 7 and in an 0% neighbourhood of 7
we define the coordinate ¥ by

n=rq+¢47, (3.7a)
and seek modes with
a? =81(Agf 2+ A8 3+, (3.7b)

- . - - L iy
T=[Ty, )+ 3T )+ - -]exp{éj Bo + &30, + - ~)dC}, (3.7¢)

~ ~ 2~ =~ g z~
P =[Py, ¥)+ P, Y)+~-]CXP{§_[ (Bo + E73B, +-~-)dC}- (3.7d)

If in the vicinity of 7j the basic flow quantities f, § expand as

f_=fo+f|£_§}7+fzé_;)72+---,} (376)
§=go+g1£'§}’+g2§’3y2+,“,
then equations (2.10) give that
B(l) - /Zo = *1391 + ':liflﬁm (3.8a)
27, (g + 3BoS1)392 + 3Bof2) V7
= T3 AT 0
aY? (29, + 3o f1)

+ ({]1 + 350,/'1){6 -1
3(2g, + 380 /1)

This latter equation is a scaled Airy equation and in order to confine the
disturbance to lie below n = 7 we should demand that T, decays exponentially

B, T, =0. (3.8b)
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as ¥ — oo and this is possible if

(91 +3Bof)g2 + 3Bofs)

A= . (3.9)

(29, + 380 1))

If
7= x%(y I Gl [} {'L>
2(g, + 3P0 S2)

then

*T, ==

6?2 - YTO = 0

and Ty ~ (— )=’)‘% sin(3(— i’)% + in) as Yo — o0; see (23). Thus in the region
0 < n <7 below the 0(5_5) depth layer we see that for matching we must
ensure that

T~ &% —n) "¢ sinGAG —mi+--) asn—7. (3.10)

A standard WKB analysis may be used to develop the forms of the disturbance
pressure P and temperature 7 in O < 5 < 77 so that the requisite boundary
condtions T = dP/dn = 0 are achieved on the bounding surface and that a
match is obtained with (3.10). Details of this WKB process are long but
straightforward and we shall not present them here. The primary reason for
this can be seen from the following argument. If this second type of mode (as
distinct from the wall-bounded type discussed previously) is to exist then we
need to solve (3.8a) for the growth rate /}0 and then check that the condition
(3.9) 1s satisfied at n = 7. Equations (2.7) for the basic flow show that, for all
n, f* is monotonically decreasing and §' is monotonically increasing. It
transpires that for any prescribed wavenumber parameter A, the greatest root
for B, occurs when 7 = 0. In this case the mode is trapped at the wall and is
essentially the first vortex type discussed in (3.1) to (3.6) and plotted on
Fig. 3. Thus the wall-bounded modes are more unstable than those confined
to the n = O(1) zone. Furthermore, for each A, there is a value 7., (4,) such
that the second type of mode can lie in the zone 0 < n < 57 where 77 < 7. It
is found that as A, — A,, (recall that this is the value at which the upper
branch on Fig. 3 cuts out) then 7., — O and the two distinct mode types
coalesce. Then for A, > Ay, neither type of mode can persist near the upper
branch and this family of solutions disappears.

This brief explanation of the fate of the upper branch also holds for the lower
branch as A, —» Ag, = 0-01844. At this vortex wavenumber the lower-branch
modes of Fig. 3 coalesce with those confined to an n = O(1) region and neither
type remains when A, < Ag3. Consequently, we can conclude that within the
a=0(1/&) range unstable modes exist for a < 1‘97/5. Furthermore, the most
unstable mode has a = 1-45/¢ and scaled growth rate f = 0-27161. For all
a > 197/ the modes are stable and thus decay as they progress downstream.
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We have seen that at vortex wavenumber a = 0(1/¢) non-parallel effects are
not critical in determining the stability characteristics of the vortex modes.
However, the inclusion of non-parallelism has enabled us to deduce how the
modes evolve far downstream; see (3.6) for example. In practice, if an
infinitesimal vortex of wavenumber O(l/cf) is introduced some distance
downstream of the leading edge then it will be composed of a linear combination
of the various types of modes described above and it will be the most unstable
component of this combination which will ultimately dominate the flow. Except
in very special circumstances the initial vortex will contain wall-bounded
components and the growth of these were given in Fig. 3.

