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The buoyant flow in a saturated porous layer inclined to the horizontal is studied
under the assumption that the plane impermeable boundaries are subject to linear
temperature distributions up the layer. The basic solution is stationary and such that
the temperature gradient is inclined to the boundary walls. Two parameters govern the
thermal boundary conditions: the Rayleigh number, associated with the component
of the basic temperature gradient orthogonal to the boundaries, the Hadley-Rayleigh
number, associated with the component of the basic temperature gradient parallel
to the boundaries. The linear stability of the basic solution with respect to the lon-
gitudinal normal modes is studied by employing two different numerical methods:
a collocation method of weighted residuals, and a Runge–Kutta solver. Different
regimes are considered: the upward–cooling condition, the upward–heating condi-
tion, and the buoyancy–balanced condition. The latter regime implies a vanishing
velocity distribution and a vertical temperature gradient in the basic state. In the
upward–cooling regime, for a fixed Hadley–Rayleigh number, the increasing incli-
nation to the horizontal leads to a destabilising effect. When the inclination exceeds
a threshold angle that depends on the Hadley–Rayleigh number, the basic solu-
tion becomes unstable for every Rayleigh number. The reverse holds true in the
upward–heating regime, where the increasing inclination to the horizontal stabilises
the basic flow. The general oblique normal modes are finally considered. It is shown
that the longitudinal modes are selected at the onset of convection, except for the
case of the Darcy–Bénard limiting case where all the oblique modes are equivalent.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732781]

I. INTRODUCTION

The stability analysis of fluid layers or fluid saturated porous layers heated from below allows
one to determine the conditions when convection initiates. If a stationary basic flow is examined,
the convective instability emerges as a secondary flow superposed onto the basic flow.

Among the many circumstances where the mechanism of heating from below may arise, the
one in which we are interested is a plane saturated porous layer which is inclined to the horizontal,
a problem originally investigated by Bories and Combarnous,1 by Weber,2 and by Caltagirone and
Bories.3 These authors assumed unequal uniform temperatures on the boundary surfaces and found
that instability occurs when the Rayleigh number exceeds 4π2/cos φ, where φ is the inclination angle
above the horizontal. The long–standing issue of pattern selection, i.e., whether polygonal cells or
longitudinal rolls occur at the onset of convective instability has been revisited recently in a note by
Nield.4 Additional results were obtained by Rees and Bassom,5 who defined a transformation which
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maps arbitrary three–dimensional normal modes (oblique rolls) into two–dimensional normal modes
(transverse rolls). These authors proved that the transverse rolls are allowed only if the inclination
angle φ above the horizontal is smaller than 31.49032◦. A detailed survey of the literature on
this subject may be found in Nield and Bejan.6 Recently, Nield, Barletta, and Celli7 included the
effect of viscous dissipation in the analysis of the conditions for the onset of the instability. Further
recent results were reported by Barletta and Storesletten8 and by Rees and Barletta.9 These authors
investigated the effects of assuming Neumann boundary conditions for the temperature field, instead
of Dirichlet boundary conditions.

In addition to the uniform temperature (Dirichlet) boundary conditions, and the uniform heat flux
(Neumann) boundary conditions, another classical boundary condition is given by the assumption of
a steady boundary temperature which varies linearly along the boundary. This boundary condition
can be important, for instance, in modelling the compact heat exchangers based on metal foams or
in the applications relative to geological media.10 For a horizontal layer, linearly varying boundary
temperatures give rise to a Hadley circulation in the basic state. The name Hadley circulation is after
George Hadley, an English meteorologist of the eighteenth century. Weber11 considered a basic state
of Hadley circulation in a study of the onset of convection in a horizontal porous layer modelled
through Darcy’s law. Later developments of this subject were achieved by Nield,12 by Nield, Manole,
and Lage,13 by Nield,14 by Kaloni and Qiao15 and by Nield.16 Recent studies on the stability of the
Darcy–Hadley flow have been carried out by including the effects of a vertical throughflow17, 18 or
the combined effects of pressure work and viscous dissipation.19 The concurrent action of heat and
solutal diffusion has been investigated by Diaz and Brevdo.20

To the best of the authors’ knowledge, all the studies related to the Darcy–Hadley flow published
to date are relative to a horizontal layer. The aim of the present study is to extend the analysis to
the case of a porous layer inclined to the horizontal. Thus, we aim to consider a general problem
that includes both the special case of an inclined porous layer with uniform boundary temperatures,
and the special case of the Darcy–Hadley flow in a horizontal porous layer. The linearly varying
boundary temperatures imply, in the case of an inclined layer, that two different regimes exist, as
the temperature may increase or decrease up the slope. The stability of the basic Darcy–Hadley flow
in an inclined layer to small–amplitude disturbances will be analysed numerically by employing a
collocation method of weighted residuals and a Runge–Kutta solver.

