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We investigate the onset of convection in a uniform, constant-thickness, horizontal porous layer which is
heated from below. The layer is bounded above and below by thermally conducting but impermeable lay-
ers. Our aim is to determine the effect on the onset of convection of the interaction between the presence
of these outer conducting layers and a horizontal background flow. A linear stability analysis is performed
and a dispersion relation is derived from which the stability characteristics of the layer are computed.
Convection cells are found move along the layer at a speed which is lower than that of the imposed flow
due to a thermal drag caused by the presence of the bounding solid layers. Neutral curves and streamline/
isotherm patterns are presented in order to understand the physical role played by the governing nondi-
mensional parameters. When the diffusivity of the solid layers is much lower than the diffusivity of the
porous layer there exists a regime where the neutral curve can exhibit two minima, and at one point in
parameter space there exists a neutral curve with a quartic minimum.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Convection in a horizontal porous layer heated from below
continues to be a source of research attention. Whilst there is
undoubtedly a widespread range of practical topics for which heat
and mass transfer in porous layers provide a good model, convec-
tive flows nevertheless are source of fundamental interest from the
points of view of phenomenology (such as pattern selection) and
the application of the latest analytical and numerical methods.

Horton and Rogers [1] and Lapwood [2] were the first to study
the onset of convection for what may be termed the classical
Darcy– Bénard problem, namely that of a uniform, isotropic hori-
zontal porous layer which is saturated by a Newtonian fluid, and
which is subject to a uniformly hot lower bounding surface and a
uniformly cold upper surface. Convection arises in an infinitely long
layer when the Darcy–Rayleigh number exceeds 4p2. The first mode
to appear has the wavenumber, p, which corresponds to convection
rolls with a square cross-section. Weakly nonlinear theory, which
applies when the flow is just supercritical, shows that two-dimen-
sional rolls form the stable planform for convection, as opposed to
hexagonal cells, square or rectangular cells, or more exotic shapes –
see Rees and Riley [3,4] and Rees [5]. When the bounding surfaces
are heated by means of a constant heat flux, then the critical Darcy–
Rayleigh number is reduced to 12 and the critical wavenumber is
zero (Nield [6]). Recent weakly nonlinear studies by Rees and Mojt-
abi [7] suggest that the the postcritical stable planform of this
constant-heat-flux form of the Darcy–Bénard problem is three
dimensional. More detail may be found in the chapters by Rees
[8], Tyvand [9], Rees et al. [10] and Nguyen-Quang et al. [11], and
the books by Pop and Ingham [12] and Nield and Bejan [13].

In the present paper we will study one particular type of layered
system. Layering arises naturally in the real world and an early
paper by Rana et al. [14] was aimed at describing convection in
the Pahoa reservoir in Hawaii, a system which was modelled using
three porous sublayers. This numerical study displayed how the
familar two dimensional convection patterns for the single-layer
problem are modified substantially when layering is present. A
more comprehensive approach was undertaken by McKibbin and
O’Sullivan [15], who determined the conditions for the onset of
convection in both two- and three-sublayer configurations. The ex-
tra degree of freedom which arises when a porous layer consists of
as few as two sublayers means that the neutral curve can exhibit
more unusual shapes than the standard one where one minimum
is present. There is a regime in parameter space where two minima
are possible; typically one of these corresponds to a local convec-
tion pattern (i.e. mainly confined to the sublayer with the higher
permeability - the higher wavenumber case) or to a global pattern
(the lower wavenumber). Rees and Riley [16] also presented a
three-layer case where modes with three different wavenumbers
become unstable at the same Darcy–Rayleigh number.

Of more specific interest to us here are the three-layer configu-
rations where the outer layers are impermeable heat-conducting
solids. If the outer layers are relatively thin, then such a configura-
tion may be used to model experimental studies where a saturated
porous medium must be bounded by some impermeable barrier;
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Nomenclature

A,B,C,D,E constants
c phase velocity
d conductivity ratio
g gravity
k disturbance wavenumber
k thermal conductivity
K permeability
p pressure
Pe Péclet number
Ra Darcy–Rayleigh number
t time
u horizontal velocity
w vertical velocity
x horizontal coordinate
z vertical coordinate

Greek symbols
a diffusivity ratio
b thermal expansion coefficient

c constant
C exponent
d thickness ratio
h fluid temperature
H disturbance fluid temperature
j thermal diffusivity
k,r exponential growth rate
l dynamic viscosity
q density
w streamfunction
W disturbance streamfunction

Subscripts and superscripts
1,2,3 sublayer
c critical value
ref reference value
0 derivative with respect to z
^ dimensional
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see Rees and Mojtabi [7] and Mojtabi and Rees [17]. An early paper
by Riahi [18] considered infinitely thick solid sublayers and he
used weakly nonlinear theory to show that the convection plan-
form may, when the conductivity of the solid layers is small, take
the form of three-dimensional cells with a square planform. His
analysis was extended to solid layers of finite thickness by Rees
and Mojtabi [7].