3.2 The fully non-parallel mode

We now examine the vortices in the vicinity of the left-hand branch of the
parallel-flow neutral curve sketched in Fig. 2 and we shall see how
non-parallelism plays a much more important part here. We have already
asserted that in this regime we have

a2=81<%°+%+m> (3.11)

and that the vortex lies across the whole of the n = O(1) thermal boundary
layer. As in our preceding analysis of the 0(1/€) wavenumber modes we allow
the vortices to develop on the lengthscale such that non-parallel terms enter
the determining equations at the point at which the n-structure of the mode is
deduced. This implies that the vortex evolves on a long, O(¢), lengthscale and
so we define the O(1) coordinate ¢ by

£ = ¢, (3.12a)

and seek modes which are initiated at & = & that is, at { = 1. We then study
perturbations of the forms

P=FBym+EPEm+. .., (3.12b)
T=ETl o+ ETn+.... (3.12¢)

Subsututlon of (3.11), 3.12) in (2.10) gives at leading orders a first relation
between P0 and T0

oP, .
-0 = 5027, (3.13a)
on
At next orders we have
oy _ 2 oT, 1 -aT, ap
T, - n*T,] + oo _g 7t 3.13b
on? gt n°Ts] 3ff 37 o on ( )
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and
woaaa 2 ,0T, 1 0T, &%P
= Al P+ il - 20" 0

P, 1, 0T,
S G ) 20 (3.13¢0)
9° ¢on 9 2oL 9 on o2

on?

so that on eliminating P, and 7, we obtain the evolution equation for the

leading-order perturbation pressure Py:

*P, 3P, N £ ]
9 +6 +Of + 3 242 + ) % + Agg'lop,
o f/ on’ s f)a'72 (ng ff)a’7 0g'C" Py
s o PPy ... 0P s, 02 P

=3f L+ ff +g02 % 34

&f on? ot i) Canaf gt ot (3.14)

In previous analyses it has been argued that since the disturbance develops
over a long lengthscale the streamwise derivatives on the right-hand side of
(3.14) should be small and hence may safely be neglected. Then, if we seek
modes which are neutral at & = & the argument pursued in (8, 9, 12, 13) is that
we can suppose that { = 1 and the 9/ terms in (3.14) are put to zero. In this
way we can obtain an ordinary differential equation in n which needs to be
solved subject to

dp, d*p, 5
0=""9=20 atyp=0, P -0 asn- oo,
dn  dn?

which is an eigenproblem for the leading-order wavenumber A,. However, there
is of course no rational argument why the { derivatives should vanish and the
full version of (3.14) must be considered in order to evaluate the stability
characteristics of the vortex modes. Pursuing the analogy with the Gortler
problem considered by Hall (see (24)) it is clear that the stability properties of
the flow are strongly dependent on the position and form of the initial vortex.
We have not undertaken a numerical solution of (3.14) as we can see that the
modes of wavenumber a = O(1/&) are those with the larger growth rates and
therefore are almost certainly the more important in practice.

It might be hoped that by taking suitable limits in the two problems it may
be possible to connect the scalings appropriate to the a = O(1/¢) and
a = O(1/&3) regimes. However, there is no direct link between these cases which
indicates the existence of at least one more distinct wavenumber regime between
the two discussed here. We argue that a detailed analysis of such an intermediate
problem is not of primary importance for it is easy to show that such modes
have growth rates less than those associated with the a = O(1/) region.
Therefore, we can be confident that it is this latter regime which contains the
most unstable form.

Our workings of this section can be used to speculate how vortices might
evolve in the boundary layer above a heated horizontal surface. Before we
outline this it has to be emphasized that problem (2.10) is inherently elliptic



16 A. P. BASSOM AND D. A. S. REES

and not parabolic in nature. Therefore, we cannot just allow a vortex structure
to be imposed at some downstream location and suppose that it will evolve
for downstream effects can, and will, act back on the mode and thus influence
its development. However, bearing this caution in mind, we can appeal to
experimental observations that as the vortex progresses in the flow its physical
wavelength is seen to be preserved. Since the basic boundary layer thickens
with distance the effective local spanwise wavenumber diminishes and, as a
consequence, the small a analysis is of practical interest. As a vortex progresses
downstream our analysis suggests that the perturbation decays until the
& =0(a"3) non-parallel scaling is encountered. At some point within this
¢ = O(a“5) region the ‘left-hand’ branch of the neutral curve is crossed and
the disturbance begins to grow. Recall that the precise location within the
O(a™3) regime at which vortex growth may commence is entirely dependent on
how and where the vortex motion started as (3.14) is controlled by non-parallel
effects. As the flow develops further downstream the vortex amplitude is likely
to increase until the & = O(a ') quasi-parallel region is reached. We have shown
that within this region we have large growth rates for the disturbance (cf. (3.2)).
Although the linear stability analysis of modes within this regime is complicated
it is very likely that the massive growth rates will mean that a full account of
the vortex motion will require a nonlinear or, preferably, a computational
description. However, on a purely linear basis, the analysis of this section would
suggest that the vortex moves through the & = O(a™?) scaling region so that
the amplitude of the perturbation is likely to grow to a maximum and then
lead to eventual decay. Thus solutions of (2.10) can be anticipated to decay
initially until the amplitude reaches a minimum and then continue growing
further downstream until it reaches a maximum after which the mode shrinks
to zero.