II. MATHEMATICAL MODEL

Let us consider a porous layer inclined to the horizontal, where the inclination angle is φ.
We assume that the boundaries are impermeable and subject to nonuniform linear temperature
distributions, such that the dimensionless boundary conditions can be expressed as

y = 0 : v = 0, T = 1 − λx,

y = 1 : v = 0, T = −λx .
(1)

A sketch of the porous layer is drawn in Fig. 1, where g denotes the gravitational acceleration. The
dimensionless quantities are defined such that

1

L
x∗ = 1

L

(
x∗, y∗, z∗) = (x, y, z) = x,

L

α
u∗ = L

α

(
u∗, v∗, w∗) = (u, v, w) = u,

α

σ L2
t∗ = t,

T ∗ − T0

�T
= T,

(2)

where the starred symbols are the dimensional fields, coordinates, and time. The average thermal
diffusivity is α, the layer thickness is L, the ratio between the volumetric heat capacity of the
saturated porous medium, and the volumetric heat capacity of the fluid is σ . We denoted by T0

and �T the reference temperature and the reference temperature difference, considered as posi-
tive, associated with the thermal boundary conditions. The dimensionless constant λ appearing in
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FIG. 1. Sketch of the inclined porous layer.

Eq. (1) is obtained dividing the dimensional wall temperature gradient along the x–direction by the
constant �T/L.

We assume the validity of Darcy’s law, as well as of the Oberbeck–Boussinesq approximation.
We further assume that the solid and fluid phases are in local thermal equilibrium, and that internal
heating or viscous dissipation effects are absent or negligible.

Thus, the governing equations can be expressed in a dimensionless form as

∇ · u = 0, (3a)

∇ × u = R ∇ × [T (sinφ êx + cosφ êy)], (3b)

∂T

∂t
+ (u · ∇) T = ∇2T . (3c)

Here, R is the Darcy–Rayleigh number defined as

R = gβ�T K L

να
, (4)

where K is the permeability of the porous medium and ν is the kinematic viscosity of the fluid. We
note that Eq. (3b) was obtained by evaluating the curl of the local momentum balance equation. The
effects of heterogeneity in the porous medium have been neglected; recent studies on the stability
analysis in heterogeneous porous media have been carried out by Barletta, Celli, and Kuznetsov.21, 22

III. THE INCLINED HADLEY FLOW

A basic solution of Eqs. (3) is obtained for a steady–state, with purely parallel throughflow
along the x–direction,

ub = 1

2
R (λ cosφ − sinφ)

sin[(2y − 1) �/2]

sin(�/2)
, vb = 0, wb = 0, (5a)

Tb = −λx + 1

2

[
1 + λ (1 − 2y) cotφ + cos(�y) (1 − λ cotφ) − (1 − λ cotφ) cot(�/2) sin(�y)

]
,

(5b)

where “b” stands for “basic solution,” and

� =
√

λR sinφ. (6)

Equation (5a) describes a velocity profile with a vanishing mass flow rate.

Downloaded 13 Jul 2012 to 138.38.0.54. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions
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Two limiting cases are specially interesting: the limit λ → 0, namely the limit of an inclined
channel with uniform wall temperatures; the limit φ → 0, namely the limit of the horizontal Hadley
flow.

In the limit λ → 0, Eqs. (5) and (6) yield

ub =
(

1

2
− y

)
R sinφ, vb = 0, wb = 0, (7a)

Tb = 1 − y, (7b)

in perfect agreement with the basic solution considered in Rees and Bassom.5

In the limit φ → 0◦, Eqs. (5) and (6) yield

ub =
(

y − 1

2

)
λR, vb = 0, wb = 0, (8a)

Tb = 1 − λx − y − λ2 R

12

(
y − 3y2 + 2y3

)
, (8b)

in perfect agreement with the basic solution reported in Section 7.9 of the book by Nield and Bejan.6

We mention that hereafter R will be considered as positive, with φ ∈ [0◦, 90◦]. On the other hand,
λ can be either positive (wall temperature decreasing up the layer) or negative (wall temperature
increasing up the layer). When λ < 0, the parameter � becomes purely imaginary, but Eqs. (5) can
still be used provided that the trigonometric functions containing � in their argument are replaced
by hyperbolic functions.

A special feature of the Hadley flow with λ > 0 is that, as it can be inferred from Eqs. (5) and (6),
the basic solution becomes singular when

sinφ = 4n2π2

λR
, n = 1, 2, 3, . . . . (9)

These singularities are displayed for sufficiently high values of the product λR. This product is, in
fact, the Hadley–Rayleigh number,

RH = λR. (10)

The dimensionless parameter RH is usually called horizontal Rayleigh number in the classical
formulation of the Hadley flow problem relative to a horizontal layer (see, for instance, Nield and
Bejan6). Here, the streamwise direction is not the horizontal, since the layer is inclined, thence we
prefer the term Hadley–Rayleigh number. We point out that R is chosen as positive, meaning that the
lower boundary wall is hotter than the upper boundary wall for any fixed cross–section x = constant.
On the other hand RH can be either positive or negative leading to different features of the basic
solution and of the stability analysis of this solution,

RH > 0, upward–cooling regime,

RH < 0, upward–heating regime.