A different, but practically important, modification of the classi-
cal Darcy–Bénard problem was undertaken by Prats [19] who con-
sidered the effect of a horizontal pressure gradient. When Darcy’s
law applies, this pressure gradient induces a uniform fluid velocity
along the layer, unlike the parabolic velocity profile which arises in
plane-Poiseuille flow. Prats showed that the convection cells found
by Horton and Rogers [1] and Lapwood [2] move along the layer
with exactly the velocity of the background flow. A simple coordi-
nate transformation to a frame of reference which moves with the
background flow removes the background velocity from the
governing equations, even when under strongly supercritical con-
ditions. Thus the vertical heat transfer and all the nonlinear
dynamics are unaffected by this forced convection component.

The aim of the present work, then, is to determine how the
presence of conducting boundaries affects the simple result of
Prats [19], namely, that the phase velocity of the convection cells
is precisely the same as the velocity of the background flow. It is
a simple piece of a priori reasoning that the presence of stationary
bounding surfaces will impose a thermal drag on the cells, and
therefore the velocity of the cells should lie between zero and that
of the background flow. But the present paper also addresses the
question of whether this three-layer system displays any unusual
behaviour over and above having a simple minimum in the neutral
curve.

The linear stability analysis which we present is facilitated by
the derivation of a dispersion relation which takes the form of a
complex 4 � 4 determinant. Setting the real and imaginary parts
to zero simultaneously yields both the critical Darcy–Rayleigh
number and the phase velocity of the cells. We present neutral
curves and the variation of the critical values of the Darcy–Ray-
leigh number, wavenumber and phase velocity as a function of
the diffusivity ratio, conductivity ratio, thickness ratio and the
Péclet number. The behaviour of these curves is explained by
means of a selection of streamline/isotherm plots. We find that
the classical unimodal neutral curve does indeed occasionally take
a more exotic form, and this corresponds to when the diffusivity
of the solid layers is substantially less than that of the porous
layer.

2. Governing equations

We investigate the effect of conducting boundaries on what we
shall call the Lapwood-Prats problem, namely the Darcy–Bénard
problem modified by the presence of a horizontal forced convec-
tive pressure gradient. The detailed configuration we consider is
shown in Fig. 1 and it is comprised of a uniform isotropic saturated
porous layer of thickness, h2, which is bounded by two uniform,
impermeable but thermally conducting plates with thicknesses,
h1 and h3. These plates do not necessarily have identical conductiv-
ities or thicknesses and the derivation of our stability analysis will
maintain this, but we will present detailed results only for those
cases where the solid layers are identical in every respect. This
three-sublayer composite system is taken to be of infinite extent
in both horizontal directions.

The origin of the coordinate system is located at the bottom of
the composite layer, while x̂ and ẑ are the horizontal vertical coor-
dinates, respectively. Constant but different temperatures are
imposed at the external surfaces of the composite layer, i.e. at
ẑ ¼ 0 and at ẑ ¼ h1 þ h2 þ h3, where the lower surface is hotter
than the upper surface. The somewhat unusual formula given in
Fig. 1 for the temperature of the upper surface means that the
overall temperature difference across the porous layer is DT. The
Darcy–Rayleigh number will be defined using this value, this al-
lows our results to be compared easily with single-layer systems,
or systems where the solid layers are exceptionally thick.

