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a b s t r a c t

The Darcy–Bénard problem with constant heat flux boundary conditions is studied in a regime where the
fluid and solid phases are in local thermal non-equilibrium. The onset conditions for convective instabil-
ity in the plane porous layer are investigated using a linear stability analysis. Constant heat flux boundary
conditions are formulated according to the Amiri–Vafai–Kuzay Model A, where the boundary walls are
assumed as impermeable and with a high thermal conductance. The normal mode analysis of the pertur-
bations imposed on the basic state leads to a one-dimensional eigenvalue problem, solved numerically to
determine the neutral stability condition. Analytical solutions are found for the limit of small wave num-
bers, and in the regime where the conductivity of the solid phase is much larger than the conductivity of
the fluid phase. A comparison with the corresponding results under conditions of local thermal equilib-
rium is carried out. The critical conditions for the onset of convection correspond to a zero wave number
only when the inter-phase heat transfer coefficient is sufficiently large. Otherwise, the critical conditions
correspond to a nonzero wave number.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The onset of convection in porous media due to an externally
imposed thermal gradient, originally formulated and solved in
the pioneering papers by Horton and Rogers [1] and by Lapwood
[2], is now a classical topic in fluid dynamics. The original state-
ment of this problem, well-known as Darcy–Bénard problem or
as the Horton–Rogers–Lapwood problem, corresponds to a plane
porous channel bounded by a pair of isothermal walls kept at dif-
ferent temperatures. Among the many developments of these pa-
pers, reviewed extensively in Chapter 6 of Nield and Bejan [3],
here we focus our attention on the analysis of the thermoconvec-
tive instability in a fluid saturated porous medium under condi-
tions of local thermal non-equilibrium.

Local thermal non-equilibrium in a porous medium saturated by
a fluid is modelled by assuming two temperature fields, one for the
solid phase and one for the fluid phase. An inter-phase heat transfer
coefficient h is defined, so that the local energy balance equations for
the fluid phase and for the solid phase contain heat exchange terms
proportional to h and to the local temperature difference between
the phases. This model, formulated following the earlier studies by
Anzelius [4] and Schumann [5], and by other investigators such as
Combarnous and Bories [6], is nowadays established in the form

expressed by Nield and Bejan [3]. Surveys of the main results ob-
tained on applying this non-equilibrium model to the analysis of
convection in porous media have been carried out by Kuznetsov
[7] and by Rees and Pop [8].

The two-temperature model was first employed in a linear sta-
bility analysis of the Darcy–Bénard problem by Banu and Rees [9].
This study, which is based on Darcy’s law, uses the same boundary
conditions as those considered by Horton and Rogers [1] and by
Lapwood [2], namely constant temperature conditions. An exten-
sion of the analysis by Banu and Rees [9] to a more general local
momentum balance equation, including both the form-drag term
and the Brinkman term, was carried out by Postelnicu and Rees
[10] for the case of stress-free isothermal boundaries, and by
Postelnicu [11] for the case of isothermal rigid boundaries. Malash-
etty et al. [12] investigated the onset of the thermoconvective
instability in the case of a non-isotropic porous medium under lo-
cal non-equilibrium conditions. Heat generation occurring either in
the fluid phase or in the solid phase has been taken into account by
Nouri-Borujerdi et al. [13], together with the temperature differ-
ence between the boundary walls, as the possible source of the
thermal instability in a horizontal porous layer. All these papers
deal with extensions of the Darcy–Bénard problem under the
hypothesis of local thermal non-equilibrium, assuming thermal
boundary conditions of the Dirichlet type. The case of Neumann
thermal boundary conditions, i.e. uniform heat flux, have not been
considered thus far and form the objective of the present study.
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This paper provides a linear stability analysis for a horizontal por-
ous layer with a uniform heat flux prescribed on the plane boundary
walls. The regime of local thermal non-equilibrium is studied
including, as special cases, the limits of zero and infinite inter-phase
heat transfer coefficient. The former limit is the regime of thermally
decoupled phases, where the temperature field of the fluid is inde-
pendent of the temperature field of the solid. The latter limit corre-
sponds to local thermal equilibrium, investigated originally by Nield
[14] and described in detail in Section 6.2 of Nield and Bejan [3]. We
also investigate the two limits where the thermal conductivity of the
fluid phase is either much larger or much smaller than the thermal
conductivity of the solid phase. In the latter case, the linear stability
problem admits a completely analytical solution.