The singularities defined by Eq. (9) exist for the upward–cooling flow when RH > 4π2. They define
conditions where no parallel flow solution with a vanishing mass flow rate is allowed.

Another interesting feature of the upward–cooling regime is the existence of a special basic
state where the fluid is at rest (ub = vb = wb = 0), and the temperature profile is just the conduction
profile, Tb = 1 − λx − y. This feature can be inferred from Eqs. (5). In fact, one has ub = 0 identically,
and Tb = 1 − λx − y when λ = tan φ, and this means

RH = R tanφ. (11)

Downloaded 13 Jul 2012 to 138.38.0.54. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



074104-5 A. Barletta and D. A. S. Rees Phys. Fluids 24, 074104 (2012)

FIG. 2. Upward–cooling basic flow: Plots of ub and of Tb + λx versus y, for R = 100 and RH = 50.

Equation (11) defines a special upward–cooling regime where the basic state is just the same that
would exist if the porous layer were horizontal (φ → 0◦). Hereafter, this special basic state will be
called the buoyancy–balanced rest state. In fact, the buoyancy–balanced rest state occurs when the
basic temperature gradient is perfectly parallel to the gravitational acceleration, that is when ∇Tb is
vertical.

Figures 2 and 3 show the basic velocity profiles and the basic temperature profiles for in-
creasing inclinations above the horizontal; reference is made to a upward–cooling case (R = 100,
RH = 50, Fig. 2), and to a upward–heating case (R = 200, RH = −50, Fig. 3). Figure 2 illustrates
the behaviour when the buoyancy–balanced rest state (φ = arctan 1

2 = 26.5651◦) is exceeded. We
see that the transition from φ = 22◦ to φ = 30◦ implies a change in the direction of the single–cell
basic flow from co–rotating to counter–rotating, passing from a rest state (φ = 26.5651◦). In the
upward–heating case (Fig. 3), the increasing inclination yields higher velocity gradients close to the
boundary walls.

FIG. 3. Upward–heating basic flow: Plots of ub and of Tb + λx versus y, for R = 200 and RH = −50.
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IV. LINEAR DISTURBANCES

We now perturb the basic solution, Eqs. (5), by defining

(u, v, w) = (ub, vb, wb) + ε(U, V, W ), T = Tb + εθ, (12)

where ε is a small perturbation parameter. Substitution of Eq. (12) in Eqs. (3) yields

∂U

∂x
+ ∂V

∂y
+ ∂W

∂z
= 0, (13a)

∂W

∂y
− ∂V

∂z
= −R

∂θ

∂z
cosφ, (13b)

∂U

∂z
− ∂W

∂x
= R

∂θ

∂z
sinφ, (13c)

∂V

∂x
− ∂U

∂y
= R

∂θ

∂x
cosφ − R

∂θ

∂y
sinφ, (13d)

∂θ

∂t
+ ub(y)

∂θ

∂x
− λU − F(y) V = ∇2θ, (13e)

where the terms O(ε2) have been neglected, and where

F(y) = −∂Tb

∂y
= λ cotφ + �

2
sin(�y) (1 − λ cotφ) + �

2
(1 − λ cotφ) cot(�/2) cos(�y). (14)

Equations (13) are subject to the boundary conditions implied by Eqs. (1) and (12), namely

y = 0, 1 : V = 0, θ = 0. (15)

V. LONGITUDINAL ROLLS

We now consider linear disturbances such that (U, V, W, θ ) are independent of x. Then,
Eq. (13a) can be identically satisfied by defining a streamfunction ψ(y, z, t) such that

V (y, z, t) = ∂ψ(y, z, t)

∂z
, W (y, z, t) = −∂ψ(y, z, t)

∂y
. (16)

Thus, Eqs. (13) yield

∇2ψ = R
∂θ

∂z
cosφ, (17a)

U = R θ sinφ + S(t), (17b)

∂θ

∂t
− λU − F(y)

∂ψ

∂z
= ∇2θ, (17c)

where S(t) is an arbitrary function of time. We assume normal mode disturbances,⎧⎪⎨
⎪⎩

U (y, z, t)

ψ(y, z, t)

θ (y, z, t)

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

a(y)

i f (y)

h(y)

⎫⎪⎬
⎪⎭ exp[i (kz − ωt)] . (18)