For convenience the sublayers are numbered, 1, 2 and 3, begin-
ning with the lowest sublayer. We will assume that the ensuing
convection is restricted to being two-dimensional and therefore
the full governing equations for the porous layer are,

@û
@x̂
þ @ŵ
@ẑ
¼ 0; ð1Þ

û ¼ �K
l
@p̂
@x̂
; ŵ ¼ �K

l
@p̂
@ẑ
þ q2gbK

l
ðT2 � TrefÞ; ð2Þ

ðqCÞ2
@T2

@t
þ ðqCÞf û

@T2

@x̂
þ ŵ

@T2

@ẑ

� �
¼ k2

@2T2

@x̂2 þ
@2T2

@ẑ2

 !
; ð3Þ



Fig. 1. Definition sketch of the configuration being studied. The porous layer is sandwiched between two impermeable but thermally conducting layers. The value, DT, is the
temperature drop across the porous layer.
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where all quantities are given in the Nomenclature. The respective
equations for conductive heat transfer in the solid sublayers are,

ðqCÞ1
@T1

@t̂
¼ k1

@2T1

@x̂2 þ
@2T1

@ẑ2

 !
ð4Þ

and

ðqCÞ3
@T3

@t̂
¼ k3

@2T3

@x̂2 þ
@2T3

@ẑ2

 !
: ð5Þ

The boundary and interface conditions are,

ẑ ¼ 0 : T1 ¼ Tref ;

ẑ ¼ h1 : ŵ ¼ 0; T1 ¼ T2; k1
@T1

@ẑ
¼ k2

@T2

@ẑ
;

ẑ ¼ h1 þ h2 : ŵ ¼ 0; T2 ¼ T3; k2
@T2

@ẑ
¼ k3

@T3

@ẑ
;

ẑ ¼ h1 þ h2 þ h3 : T3 ¼ �
k2

h2
DT

h1

k1
þ h2

k2
þ h3

k3

� �
þ Tref :

ð6Þ

The imposed horizontal pressure gradient is of such a magnitude
that it induces the velocity field, (u,v) = (U,0).

The following scalings may be introduced in order to render
nondimensional the governing equations:

x̂ ¼ h2x; ẑ ¼ h1 þ h2z; t̂ ¼ h2
2ðqCÞ2

k2
t; p̂ ¼ k2l

ðqCÞf K
p;

ðû; v̂; ŵÞ ¼ k2

h2ðqCÞf
ðu;v ;wÞ; T ¼ Tref �

k2

k1

h1

h2
DT þ DT h;

ð7Þ

which are based on the height and the properties of the porous
layer.

We thereby obtain the nondimensional equations:

@u
@x
þ @w
@z
¼ 0; ð8Þ

u ¼ � @p
@x
; w ¼ � @p

@z
þ Rah2; ð9Þ

@h2

@t
þ u

@h2

@x
þw

@h2

@z
¼ @

2h2

@x2 þ
@2h2

@z2 ; ð10Þ

@h1

@t
¼ a1

@2h1

@x2 þ
@2h1

@z2

 !
ð11Þ
and

@h3

@t
¼ a3

@2h3

@x2 þ
@2h3

@z2

 !
: ð12Þ

The diffusivity ratios, a1 and a3, are defined according to,

a1 ¼
k1ðqCÞ2
k2ðqCÞ1

; a3 ¼
k3ðqCÞ2
k2ðqCÞ3

: ð13Þ

The Darcy–Rayleigh number is defined to be,

Ra ¼
q2ðqCÞf gbh2KDT

lk2
ð14Þ

and it is based upon the height of the porous layer and the temper-
ature difference across it. The two conductivity and thickness ratios
as follows,

d1 ¼ k1=k2; d3 ¼ k3=k2; d1 ¼ h1=h2; d3 ¼ h3=h2: ð15Þ

The background velocity is now (u,w) = (0,Pe), where the Péclet
number is given by,

Pe ¼ h2U
k2ðqCÞf

: ð16Þ

For two-dimensional flow we may define the streamfunction, w,
using,

u ¼ � @w
@z

and w ¼ @w
@x

ð17Þ

and the full governing equations become

@2w
@x2 þ

@2w
@z2 ¼ Ra

@h
@x
; ð18Þ

@h2

@t
þ @w
@x

@h2

@z
� @w
@z

@h2

@x
¼ @

2h2

@x2 þ
@2h2

@z2 ; ð19Þ

in the porous layer, and

@h1

@t
¼ a1

@2h1

@x2 þ
@2h1

@z2

 !
; and

@h3

@t
¼ a3

@2h3

@x2 þ
@2h3

@z2

 !
; ð20Þ

in the bounding sublayers. The boundary and interface conditions
are



Fig. 2. Neutral curves (left) and the corresponding values of the wavespeed, c, (right) for a = 1 and Pe = 1 for the stated values of d. The following values of d were used:
d = 10,3,1,0.3,0.1,0.03 and 0.01. The dotted line corresponds to d = 10 and the dashed line to d = 0.01.
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z ¼ �d1 : h1 ¼ d1=d1;

z ¼ 0 : w ¼ 0; h2 ¼ h1;
@h2

@z
¼ d1

@h1

@z
;

z ¼ 1 : w ¼ 0; h2 ¼ h3;
@h2

@z
¼ d3

@h3

@z
;

z ¼ 1þ d3 : h3 ¼ �1� d3=d3:

ð21Þ
3. Linear stability equations

We perturb about the basic state by setting,

w

h1

h2

h3

0
BBB@

1
CCCA ¼

�Pe z

1� ðz=d1Þ
1� z

ð1� zÞ=d3

0
BBB@

1
CCCAþ eikðx�ctÞ

�iWðzÞ
H1ðzÞ
H2ðzÞ
H3ðzÞ

0
BBB@

1
CCCAþ c:c:; ð22Þ



Fig. 3. Streamlines (continuous lines) and isotherms (dashed lines) for d = d = a = Pe = 1. Showing the effect of having different wavenumbers.

Fig. 4. Streamlines (continuous lines) and isotherms (dashed lines) for d = a = Pe = 1. The wavenumber is k = 1. Showing the effect of having different conductivity ratios.
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Fig. 5. Streamlines (continuous lines) and isotherms (dashed lines) for a = Pe = 1 and d = 5. The wavenumber is k = 1. Showing the effect of having different values of d.

Fig. 6. Neutral curves (left) and the corresponding values of the wavespeed, c, (right) for d = 1 and Pe = 1 for the stated values of a. The following values of d were used:
d = 10,3,1,0.3,0.1,0.03 and 0.01. The dotted line corresponds to d = 10 and the dashed line to d = 0.01.
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where k is the wavenumber and c is the phase velocity of the cell
pattern. The linearized stability equations now take the ordinary
differential form,

W00 � k2Wþ Ra kH2 ¼ 0; ð23Þ
H001 � ðk

2 � ikc=a1ÞH1 ¼ 0; ð24Þ
H002 � ðk

2 þ ikðPe� cÞÞH2 þ kW ¼ 0; ð25Þ
H003 � ðk

2 � ikc=a3ÞH3 ¼ 0; ð26Þ
where the boundary conditions are:
z ¼ �d1 : H1 ¼ 0;

z ¼ 0 : W ¼ 0; H2 ¼ H1; H02 ¼ d1H
0
1;

z ¼ 1 : W ¼ 0; H2 ¼ H3; H02 ¼ d3H
0
3;

z ¼ 1þ d3 : H3 ¼ 0:

ð27Þ



Fig. 7. Streamlines (continuous lines) and isotherms (dashed lines) for d = d = Pe = 1. The wavenumber is k = 2. Showing the effect of having different diffusivity ratios, a.
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4. The dispersion relation

In layer 1 the solution which satisfies the boundary condition at
z = �d1 is

H1 ¼ A sinh k1ðzþ d1Þ; ð28Þ

where

k1 ¼ k2 � i
kc
a1

� �1=2

ð29Þ

and hence H01 ¼ Ak1 cosh k1ðzþ d1Þ. If we now apply the z = 0 inter-
face conditions which are given by (27) we find that,

H2ð0Þ ¼ A sinh k1d1; H02ð0Þ ¼ Ak1d1 cosh k1d1: ð30Þ

Given that the constant, A, is arbitrary, these two conditions for
H2(0) and H02ð0Þ may be combined to remove A, which thereby
yields the following boundary condition of the third kind,

H2ð0Þ ¼
tanh k1d1

k1d1
H02ð0Þ: ð31Þ

For later convenience we rewrite Eq. (31) as H2ð0Þ ¼ c1H
0
2ð0Þwhere

c1 ¼
tanh k1d1

k1d1
: ð32Þ

The corresponding boundary condition at z = 1 is

H2ð1Þ ¼ �
tanh k3d3

k3d3
H02ð1Þ; ð33Þ

or, in compact form, as H2ð1Þ ¼ �c3H
0
2ð1Þ where

c3 ¼
tanh k3d3

k3d3
and k3 ¼ k2 � i

kc
a3

� �1=2

: ð34Þ
Therefore we are in a position to consider only the solutions within
the porous layer (Eqs. (23) and (25)) where the full dynamic ther-
mal of a mode with wavenumber k in the outer bounding layers
is modelled completely by the complex boundary conditions, Eqs.
(31) and (33).