2. Problem statement and governing equations

We consider a plane porous layer having thickness L, bounded
at �z ¼ 0 and at �z ¼ L by impermeable boundaries where a uniform
heat flux, qw, is prescribed (see Fig. 1). The buoyant flow in the por-
ous layer is studied under the following assumptions:

� The porous medium is homogeneous and isotropic;
� The Oberbeck–Boussinesq approximation holds;
� Darcy’s law holds;
� The viscous dissipation effect is negligible and volumetric heat-

ing is absent;
� The local thermal non-equilibrium between the solid and fluid

phases is modeled through an inter-phase heat transfer coeffi-
cient h.

2.1. Governing equations

As a consequence of the basic assumptions, the governing local
balance equations can be written as

�r � �u ¼ 0; ð1Þ
l
K

�r� �u ¼ qf gb �r� ðT f ezÞ; ð2Þ

ð1�uÞðqcÞs
@Ts

@�t
¼ ð1�uÞks

�r2Ts þ hðT f � TsÞ; ð3Þ

uðqcÞf
@T f

@�t
þ ðqcÞf �u � �rT f ¼ ukf

�r2T f þ hðTs � T f Þ: ð4Þ

Eq. (2) represents the vorticity formulation of Darcy’s law. In fact,
the curl operator has been applied to the local momentum balance
equation in order to eliminate the pressure field.

2.2. Boundary conditions

The boundary conditions for the seepage velocity, �u ¼ ð�u; �v ; �wÞ,
and for the temperature fields, T f ; Ts, may be expressed according
to the models formulated by Amiri et al. [15] and recently revisited
by Yang and Vafai [16].

In the present study, we will adopt the so-called Model A [16].

Nomenclature

a dimensionless wave number
A; B integration constants
c heat capacity per unit mass
ez unit vector in the z-direction
g; g gravitational acceleration; modulus of g
h inter-phase heat transfer coefficient
H dimensionless inter-phase heat transfer parameter, Eq.

(8)
k thermal conductivity
K permeability
L layer thickness
n natural number
qw wall heat flux
R Darcy–Rayleigh number, Eq. (8)bR modified Darcy–Rayleigh number, Eq. (64)
t dimensionless time, Eq. (6)
T dimensionless temperature, Eq. (6)
u dimensionless velocity, (u,v,w), Eq. (6)
U dimensionless velocity disturbance, (U,V,W), Eq. (15)
x dimensionless position vector, (x,y,z), Eq. (6)

Greek symbols
a thermal diffusivity
b thermal expansion coefficient
c dimensionless parameter, Eq. (8)
DT reference temperature difference, Eq. (7)
e dimensionless perturbation parameter, Eq. (15)

H dimensionless fluid phase temperature disturbance,
Eq. (15)eH; eU; eW dimensionless disturbance amplitudes, Eq. (26)eHn; eUn; eWn;Rn power series coefficients, Eq. (43)

k dimensionless parameter, Eq. (8)eK dimensionless function, Eq. (31)
l dynamic viscosity
m kinematic viscosity
q density
u porosity
U dimensionless solid phase temperature disturbance, Eq.