Downloaded 13 Jul 2012 to 138.38.0.54. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions
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We point out that, on the right hand side of Eq. (18), one must consider only the real part in
order to find the expressions of (U, ψ , θ ). In Eq. (17), k is the wavenumber and ω is a complex
parameter. If Im{ω} > 0, we have instability, while if Im{ω} < 0, we have stability. In the following,
we will be interested in determining the neutral stability condition, so that we will set Im{ω} = 0.
Equation (17b) is consistent with Eq. (18), for k �= 0, only if S(t) is chosen as identically vanishing.
Thus, Eqs. (10), (17) and (18) lead to the eigenvalue problem

f ′′ − k2 f − Rkh cosφ = 0, (19a)

h′′ + (
iω − k2 + RH sinφ

)
h − k F(y) f = 0, (19b)

y = 0, 1 : f = 0, h = 0. (19c)

Equation (19c) has been obtained from Eq. (15). The exchange of stabilities holds (a proof
is given in the Appendix) so that ω = 0, i.e., only the stationary longitudinal rolls exist. Thus,
Eqs. (19) simplify to

f ′′ − k2 f − Rkh cosφ = 0, (20a)

h′′ − (
k2 − RH sinφ

)
h − k F(y) f = 0, (20b)

y = 0, 1 : f = 0, h = 0. (20c)

A. Numerical solution

We now adopt the collocation method of weighted residuals and express the eigenfunctions f(y)
and h(y) so that Eq. (19c) is satisfied,

f (y) =
N∑

n=1

fn sin(nπy), h(y) =
N∑

n=1

hn sin(nπy). (21)

On substituting in Eq. (20a) we obtain

hn = −n2π2 + k2

Rk cosφ
fn, n = 1, 2, . . . N , (22)

and Eq. (20b) yields the residual

E(y) =
N∑

n=1

[ (
n2π2 + k2 − RH sinφ

) n2π2 + k2

Rk cosφ
− k F(y)

]
fn sin(nπy). (23)

We prescribe that E(y) vanishes at the collocation points y = ym, where

ym = m

N + 1
, m = 1, 2, . . . , N . (24)

Thus, the equation E(ym) = 0, for m = 1, 2, . . . , N, form a system of N homogeneous linear equations
in the unknowns (f1, f2, . . . , fN). We can write this system in matrix form,

M · f = 0, (25)

where

Mmn =
[ (

n2π2 + k2 − RH sinφ
) n2π2 + k2

Rk cosφ
− k F(ym)

]
sin(nπym),

fn = fn, m, n = 1, 2, . . . , N .

(26)
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The solution of the eigenvalue problem Eqs. (20) is obtained by prescribing

det (M) = 0, (27)

so that nontrivial solutions f of Eq. (25) are allowed.
The neutral stability curves R(k) are obtained, for any fixed pair (φ, RH) by solving Eq. (27). We

must fix the number N of collocation points, and we checked that, in all the cases discussed hereafter,
a number N ≤ 8 is perfectly adequate for a reliable graphical representation of the neutral stability
curves. We also used a numerical solution of Eqs. (20) based on the Runge–Kutta method and on
the shooting method (see, for instance, Barletta and Rees23 for a detailed description) to obtain a
validation of the results.

Equation (27) is in fact an algebraic equation of degree N in the unknown R(k). Geometrically,
the multiplicity of the solutions means that the neutral stability condition displays several branches.
All these branches can be represented by means of the function ContourPlot within the application
Mathematica 8. The use of the function ContourPlot requires specification of a rectangular domain
in the (k, R)–plane. All Figs. 4–7 have been drawn by this method. The rectangular domain in the (k,
R)–plane has been chosen so that only the lower branch R(k) appears, for every choice of φ and RH.

B. The neutral stability curves

Figures 4–6 display the neutral stability curves for upward–cooling basic flows with
RH ≤ 60, while Fig. 7 is relative to upward–heating basic flows with RH = −10, −20, −30. In
a horizontal porous layer, the longitudinal temperature gradient has a stabilizing effect,6, 19 except
for very large values of RH exceeding approximately 80. When the basic solution is with upward–
heating, Fig. 7 reveals a similar behaviour also for an inclined layer. We can well say that the
stabilizing effect of the longitudinal temperature gradient acts synergically, in this case, with the
stabilizing effect of the inclination.

A deeply different behaviour is observed in the upward–cooling regime. Figures 4–6 show
that the effect of an increasing RH is strongly dependent on φ. We see that the neutral stability
curves for RH > 0 gradually fall below the curve for RH → 0, meaning a destabilizing effect. For
RH = 30, the destabilization means a linear instability for every R when φ moves from 19.2◦ to
19.3◦. This effect is caused by the behaviour of the neutral stability curve relative to RH = 30 when
k → 0. What happens with RH = 30 and φ = 19.2◦ is observed also with RH = 20 and φ = 29.5◦

(Fig. 4), and eventually with RH = 10 and φ = 80.7◦. If we consider higher values of RH (Fig. 6)
the destabilization of the basic flow for every R takes place at smaller inclination angles: 9.4◦ for
RH = 60; 11.3◦ for RH = 50; 14.2◦ for RH = 40. For a prescribed RH, the threshold angle is the value
of φ such that, when this value is exceeded, the basic solution is unstable to longitudinal rolls for
every positive value of R.