Solutions of Eqs. (23) and (25) take the form, exp (Cz), where C
satisfies the determinantal equation,

C2 � k2 Ra k

k C2 � k2 þ ikðc � PeÞ

�����
����� ¼ 0: ð35Þ

Hence C = ± k, ± r, where

k2 ¼ k2 þ ikðPe� cÞ=2þ k½Ra� ðPe� cÞ2=4�
1=2
; ð36Þ

r2 ¼ k2 þ ikðPe� cÞ=2� k½Ra� ðPe� cÞ2=4�
1=2
: ð37Þ

If we now set

W ¼ �Ra k
A sinh kzþ B cosh kz

k2 � k2 þ C sinhrzþ D cosh rz

r2 � k2

� �
; ð38Þ

then

H2 ¼ A sinh kzþ B cosh kzþ C sinh rzþ D cosh rz: ð39Þ

Application of W(0) = 0 leads to

B

k2 � k2 þ
D

r2 � k2 ¼ 0; ð40Þ

while the condition, W(1) = 0, gives,

A sinh kþ B cosh k

k2 � k2 þ C sinh rþ D cosh r
r2 � k2 ¼ 0: ð41Þ

The application of the boundary condition, Eq. (31) at z = 0 gives,

Bþ D ¼ c1ðkAþ rCÞ; ð42Þ



Fig. 8. Neutral curves (left) and the corresponding values of the scaled wavespeed, c/Pe, (right) d = 1 for the stated values of d,a and d. The following values of Pe were used:
0,1,3,10,30,100,300 and 1000. The dotted (lowest) line corresponds to Pe = 0 and the dashed (uppermost) line to Pe = 1000.
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Fig. 9. Streamlines (continuous lines) and isotherms (dashed lines) for d = d = a = 1. Showing the effect of having different values of the Péclet number. Each wavenumber
corresponds to the minimum in the respective neutral curves.
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while the boundary condition, Eq. (33), yields

A sinh kþ B cosh kþ C sinh rþ D cosh r
¼ �c3½kðA cosh kþ B sinh kÞ þ rðC cosh rþ D sinh rÞ�: ð43Þ

These last four equations always admit zero solutions for A,B, C and
D except for when Ra and c take their appropriate eigenvalues.
These are found by insisting that the following complex determi-
nant is precisely zero:

0
1

k2�k2 0
1

r2�k2

sinh k

k2�k2

cosh k

k2�k2

sinh r
r2�k2

cosh r
r2�k2

�kc1 1 �rc1 1
sinh kþkc3 coshk cosh kþkc3 sinh k sinh rþrc3 cosh r cosh rþrc3 sinhr

�������������

�������������
¼0:

ð44Þ

This determinant generally takes complex values and therefore the
setting of it to zero means that two quantities are determined as
eigenvalues, namely Ra and c. This was done by means of a straight-
forward two-dimensional Newton–Raphson iteration scheme and
the results obtained are essentially exact. Later, we present some
rather unusally-shaped neutral curves which arise at an extreme
value of one of the governing parameters; we therefore modified
our Fortran90 code from real*8 to real*16 in order to check if
such unusual curves arose from the accumulation of round-off error
— it was found that these real*8 results had not suffered any deg-
radation in accuracy due to round-off error.

The locations of the minima in the neutral curves are generally
found by differentiating an explicit expression for Ra with respect
to k and setting this to zero. In the present problem Ra and c are
given implicitly by the determinant given in (38). We therefore
performed a numerical differentiation of the kind described in de-
tail in Rees and Genç [20] to find such minima.

The full system described above is one with seven independent
parameters (d1, d3, d1, d3, a1, a3 and Pe) when it is assumed that the
values Ra, k and c are determined from the computation of critical
values. However, we reduce the system to four parameters by
insisting that the layer is symmetric, i.e. the bounding layers are
identical in every way. Therefore we set d1 = d3 � d, d1 = d3 � d
and a1 = a3 � a.

5. Results and discussion

The result of our computation is presented in three different
forms: neutral curves, streamline and isotherm plots and the
variation of critical values. Even with four independent nondimen-
sional parameters it is virtually impossible to give comprehensive
results. Therefore we will concentrate on giving a good physical
understand of the roles played by the nondimensional parameters.

We have chosen to use the case, d = d = a = Pe = 1, as the refer-
ence case against which most of our results will be compared.