(15)
W dimensionless streamfunction disturbance, Eq. (21)
f equal to z� 1

2

r equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðcþ 1Þ

p
Superscript, subscripts
– dimensional quantity
B basic solution
c critical value
f fluid phase
m volumetric average over the phases
s solid phase
th threshold value
0 differentiation with respect to z

Fig. 1. Schematic of the porous layer.
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This model of the constant heat flux boundary conditions is based
on the assumption that the boundaries �z ¼ 0; L are in a condition of
local thermal equilibrium. Moreover, it is assumed that the sup-
plied wall heat flux qw is given by the sum of the Fourier heat
fluxes

�kf
@T f

@�z
; �ks

@Ts

@�z
;

in the fluid phase and in the solid phase, where each flux is
weighted by the volumetric fraction of the corresponding phase,
u and 1 � u respectively. Thus, the velocity and temperature
boundary conditions can be written as

�z ¼ 0; L :

�w ¼ 0;

�ukf
@T f

@�z
� ð1�uÞks

@Ts

@�z
¼ qw;

T f ¼ Ts:

8>>><>>>: ð5Þ

As pointed out by Yang and Vafai [16], this formulation of the con-
stant heat flux boundary conditions is appropriate when the imper-
meable boundary wall is of finite thickness and with a high thermal
conductivity. We mention that, in Eq. (5), the condition involving
the heat fluxes is based on an energy balance at the boundary.
There, the surface porosity is considered equal to the porosity u.
In fact, the latter assumption is legitimate for a homogeneous
porous medium [17,18].

2.3. Dimensionless quantities

We define dimensionless variables as follows:

�x ¼ xL; �t ¼ t
L2

af
; �u ¼ u

af

L
; Ts;f ¼ Ts;fDT; ð6Þ

where

DT ¼ qwL
km

; km ¼ ð1�uÞks þukf : ð7Þ

We also introduce the dimensionless parameters

k ¼ af

as
; H ¼ hL2

ukf
; c ¼ ukf

ð1�uÞks
; R ¼ gbDTKL

amm
: ð8Þ

Here, R is the Darcy–Rayleigh number. On the other hand,
af = kf/(qc)f and as = ks/(qc)s are the thermal diffusivities of the fluid
phase and of the solid phase respectively, while am = km/(qc)f is the
effective thermal diffusivity. Moreover, the kinematic viscosity is gi-
ven by m = l/qf. Then, Eqs. (1)–(4) may be rewritten in the form,

r � u ¼ 0; ð9Þ

r � u ¼ u
1þ c

c
Rr� ðT f ezÞ; ð10Þ

k
@Ts

@t
¼ r2Ts þ HcðT f � TsÞ; ð11Þ

@T f

@t
þ 1

u
u � rT f ¼ r2T f þ HðTs � T f Þ: ð12Þ

while the boundary conditions, Eq. (5), can be expressed as

z ¼ 0;1 :

w ¼ 0;

�c
@T f

@z
� @Ts

@z
¼ 1þ c;

T f ¼ Ts:

8>><>>: ð13Þ

We mention that, due to the constant heat flux boundary condi-
tions, the solution of Eqs. (9)–(13) determines the temperature
fields Tf and Ts only up to an arbitrary additive constant.

3. The basic solution

A steady-state solution of Eqs. (9)–(13) with a zero velocity
exists,

uB ¼ 0;
TsB ¼ T fB ¼ 1� z;

�
ð14Þ

where ‘‘B’’ stands for basic solution. For all values of H, c and k the
basic state solution is local thermal equilibrium basic solution. We
have chosen the arbitrary additive constant in the expressions of TsB

and TfB so that TfB = 0 at z = 1.

4. Linear stability

We now perturb the basic solution,

u ¼ uB þ eU; Ts ¼ TsB þ eU; T f ¼ T fB þ eH; ð15Þ

where e is a small perturbation parameter satisfying jej � 1. We
substitute Eq. (15) into Eqs. (9)–(12) and neglect terms of O(e2).
Thus, we obtain the following linearized system,

r � U ¼ 0; ð16Þ

r � U ¼ u
1þ c

c
Rr� ðHezÞ; ð17Þ

k
@U
@t
¼ r2Uþ HcðH�UÞ; ð18Þ

@H
@t
� 1

u
W ¼ r2Hþ HðU�HÞ: ð19Þ

The linear stability analysis, carried out from Eqs. (16)–(19), is de-
voted to the determination of the onset conditions for the convec-
tive flow. The question of whether the bifurcation to convection is
subcritical or supercritical will require the use of a weakly nonlinear
theory involving terms up to O(e3) in the local balance equations.
Should the bifurcation be subcritical, then the energy method
may be used to determine the depth of subcriticality where the
solutions are then expected to be quite strongly nonlinear. As is
well known, the nonlinearity becomes important in the evaluation
of the rate of heat transfer, but this is outside of the scope of the
present paper. This study is devoted entirely to the linear system,
Eqs. (16)–(19), with the objective of determining the neutral stabil-
ity conditions.