The threshold angles φ = 9.4◦, φ = 11.3◦, φ = 14.2◦, φ = 19.2◦, φ = 29.5◦, and φ = 80.7◦

detected numerically for RH = 60, 50, 40, 30, 20, 10, respectively, can also be obtained analytically.
This can be done by employing a perturbation expansion of the eigenfunctions f and h for small
wave numbers k. From Eqs. (20), one obtains that, in the limit k → 0, the lowest mode of neutral
stability is

h(y) = C sin(πy), f (y) = 0, (28)

where C is an arbitrary integration constant. This mode exists only if φ and RH satisfy the relationship

φ = arcsin

(
π2

RH

)
. (29)

Equation (29) allows one to determine with a high accuracy the threshold angles for RH = 60, 50, 40,
30, 20, 10; one obtains φ = 9.46781◦, φ = 11.3845◦, φ = 14.2847◦, φ = 19.2073◦, φ = 29.5696◦

and φ = 80.7372◦, respectively.
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FIG. 4. Longitudinal rolls: Neutral stability curves R(k) for RH = 10, 20, 30. and increasing inclination angles φ; the dashed
curves are for RH → 0.
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FIG. 5. Longitudinal rolls: Neutral stability curves R(k) for RH = 10, 20, 30. and increasing inclination angles φ; the dashed
curves are for RH → 0.
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FIG. 6. Longitudinal rolls: Neutral stability curves R(k) for RH = 40, 50, 60, and increasing inclination angles φ.
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FIG. 7. Longitudinal rolls: Neutral stability curves R(k) for RH = −10, −20, −30 and increasing inclination angles φ; the
dashed curves are for RH → 0.
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C. Stability of the buoyancy–balanced rest state

If RH depends on R through Eq. (11), Eqs. (10) and (14) imply F(y) = 1. Thus, the eigenvalue
problem Eqs. (20) can be rewritten as

f ′′ − k2 f − Rkh cosφ = 0, (30a)

h′′ − (
k2 − R tanφ sinφ

)
h − k f = 0, (30b)

y = 0, 1 : f = 0, h = 0. (30c)

In this special case, the Fourier modes defined by Eq. (21) are independent, so that Eq. (20b) is
satisfied with

(
n2π2 + k2 − R tanφ sinφ

) n2π2 + k2

Rk cosφ
− k = 0, (31)

and this yields the neutral stability condition

R(k) =
(
k2 + n2π2

)2
cosφ

k2 + n2π2 sin2 φ
. (32)

The least stable mode is n = 1. Thus, the critical values of k and R for the onset of the instability are
given by

kc =
{

π
√

cos(2φ), 0◦ ≤ φ ≤ 45◦

0, 45◦ < φ < 90◦
, Rc =

{
4π2 cos3φ, 0◦ ≤ φ ≤ 45◦

π2 cotφ cscφ, 45◦ < φ < 90◦
. (33)

We mention that Eqs. (32) and (33) are consistent with the classical solution of the Darcy–Bénard
problem,6, 24–26 that is the stability analysis of the rest state in a horizontal layer (φ = 0◦).

Figure 8 displays the neutral stability curves for the least stable mode, n = 1, and relative to
different inclination angles φ. Figure 9 illustrates the change of kc and Rc versus φ. The general con-
clusion is that the buoyancy–balanced rest state becomes more and more unstable as the inclination
above the horizontal increases. When φ → 90◦, the neutral stability curve R(k) flattens to zero so
that Rc → 0.

FIG. 8. Longitudinal rolls: Neutral stability curves R(k) for the buoyancy–balanced rest state at different inclinations φ.

Downloaded 13 Jul 2012 to 138.38.0.54. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



074104-14 A. Barletta and D. A. S. Rees Phys. Fluids 24, 074104 (2012)

FIG. 9. Longitudinal rolls: Plots of kc versus φ and Rc versus φ for the buoyancy–balanced rest state.