5.1. The influence of variations in d and d

Fig. 2 keeps the values of Pe and a fixed at 1. Neutral curves are
shown for three values of d in separate graphs and for a range of
values of d in each graph. In addition to the behaviour of Ra as a
function of the wavenumber, k, we also show the variation of the
phase speed, c, with k.

The neutral curves show the very familiar unimodal shape with
a single minimum. We note that in those cases which we have
computed, including those not present in this paper, the lowest



Fig. 10. Critical values for Ra,k and c as a function of d for a = Pe = 1 and for d = 10�3, 10�2,10�1,100,101,102 and 103.
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value of Ra always lies between 12 and 4p2. The latter arises when
the solid plates are either very thin indeed (d� 1), which may be
seen as the dashed lines here, or very highly conducting (d� 1),
while the former arises when the solid plates tend towards being
insulating (d� 1). These values are well-known in the context of
the onset of convection in a single layer; see Nield and Bejan [13].

As the values of d and d vary, the general behaviour of the neu-
tral curves shown in Fig. 2, where we concentrate specifically on
the critical values of the Darcy–Rayleigh number and wavenumber
( Rac and kc, respectively), are as might be expected. For example,
when d = 0.2, the values of Rac and k vary greatly as the thickness
of the bounding layers, d, varies. Sufficiently thin bounding layers
(d = 0.01) of low conductivity do not alter the onset criterion very
much from that of the classical Darcy–Bénard problem, namely
Rac = 4p2 and kc = p. On the other hand, when d increases to large
values, the lack of conductivity in the bounding layers yield an on-
set problem which is close to that of the classical Darcy–Bénard
problem with constant heat flux boundaries. Thus the critical val-
ues are close to Rac = 12 and kc = 0 when d is small and d is large.

It is also clear that the phase speed of the disturbances depends
strongly on the wavenumber. The thermal disturbances do not
penetrate far into the bounding layers when k is large, and there-
fore the moving cells are unaffected by the presence of the outer
layers, which is why the nondimensional phase velocity is close
to 1. Similarly, the bounding layers are essentially ineffective when
they are thin. On the other hand, when there is a substantial pen-
etration of the bounding layers by the thermal field, the phase
velocity is affected. This is particularly true for small wavenumbers
where the thermal penetration is of the same order as the wave-
length of the cells.

Many of the above observations are displayed in Figs. 3–5.
These Figures, and others later correspond to a snapshot of stream-
lines and isotherms at one point in time, the whole pattern then
being understood to move to the right at the computed phase
speed.

In Fig. 3 we demonstrate the changing thermal penetration as
the disturbance wavenumber changes. In particular we see the
penetration decreasing as k increases, and hence the disturbance
phase speed increases, although here it does so by only a small
amount. The phase speed is in the region of 0.9, which corresponds
to the very small lag which may be seen in the isotherms in the
bounding layers. Later we will see cases where the lag is greater,
and this is brought about by small values of a or large values of Pe.

Similar variations in the thermal penetration into the bounding
layers are seen in Fig. 4, but this is caused by having difference val-
ues of d. When d is large, the bounding layers are relatively highly
conducting which causes the layers to tend towards a uniform
temperature. When d is small, there is a very substantial variation
in the temperature of the bounding layers. The isotherms in the
porous layer when d = 0.2 are close to being vertical at the inter-
faces with the bounding layers, which is why small-d cases mimic
constant heat flux single-layer convection.

The effect of variations in d on the streamlines and isotherms
are shown in Fig. 5. The case with d = 3 is quite typical of cases with



Fig. 11. Critical values for Ra,k and c as a function of d for a = Pe = 1 and for d = 10�4, 10�3,10�2,10�1,10�0.5,100, 100.5,101 and 102. The dotted line corresponds to d = 10�4.
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substantially thicker bounding layers, and the thermal disturbance
is confined naturally to a region which is just thicker than the por-
ous layer. As d decreases to values of 1 and below, there is a
decreasing amount of room for the thermal disturbance to develop
within the bounding layers. The phase speed of the cells also in-
creases towards 1 as a result of this.

5.2. The influence of variations in a and d

Fig. 6 shows how the neutral curve and the corresponding
phase speed of the cells vary for different values of a and d for large
fixed values, d = 1 and Pe = 1. Results for a = 10 and a = 0.1 are dis-
played here, while the intermediate a = 1 case may be found as the
d = 1 case in Fig. 2, for comparison. There is little variation in the
neutral curves as a varies over these two orders of magnitude,
but the disturbance phase speed depends strongly on a. When a
is large, the bounding surfaces are able to react quickly to the mov-
ing cells within the porous layer, which causes the phase speed to
be close to 1. But when a is small, and especially when k is also rel-
atively small, then heat penetration into the bounding layers is
slow, and this reduces greatly the disturbance phase speed.