Given that the porous layer, the basic solution and the boundary
conditions share a rotational symmetry about the z-axis, we
conclude that the wave vector of the linear disturbances may be
equivalently orientated in any direction within the horizontal
(x,y)-plane. As a consequence it is not restrictive to assume two-
dimensional disturbances lying in the (x,z)-plane. This means that
we may write,

U ¼ Uðx; z; tÞ; V ¼ 0; W ¼Wðx; z; tÞ;
U ¼ Uðx; z; tÞ; H ¼ Hðx; z; tÞ: ð20Þ

Hence, Eq. (16) can be identically satisfied by defining a stream-
function, W(x,z, t), such that

U ¼ u
@W
@z

; W ¼ �u
@W
@x

: ð21Þ

On account of Eq. (21), Eqs. (17)–(19), yield

r2Wþ 1þ c
c

R
@H
@x
¼ 0; ð22Þ

k
@U
@t
¼ r2Uþ HcðH�UÞ; ð23Þ

@H
@t
þ @W
@x
¼ r2Hþ HðU�HÞ: ð24Þ
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The boundary conditions associated with the eigenvalue problem
Eqs. (22)–(24) are now given by

z ¼ 0;1 :

W ¼ 0;

c
@H
@z
þ @U
@z
¼ 0;

H ¼ U:

8>><>>: ð25Þ

4.1. Stationary modes

It is possible to show using an integral method that solutions of
Eqs. (22)–(25) either decay or grow exponentially in time and that
the exponential growth rate is real. In other words, the principle of
the exchange of stabilities applies, and therefore all modes of insta-
bility are stationary. Therefore we are able to set all time deriva-
tives to zero in order to determine the onset criterion. We begin
by substituting,

W ¼ eWðzÞ cosðaxÞ; U ¼ eUðzÞ sinðaxÞ; H ¼ eHðzÞ sinðaxÞ: ð26Þ

into Eqs. (22)–(25) after which we obtain,

eW 00 � a2 eW þ a
1þ c

c
R eH ¼ 0; ð27Þ

eU 00 � a2 eU þ Hcð eH � eUÞ ¼ 0; ð28ÞeH 00 � a2 eH þ HðeU � eHÞ þ a eW ¼ 0; ð29Þ
z ¼ 0;1 : eW ¼ 0; c eH 0 þ eU0 ¼ 0; eH ¼ eU; ð30Þ

where the primes denote differentiation with respect to z.

An alternative formulation of the differential problem Eqs.
(27)–(30) may be obtained by defining the new dependent
variable,

eKðzÞ ¼ eHðzÞ þ eUðzÞ
c

: ð31Þ

Thus, combination of Eqs. (28) and (29) allows one to rewrite Eqs.
(27)–(30) as

eW 00 � a2 eW þ a
1þ c

c
R eK � eU

c

 !
¼ 0; ð32Þ

eK00 � a2 eK þ a eW ¼ 0; ð33Þ

eU 00 � a2 eU þ Hc eK � 1þ c
c

eU� �
¼ 0; ð34Þ

z ¼ 0;1 : eW ¼ 0; eK0 ¼ 0; eU ¼ c
1þ c

eK: ð35Þ

4.1.1. The limit of local thermal equilibrium
Local thermal equilibrium occurs when the inter-phase heat

transfer coefficient h becomes asymptotically large, i.e. in the limit
H ?1. Within this regime, Eq. (28) can be satisfied only ifeHðzÞ ¼ eUðzÞ, for all z. Equivalently, if H ?1, Eq. (34) can be satis-
fied only if

eKðzÞ ¼ 1þ c
c

eUðzÞ; ð36Þ

for every z. Thus, in the limit of local thermal equilibrium the eigen-
value problem Eqs. (32)–(35) simplifies to