4, Discussion

In this paper we have concentrated on describing some of the linear stability
properties of longitudinal vortices in the boundary layer above a horizontal
heated surface in a porous medium. We have successfuly obtained an asymptotic
description of modes far downstream of the leading edge of the plate using
methods similar to those employed by Hall (18, 20, 24) for Gortler vortices.
Previous investigation of vortices in flow over porous surfaces have largely
utilized parallel-flow analyses which have concluded that at any specified
location sufficiently far downstream there are two vortex wavelengths that are
neutrally stable. Examination of the role of non-parallelism has shown that of
the two neutral modes predicted by the parallel work, the one with the shorter
wavelength can be described by a quasi-parallel analysis whilst the other is
dominated by non-parallel eflects.

Our analysis of vortex modes has enabled us to deduce the structure of the
most unstable disturbance far downstream of the leading edge. This aspect has
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been discussed in the preceding section where we also observed that the form
of the wavenumber/growth-rate curve is quite complicated (cf. the simple form
of this dependence for Gortler vortices; see (25)). The corresponding Gortler
problem is comparatively simple due to the fact that the underlying govern-
ing equations are then parabolic in nature: here we are dealing with the
elliptic equations (2.10). This then leads to a linear as opposed to our
quadratic equation for the leading-order growth rate and this significantly
simplifies the ensuing analysis.

The asymptotic work we have presented here needs to be complemented by
suitable numerical studies. We note that since our present results are only
strictly valid at large downstream distances we need numerical investigations
in order to deduce the stability properties at locations close to the leading
edge. One way out of this difficulty is to employ an elliptic non-parallel theory
for the linearized disturbances, that is, a fully numerical simulation of equations
(2.10). Such an analysis has the great advantage that the disturbances can be
allowed to be self-propagating. The non-parallel analysis devised by Hall (24)
for the Gortler case is parabolic and, therefore, it requires a disturbance to be
imposed at a given streamwise location for all time. An elliptic non-parallel
analysis is an initial-value problem; a disturbance is defined at one instant in
time and is allowed to evolve. Work on this approach is in progress.

Numerical work is also required in order to describe correctly the nonlinear
evolution of the vortices examined here. In our discussion of the evolution of
infinitesimal vortices we speculated that it might be plausible that as such
vortices propagate downstream they initially decay until the non-parallel
scaling is reached, then grow until the quasi-parallel regime is achieved and
finally decay away. However, the complicated nature of the & =0(a"")
quasi-parallel regime that numerical procedures really do need to be
implemented in order to confirm that this is the actual sequence of events.
Within the growing stage it is quite conceivable that the linear theory
ceases to remain valid and nonlinear effects need to be accounted for. In
many fluid-flow situations nonlinearity may be described by a classical
Stuart—-Watson theory as detailed in (26 to 28) but for Gortler vortex flows
Hall (18) demonstrated that the nonlinear evolution of high-wavenumber
Gortler modes is dictated by a mean-field theory. In this case the downstream
velocity component of the perturbation contains a mean-flow correction which
is as large as the fundamental driving it. These functions satisfy a pair of
nonlinear partial differential equations which must be solved subject to some
initial conditions imposed at some given downstream location. Preliminary
investigations of the convective problem examined in this paper suggests that
it too is governed by a mean-field approach akin to that described in (18); we
hope to be able to report on this in due course.

Finally, we comment on how our work could be extended to other problems
concerning vortex modes in porous media. In our current study one reason for
our concentrating on the horizontal heated surface case, apart from its practical
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interest for geothermal systems, is that an exact basic-flow solution exists. This
enabled us to isolate the nonparallel properties of the flow. However, when the
surface is arbitrarily inclined then the basic flow is obtained only in the form
of an asymptotic series in terms of the (large) distance from the leading edge
so that it is more difficult to differentiate between the effects of nonparallelism
on the disturbance and those of the spatial development of the basic flow. It is
thought that when the heated surface is vertical then the flow is stable to vortex
modes of all wavelengths so that one would expect that as the heated surface
is incremented from horizontal to vertical there is a critical inclination at which
the stability characteristics of the flow must change substantially from those
presented in this study. Thus we have given here the first non-parallel
investigation of vortices in porous media which provides the framework for
extension to other configurations and nonlinear stability studies. Comple-
menting numerical and theoretical studies of travelling-wave modes should
enable us to provide the definitive account of the relative importance of wave
and vortex disturbances in a variety of practical boundary-layer flows in porous
media.
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