An illustration of this is given in Fig. 7 when the wavenumber is
given by k = 2. The streamlines and isotherms for the case a = 10
give no indication that there is a horizontal flow in the porous
layer, and therefore we may conclude that the bounding layers
are reacting very quickly to the moving cells in the porous layer.
When a = 1, there is an indication of cellular movement, but this
is most pronounced when a = 0.1, where the thermal drag caused
by the low diffusivity in the bounding layers is clearly evident.

5.3. The influence of variations in Pe.

Fig. 8 illustrates how variations in the Péclet number affects the
neutral curves and the associated phase speeds. Here we have plot-
ted values of c/Pe in order to compare different cases easily. The
Pe = 0 case actually corresponds to Pe = 10�4 as an approximation
to the Pe ? 0 limit.

In all cases one finds that increasing values of the Péclet number
causes the system to tend towards the Lapwood-Prats problem
where Rac = 4p2, kc = p and cc = Pe. That this should happen may
be understood by appealing to the fact that when cells pass a given
point on the interface between the porous layer and one of the
bounding layers, that point will experience very rapid oscillatory
changes in the heat transfer. There will be very little time available
for the heat in a hot cell to warm up the bounding layer before a
cold cell replaces it. Thus the thermal penetration is small when
Pe is large, and the phase speed will be almost the same as the va-
lue of Pe.

Some streamlines and isotherms are displayed in Fig. 9 for the
cases, Pe = 0, 1, 10 and 100. In this Figure we have chosen to use
the wavenumber corresponding to the respective critical values.
We see that the isotherms in the bounding layers become



Fig. 12. Critical values for Ra,k,c and c/ Pe as a function of Pe for d = 1 and a = 10 and for d = 10,1,0.5,0.2,0.1,0.05,0.02 and 0.01. The dotted line corresponds to d = 0.01.
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increasingly deformed as the Péclet number increases. At the same
time the thermal penetration decreases, thereby confirming the
above discussion. In addition the critical wavenumber increases
towards p, which is equivalent to the disturbance wavelength
decreasing towards 2. In the most extreme case, for which
Pe = 100, the presence of the thermal disturbance in the bounding
layers is shown only by the zero isotherms. These isotherms tend
towards the horizontal as Pe increases still further.

5.4. Variation of critical values

We now summarise much of the above and many more cases in
Figs. 10–12.

Fig. 10 shows how Rac,kc and cc vary with d for selected values of
d while Pe = a = 1. Both the critical Rayleigh and wave numbers in-
crease as d increases but decrease as d increases. There is a very
distinct value of d beyond which these critical values do not change
and this is because the width of the bounding plates is greater than
the thickness of the disturbance field. As the bounding plates de-
crease in thickness (decreasing d) the composite layer eventually
returns to one which is identical to the single-layer Darcy–Bénard
problem. However, the critical phase velocity has a more compli-
cated dependence on d. When d takes very large or very small val-
ues either the bounding surfaces resemble very closely the classical
Darcy–Bénard problem and are essentially at constant tempera-
ture, or else no heat passes into the bounding layers, thereby mim-
icking the constant-heat-flux form of the Darcy–Bénard problem.
In both cases the bounding surfaces play a minimal role and the
phase speed of disturbances is approximately the same as the
Péclet number. At intermediate values of d, there is a thermal inter-
action between the porous and the bounding layers and therefore
the phase speed decreases.

Variations of the critical values with d for chosen values of d are
displayed in Fig. 11. With regard to Rac and kc, we see the full tran-
sition between the constant heat flux (Rac = 12 and kc = 0) and the
constant temperature ( Rac = 4p2 and kc = 12) versions of the
Darcy–Bénard problem as d increases. Although we do not show
it here, for the sake of brevity, the numerical data suggest strongly
that there is a form of similarity solution when d� 1, namely that
Rac and kc each collapse onto one curve when plotted against d/d.
Decreasing values of d and d correspond respectively to the con-
stant heat flux and the constant temperature single layer models,
and therefore the transition between the two depends in a fairly
simple way on the relative sizes of d and d.