Fig. 2. Neutral stability curves for H = 100.
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eW 00 � a2 eW þ aReK ¼ 0; ð37ÞeK 00 � a2 eK þ a eW ¼ 0; ð38Þ
z ¼ 0;1 : eW ¼ 0; eK0 ¼ 0: ð39Þ

We note that, on taking the limit c ?1 of Eqs. (27)–(30) with a fi-
nite H, we obtain eU ¼ eH and

eW 00 � a2 eW þ aR eH ¼ 0; ð40ÞeH 00 � a2 eH þ a eW ¼ 0; ð41Þ
z ¼ 0;1 : eW ¼ 0; eH 0 ¼ 0: ð42Þ

By employing Eq. (31), we can conclude that the limit c ?1 with a
finite H yields eU ¼ eH ¼ eK. Therefore, the eigenvalue problem Eqs.
(40)–(42) is completely equivalent to that given by Eqs. (37)–(39).
In other words, the condition of local thermal equilibrium is at-
tained either by taking the limit H ?1 with a finite c, or by taking
the limit c ?1 with a finite H. We mention that, on account of Eq.
(8), c ?1 means a volumetric conductance of the fluid phase, ukf,
which is much greater than the volumetric conductance of the solid
phase, (1 � u)ks. We note that the onset criterion for Eqs. (37)–(39)
or Eqs. (40)–(42) is well-known: Rc = 12 and ac = 0; see Section 6.2
of Nield and Bejan [3].

4.2. Stationary modes with a zero wave number

Given that the local thermal equilibrium limit of the present
problem has a critical wave number equal to zero and that the neu-
tral curve has a quadratic minimum at that point, any slight relax-
ation of the local thermal equilibrium condition is unlikely to

change this qualitative behaviour. Therefore it is a reasonable first
step in our detailed analysis to consider the small-a solution.

ð eW; eH; eU;RÞ ¼ ða eW0; eH0; eU0;R0Þ þ a2ða eW2; eH2; eU2;R2Þ

þ a4ða eW4; eH4; eU4;R4Þ þ � � � : ð43Þ

We substitute Eq. (43) in Eqs. (27)–(29). At O(1) we obtain the
equations,

eH 00
0 þ HðeU0 � eH0Þ ¼ 0; eU000 þ Hcð eH0 � eU0Þ ¼ 0;

eW 00
0 ¼ �R0

cþ 1
c

� � eH0: ð44Þ

It may be shown that these equations have the following
solutions,

eH0 ¼ eU0 ¼ 1; eW0 ¼ �
1
2

R0
cþ 1

c

� �
ðz2 � zÞ: ð45Þ

Although the common value of eH0 and eU0 should be an arbitrary
constant, we have set it equal to 1 for convenience and to break
the overall scale invariance of the solution. For further convenience
we will set z ¼ fþ 1

2. As further solutions are also even about z ¼ 1
2,

they will be even in f. Therefore the solutions given in Eq. (45)
become,

eH0 ¼ eU0 ¼ 1; eW0 ¼ �R0
cþ 1

c

� �
f2

2
� 1

8

 !
: ð46Þ

At O(a2) the equations for eH2 and eU2 are,

eH 00
2 þ HðeU2 � eH2Þ ¼ � eW0 þ eH0; eU002 þ Hcð eH2 � eU2Þ ¼ eU0: ð47Þ

Fig. 3. Neutral stability curves for H = 10.
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Therefore we may form,

c eH00
2 þ eU002 ¼ ðcþ 1Þ þ R0ðcþ 1Þ f2

2
� 1

8

 !
; ð48Þ

which may be integrated once to obtain,

c eH0
2 þ eU02 ¼ ðcþ 1Þfþ R0ðcþ 1Þ f3

6
� f

8

 !
; ð49Þ

where the constant of integration has been omitted because it is
even. This quantity should be zero at the boundaries, f ¼ � 1

2, be-
cause it is one of the boundary conditions given in Eq. (30) and this
solvability condition leads to the requirement that,

R0 ¼ 12: ð50Þ

This result shows that the onset criterion corresponding to the zero
wave number is unchanged under local thermal non-equilibrium
conditions, and it is therefore independent of the values of H and c.