VI. OBLIQUE ROLLS

We now test the response of the basic solution Eqs. (5) to the normal modes with a wave
vector arbitrarily oriented to the x–direction, namely the oblique rolls. In order to solve the linear
disturbance equation for the oblique rolls, it is convenient to adopt a pressure representation of the
velocity disturbance U instead of a streamfunction representation as for the longitudinal rolls. Thus,
we express U as

U = −∇P + Rθ
(
sinφ êx + cosφ êy

)
, (34)

where P is the pressure disturbance. Eq. (34) implies that Eqs. (13) are reduced to the following pair
of partial differential equations:

∇2 P = R

(
∂θ

∂x
sinφ + ∂θ

∂y
cosφ

)
, (35a)

∂θ

∂t
+ ub(y)

∂θ

∂x
− λ

(
Rθ sinφ − ∂ P

∂x

)
− F(y)

(
Rθ cosφ − ∂ P

∂y

)
= ∇2θ. (35b)

Eqs. (15) and (34) yield the boundary conditions

y = 0, 1 :
∂ P

∂y
= 0, θ = 0. (36)
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In order to investigate the condition of neutral stability, we now consider the normal mode distur-
bances, {

P(x, y, z, t)

θ (x, y, z, t)

}
=

{
q(y)

h(y)

}
exp

[
i(kx cosγ + kz sinγ − ωt)

]
. (37)

Here, γ denotes the inclination angle of the disturbance wave vector to the x–direction. If γ = 90◦,
we have the longitudinal rolls. If γ = 0◦, we have the transverse rolls. If 0◦ < γ < 90◦, we have the
oblique rolls.

On substituting Eq. (37) into Eqs. (35) and (36), we obtain

q ′′ − k2q − Rh′ cosφ − ikh R cosγ sinφ = 0, (38a)

h′′ + [
iω − k2 + RH sinφ + RF(y) cosφ − ikub(y) cosγ

]
h − F(y)q ′ − ik

RH

R
q cosγ = 0,

(38b)

y = 0, 1 : q ′ = 0, h = 0. (38c)

Eqs. (38) can be solved as an eigenvalue problem. One must fix the values of (k, γ , φ, RH) and
determine the pair (ω, R) as the eigenvalue. The solution of the eigenvalue problem can be achieved
numerically by employing the Runge–Kutta method and the shooting method (see, for instance,
Barletta and Rees23 for a detailed description).

The analysis of the oblique rolls is carried out starting from the longitudinal rolls (γ = 90◦)
and seeking the solution of the eigenvalue problem by continuously decreasing the value of γ from
90◦ to 0◦. At each step, viz. for each value of γ , we take as a first guess the solution obtained at the
previous step, and the first guess for the case γ = 90◦ is the solution obtained with the collocation
method of weighted residuals described in Sec. V A. In order to check if there exist more unstable
branches of oblique rolls not continuously connected with the longitudinal rolls, we employ a search
with randomly generated first guess data, with R smaller than the critical value for longitudinal rolls.
No such branches were detected in all the cases examined.

We mention that one cannot in general reduce the analysis of the oblique rolls to that of the
transverse rolls,5 as it is indeed the case when RH = 0. In other words, with RH �= 0, one cannot
define a transformation that maps the three–dimensional linear stability analysis to an equivalent
two–dimensional formulation.

For the buoyancy–balanced rest state, Eqs. (38) yield

q ′′ − k2q − Rh′ cosφ − ikh R cosγ sinφ = 0, (39a)

h′′ + (
iω − k2 + R secφ

)
h − q ′ − ikq cosγ tanφ = 0, (39b)

y = 0, 1 : q ′ = 0, h = 0. (39c)

A. Neutral stability and critical conditions

The main objective of the stability analysis relative to the oblique rolls is to ascertain if these
disturbances are more or less dangerous than the longitudinal rolls hitherto considered. This study
is carried out by comparing the critical values of R for general oblique rolls with those for the
longitudinal rolls, for fixed values of RH and φ. This study is carried out on the basis of Figs. 10–12
for upward–cooling basic flows (RH ≥ 0), of Fig. 13 for upward–heating basic flows (RH < 0),
and of Figs. 14 and 15 for the buoyancy–balanced rest state (RH = R tanφ). In the latter case, only
the inclination angle φ needs to be fixed. We mention that a general feature of the oblique rolls
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FIG. 10. Oblique rolls: Plots of Rc/Rc, � versus γ with RH = 0, 10, and different values of φ.

FIG. 11. Oblique rolls: Plots of Rc versus γ with RH = 20, 30, 40, and different values of φ.
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FIG. 12. Oblique rolls: Plots of Rc versus γ with RH = 50, 60, and different values of φ.

FIG. 13. Oblique rolls: Plots of Rc/Rc, � versus γ with RH = −10, −20, −30 and different values of φ.
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FIG. 14. Transverse rolls: Plot of Rc versus φ for the buoyancy–balanced rest state (solid line); the dashed line is the plot of
Rc versus φ relative to the longitudinal rolls.

(γ < 90◦) and of the transverse rolls (γ = 0◦) is being non–travelling modes (ω = 0) in all the cases
examined.