Fig. 12 shows the effects of increasing values of Pe on the critical
parameters. As discussed above in connection with Fig. 9, an
increasing value of Pe causes a return to the Prats case because
the cells are moving too quickly to transfer heat into or from the
bounding layers. Thus Rac ? 4p2, kc ? p and cc/Pe ? 1 as Pe ?1.

5.5. Unusually-shaped neutral curves

We complete our survey of the dependence of the onset crite-
rion on its four governing parameters by exploring one part of



Fig. 13. Neutral curves (left) and the corresponding values of the wavespeed, c, (right) for d = 1 and Pe = 1 for the stated values of a. The following values of a were used:
a = 100,30,10,3,1,0.3,0.1, 0.03,0.01,0.003 and 0.001. For the case, Pe = 0.3, the value a = 0.0003 was also used. The dotted line corresponds to a = 100 and the dashed line to
a = 0.01.
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the parameter space where the neutral curves no longer have the
standard unimodal shape. As mentioned earlier in the Introduction
section, multimodal curves are well-known and often arise in lay-
ered systems, such as those studied by Rees and Riley [16] and
Proctor and Jones [21]. For the present system we also obtain mul-
timodal curves, but these are not always a single-valued function
of the wavenumber. We show three different cases in Fig. 13,
and there correspond to different values of the Péclet number,
and each subfigure shows neutral curves for a variety of values
of a where, in every case, we have d = d = 1.

When Pe = 3 the left hand branch of the neutral curve first
develops a kink as a decreases which then evolves into a curve
with two minima. The right hand minimum always remains the
one with the lower value of Ra. At still smaller values of a the spike



Fig. 14. Neutral curves displaying two minima for the case d = 1 and Pe = 1. From
the lowest to the uppermost, the curves correspond to a = 128.75 (d = 0.231589),
a = 135 (d = 0.270102), a = 200 (d = 0.323819), a = 500 (d = 0.346877) and a = 1000
(d = 0.348371). The bullet symbols denote local minima while the empty circles are
local maxima.
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in the neutral curve bends to the left, although this is difficult to
see directly here: its presence is clear in the numerical data but
it may also be inferred by the behaviour of cc. The Pe = 1 case
displays the same behaviour but the left-leaning spike appears at
a much larger value of k. The presence of the spike is somewhat
misleading since c varies as one traverses the neutral curve. A
three-dimensional plot of Ra where k and c are both horizontal
coordinates would find the curve travelling in the c-direction at
the tip of the spike.

When Pe = 0.3 the overall evolution of the neutral curve is
slightly different as a decreases. Instead of first developing two
minima, the curve now first becomes multivalued prior to creating
a new local maximum and minimum. We see that when a = 0.0003
the neutral curve has now developed three minima and two
maxima.

By continuity this behaviour must persist in a region of param-
eter space close to d = d = 1, although we have not investigated the
range of existence of these exotically-shaped curves.

Finally, in Fig. 14, we display some cases where the neutral
curves have two minima corresponding to the same Rayleigh
number, and allow these minima and the intermediate maximum
to merge together. We have taken the values Pe = d = 1 for this
one illustration. The lowest curve corresponds to a parameter set
which is very close to that corresponding to the quartic point,
which we estimate as being at a = 128.64 and d = 0.2303 and where
Rac = 35.7544 and kc = 2.516. Other quartic points will exist as
either or both of Pe and d are varied.

6. Conclusions

In this paper we have sought to present concisely as much
information as we can on the stability characteristics of a porous
layer heated from below which is bounded both above and below
by conducting impermable layers and where there is an overall
background flow along the layer which is driven by an external
pressure gradient. The behaviour of the resulting neutral curves
cannot always be predicted by means of a simple ‘‘addition’’ of
the known effects of conducting bounding layers (viz. a smooth
variation between the properties of constant temperature surfaces
and constant heat flux surfaces) and of a background flow (viz. a
movement of the cells along the layer whwere the phase velocity
is identical to that of the background flow). While it is clear that,
when Pe takes small values then the stability characteristics are
close to that for a zero-Pe layer with conducting bounding layers,
and when Pe takes sufficiently large values then we have essen-
tially the situation described by Prats [19] and which is indepen-
dent of the bounding layers, the transition between these two
extremes is not straightforward in all cases. We have found that
it is possible for the neutral stability curve to have more than
one minimum. But in general the presence of the bounding layers
serves to reduce the phase speed of the convection cells relative to
that found by Prats [19].
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