Having obtained R0 we may now complete the solution for eH2

and eU2; they are,

eH2 ¼ B� 1
4

f2 þ 1
2

f4 þ 12

H2ðcþ 1Þ2c
coshrf

cosh 1
2 r
� 6f2

Hðcþ 1Þc ; ð51Þ

eU2 ¼ B� 1
4

f2 þ 1
2

f4 � 12

H2ðcþ 1Þ2
cosh rf

cosh 1
2 r
þ 6f2

Hðcþ 1Þ

� 3=2
Hc
þ 12

H2ðcþ 1Þc
; ð52Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðcþ 1Þ

p
. The value, B, is an arbitrary constant and we

may select it to be zero because its value does not affect the solv-
ability condition at O(a4).

The equation for eW2 is now,

eW 00
2 ¼ �R0

cþ 1
c

� � eH2 � R2
cþ 1

c

� � eH0 þ eW0: ð53Þ

We omit the full expression for the right hand side of this equation
for the sake of brevity, but the solution is,

eW2 ¼� 12
cþ 1

c

� �
f6 � 1

2

� �6

60
þ

f4 � 1
2

� �4

48
�

f2 � 1
2

� �2

16
�

f4 � 1
2

� �4

2Hðcþ 1Þc

"

þ 12

H3ðcþ 1Þ3c
coshrf

cosh 1
2 r
� 1

 !#
� R2

cþ 1
c

� �
f2

2
� 1

8

 !
: ð54Þ

The equations for eH4 and eU4 at O(a4) are,eH 00
4 þ HðeU4 � eH4Þ ¼ � eW2 þ eH2; eU004 þ Hcð eH4 � eU4Þ ¼ eU2: ð55Þ

We follow the same procedure as above for eH2 and eU2, namely, we
integrate once and apply the boundary condition that
c eH0

4 þ eU04 ¼ 0. This yields the following solvability condition,

R2 ¼
8
7
� 72

c
1=5

Hðcþ 1Þ �
2

H2ðcþ 1Þ2
þ 24

H3ðcþ 1Þ3
�

48 tanh 1
2 r

rH3ðcþ 1Þ3

" #
:

ð56Þ

This value of R2 is of great importance: if it is positive, then the va-
lue a = 0 represents a local minimum in the neutral curve. We can
see from Eq. (55) that the value is R2 ¼ 8

7 in the local thermal equi-
librium limit and in that case a = 0 actually represents a global min-
imum. On the other hand, if R2 is negative, this will imply that a = 0
represents a local maximum, and we should expect a global mini-
mum at a nonzero value of a.

Fig. 4. Neutral stability curves for H = 1.
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Anticipating our numerical results which are presented later, if
we need to determine the point at which transition between a = 0
representing a local minimum in the neutral curve and represent-
ing a maximum, then we need R2 = 0. It is not possible to determine
H as an explicit function of c or vice versa, but such threshold val-
ues of c may be written in terms of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðcþ 1Þ

p
, as follows:

c ¼ 63
1

5r2 �
2
r4 þ

24
r6 �

48 tanh 1
2 r

r7

� 	
: ð57Þ

It is possible to analyse Eq. (56) further. When H� 1 then c = O(1)
and hence r� 1. The tanh function in Eq. (56) may now be ex-
panded in a Taylor’s series and we obtain,