Figures 10–15 show that the longitudinal rolls are the most effective disturbances at the onset of
the convective instability. This conclusion emerges clearly from the plots of Rc, or Rc/Rc, �, versus γ

reported in Figs. 10–15. Here, the subscript � stands for “longitudinal”. The values of Rc at γ = 90◦

are always smaller than those for γ < 90◦. An exception is the case (φ = 0◦, RH = 0) illustrated in
Fig. 10 and in Figs. 14 and 15. In fact, this case is the classical Darcy–Bénard stability problem where
Rc = 4π2, and the angle γ does not influence the neutral stability condition due to the symmetry by
rotations around the vertical y–axis.

Figure 10 is relative to RH = 0, 10. The left and right frames of this figure reveal a qualitatively
similar behaviour for RH = 0 and RH = 10. In particular both the left frame and the right frame show
that, for φ = 40◦, 60◦, 80◦, the oblique rolls may exist only if γ is greater than a threshold value
that depends on φ and RH. In the case RH = 0, Fig. 10 is perfectly consistent with the results of the

FIG. 15. Oblique rolls: Plots of Rc versus γ for the buoyancy–balanced rest state (solid lines) with different values of φ; the
dotted line denotes the upper boundary of the region where the critical condition for the oblique rolls yields kc = 0.
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analysis carried out by Rees and Bassom.5 These authors proved that the instability to oblique rolls
is possible only if γ fulfils the inequality

cosγ <
0.612568

tanφ
. (40)

This means that, with φ = 40◦, oblique rolls are allowed only for γ > 43.11◦. With φ = 60◦ and
φ = 80◦, we have γ > 69.29◦ and γ > 83.80◦, respectively. No threshold angles γ exist with
φ = 20◦, because the inequality (40) is fulfilled for every value of γ in this case. A threshold angle
γ exists only if the inclination of the layer above the horizontal is φ > 31.49◦. These results are
in perfect agreement with the data reported in the left frame of Fig. 10. The right frame of Fig. 10
shows that, with RH = 10, the threshold values of γ are for smaller angles. Moreover, unlike the case
RH = 0, the ratio Rc/Rc, � at the threshold values of γ changes with φ. In fact, the results reported by
Rees and Bassom5 for the case RH = 0 imply that Rc/Rc, � = 2.25278, at the threshold values of γ

corresponding to every inclination angle φ > 31.49◦. The change in the shape of the neutral stability
curves for the oblique rolls as γ decreases approaching its lowest value was described by Rees and
Bassom,5 for the case RH = 0. Indeed, the neutral stability curves mutate from a concave upward
shape to a closed loop eventually shrinking to a point and disappearing, when γ tends to its lowest
value.

The features of the linear stability to oblique rolls discussed with reference to Fig. 10 are
retrieved also in Fig. 13. This figure is relative to the upward–heating regime with RH = −10,
−20, −30. For the upward–heating regime, we infer that the minimum values of γ for the ex-
istence of oblique rolls increase with |RH|. For example, by fixing RH = −30, we observe a
threshold value γ = 28.42◦ relative to φ = 20◦ that was not present either for RH = −20 or for
RH = −10. As |RH| increases, we report also an increasing variability of the ratio Rc/Rc, � at the
threshold values of γ .

Figures 14 and 15 are relative to the buoyancy–balanced rest state. Figure 14 shows that the
transverse rolls are more stable than the longitudinal rolls for every inclination angle 0◦ < φ < 90◦.
Transverse and longitudinal rolls become equivalent in the limiting cases φ = 0◦ and φ = 90◦.
Figure 15 illustrates how Rc changes with γ at different inclination angles φ. We start from the
Darcy–Bénard limiting case φ = 0◦, where all the oblique and transverse rolls yield critical conditions
equivalent to the longitudinal rolls. When the layer is inclined to the horizontal, the longitudinal
rolls result again to be the most unstable. In Sec. V C, with reference to the longitudinal rolls, we
reported two different regimes as φ increases. A regime with kc > 0 exists when 0◦ ≤ φ < 45◦.
A regime with kc = 0, meaning a monotonic increasing neutral stability function R(k), exists when
45◦ ≤ φ < 90◦. Figure 15 shows that the condition kc = 0 is extended also to some oblique rolls
when 45◦ ≤ φ < 90◦: those with a sufficiently large γ . Thus, the dotted curve in Fig. 15 interpolates
the minimum values of γ , for different inclinations φ > 45◦, such that the onset of convection takes
place with kc = 0.

VII. CONCLUSIONS

The stability of the Darcy–Hadley flow in an inclined porous layer has been analysed. The basic
buoyant flow having a zero mass flow rate is induced both by the inclination above the horizontal and
by the nonuniform boundary temperatures. Two possible regimes have been examined: the upward–
heating condition where the boundary temperatures increase up the slope; the upward–cooling
condition where the boundary temperatures decrease up the slope. A special case of upward–cooling
condition arises when the basic temperature gradient becomes vertical. In this special case, denoted
as buoyancy–balanced rest state, the basic solution is such that the temperature gradient is vertical
and the velocity field is zero.

The linear stability of the basic solution has been analysed by solving the disturbance equa-
tions for the normal modes. The case of longitudinal rolls, that is the modes with a wave vector
perpendicular to the basic velocity, has been first considered. The disturbance equations have been
solved as an eigenvalue problem by a collocation method of weighted residuals, and by a Runge–
Kutta solver for a validation in a few special cases. The numerical solution has lead to the neutral
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stability condition, namely the function R(k) defining the onset of the instability for a given wave
number k of the normal mode. Here R is the Darcy–Rayleigh number associated with the transverse
temperature difference between the boundaries. The neutral stability function R(k) is both influ-
enced by the Hadley–Rayleigh number, RH, associated with the basic temperature gradient down the
slope, and by the layer inclination angle above the horizontal, φ. The main results obtained are the
following:

• In the upward–cooling case (RH > 0), the increasing inclination above the horizontal tends to
destabilise the flow. The basic solution may become unstable for every value of R, when the
inclination angle φ becomes sufficiently large. When this happens, the neutral stability function
R(k) does not have a positive absolute minimum.

• In the upward–heating case (RH < 0), the increasing inclination above the horizontal tends to
stabilise the flow. The critical values (kc, Rc), corresponding to the absolute minimum of the
neutral stability function R(k), are such that Rc increases both with φ and with |RH|.

• The stability of the buoyancy–balanced rest state (RH = R tanφ) could be studied analytically
for the longitudinal rolls. The critical value Rc decreases with φ in this case, and the critical
wave number kc is zero for every φ ≥ 45◦.

The analysis of the stability to the longitudinal rolls has been extended by considering three-
dimensional normal modes, such that the wave vector has an arbitrary inclination γ to the basic
velocity. With the general normal modes, the pressure representation of the velocity disturbances
has been adopted, and the eigenvalue problem for the neutral stability has been solved numeri-
cally by employing a Runge–Kutta solver. With γ = 0◦ we have the transverse rolls, and with
0◦ < γ < 90◦ we have the oblique rolls. In all the cases considered, the oblique and the trans-
verse rolls have been found to be more stable than the longitudinal rolls (γ = 90◦). Thus, the
selected patterns at the onset of the instability are the longitudinal rolls. An exception to this rule
is the special case of the Darcy–Bénard problem, obtained by the limits φ → 0◦ and RH → 0.
In the Darcy–Bénard problem, the symmetry by rotations around the vertical axis ensures that all
the normal modes (transverse, oblique, longitudinal) are equivalent.
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APPENDIX: EXCHANGE OF STABILITIES

The proof of the exchange of stability is based on the technique developed by Pellew and
Southwell27 and recently employed by Nouri-Borujerdi, Noghrehabadi, and Rees.28

Since we are interested in the neutral stability condition, we set Im{ω} = 0 so that ω is to be
considered as a real parameter. We note that Eqs. (19a) and (19c) imply

f ′′(0) = f ′′(1) = 0. (A1)

Thus, on account of Eqs. (19c) and (A1), repeated integration by parts allows one to write the
following:∫ 1

0
f̄ f ′′′′ dy = [

f̄ f ′′′]1
0 −

∫ 1

0
f̄ ′ f ′′′ dy = − [

f̄ ′ f ′′]1
0 +

∫ 1

0
| f ′′|2 dy =

∫ 1

0
| f ′′|2 dy, (A2a)

∫ 1

0
f̄ f ′′ dy = [

f̄ f ′]1
0 −

∫ 1

0
| f ′|2 dy = −

∫ 1

0
| f ′|2 dy, (A2b)

where the overline stands for complex conjugate.
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Equations (19a) and (19b) can be collapsed into a single fourth–order differential equation,

f ′′′′ − k2 f ′′ + (
iω − k2 + RH sinφ

) (
f ′′ − k2 f

) − Rk2 F(y) f cosφ = 0. (A3)

We multiply Eq. (A3) by f̄ and then we integrate with respect to y in the interval [0, 1]. Hence, on
account of Eqs. (A2), we obtain∫ 1

0

(| f ′′|2 + k2| f ′|2) dy + (
k2 − RH sinφ

) ∫ 1

0

(| f ′|2 + k2| f |2) dy

− Rk2 cosφ
∫ 1

0
F(y)| f |2 dy − iω

∫ 1

0

(| f ′|2 + k2| f |2) dy = 0. (A4)

Equation (A4) is a complex equation and it is satisfied if and only if both its real part and its
imaginary part are zero. The imaginary part of Eq. (A4) is zero if

ω

∫ 1

0

(| f ′|2 + k2| f |2) dy = 0. (A5)

Equation (A5) implies that either f is identically vanishing or ω = 0. The former possibility is not
acceptable, and hence the exchange of stabilities is proved.
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