R2 ¼
8
7
� 72

c
17

840
þ OðHÞ

� 	
ð58Þ

Therefore R2 = 0 when

c ¼ 51
40
þ OðHÞ: ð59Þ

On the other hand, when H ?1 and c ? 0, then it is clear that
r ?1. Therefore Eq. (56) becomes,

R2 �
8
7
� 72

5Hc
ð60Þ

at leading order. Hence R2 = 0 implies that

Hc ¼ 63
5
: ð61Þ

4.3. Numerical solution

The eigenvalue problem Eqs. (32)–(35) can be solved numeri-
cally by employing a sixth-order Runge–Kutta solver combined
with a shooting technique. More precisely, Eqs. (32)–(34) can be
integrated numerically by means of the Runge–Kutta solver with
the initial conditions

eWð0Þ ¼ 0; eW 0ð0Þ ¼ g; eKð0Þ ¼ 1; eK0ð0Þ ¼ 0;eUð0Þ ¼ c
1þ c

; eU 0ð0Þ ¼ n:
ð62Þ

As already noted in Section 4.2, the condition eKð0Þ ¼ 1 serves to
break the overall scale invariance of the solution. On the other hand,
the parameters g and n, that denote the values of eW0ð0Þ and eU0ð0Þ
respectively, are unknown and are determined, together with the
eigenvalue R, by imposing the three boundary conditions at z = 1,

eWð1Þ ¼ 0; eK0ð1Þ ¼ 0; eUð1Þ ¼ c
1þ c

eKð1Þ: ð63Þ

The parameters g, n and R can be solved for by satisfying the con-
straints defined by Eq. (63) through the shooting method.

The numerical procedure is implemented in the Mathematica 8
(� Wolfram Research, Inc.) environment [19]. The Runge–Kutta
solver is available through the built-in function NDSolve by set-
ting the option

Method�> f“ExplicitRungeKutta”; “DifferenceOrder”�>6g

Fig. 5. Neutral stability curves for H = 0.1.
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The shooting method is implemented by the built-in function
FindRoot that allows one to solve numerically the constraints
Eq. (63). The overall numerical procedure requires the assignment
of the input data (a,H,c). Thus, we obtain a neutral stability curve
R(a) for every pair (H,c). The absolute minimum of R(a) is for the
critical values (ac,Rc).

5. Discussion of the results

5.1. Neutral stability

Neutral stability curves in the (a,R)-plane are displayed in Figs.
2–6, for H = 100, 10, 1, 0.1, and in the limit H ? 0 respectively. For
a fixed H, the neutral stability curves correspond to different values
of c. In Figs. 2–6, the left hand frame is for the higher values of c,
and the dashed line is the neutral stability curve for the local ther-
mal equilibrium (either H ?1 or c ?1). As shown in Section
4.1.1, for the case of local thermal equilibrium, the neutral stability
condition is independent of c. The right hand frames of Figs. 2–6,
are for the lower values of c, and the dashed line denotes the hor-
izontal line R = 12. These figures clearly show that, in every case,
the limit of R for a ? 0 is 12, as proved analytically in Section
4.2. However, the shape of the neutral stability curves displays a
strong dependence on c. These figures show that, for a prescribed
H, the neutral stability function R(a) displays the monotonic
increasing trend typical of the local thermal equilibrium only if c
is sufficiently high. If c drops below a threshold value, which is
dependent on H and which is given by Eq. (57), then the monoton-
ically increasing behaviour of the neutral curve is lost and R de-
creases with a at first, reaches a minimum, and then starts
increasing. Stated differently, for a prescribed H, there exists a

threshold value of c, denoted as cth, such that the critical value of
R is Rc = 12, with ac = 0, when c > cth. On the contrary, when c <
cth, the critical value of R is smaller than 12 and the critical wave
number is nonzero. Values of cth are reported in Table 1 versus
H. This table shows that cth is a monotonically decreasing function
of H that ranges from 0, in the limit H ?1, to 1.27500 = 51/40, in
the limit H ? 0. This is confirmed in Fig. 7 which shows the varia-
tion of the threshold value of c against H as calculated from Eq.
(57). Also shown are the large and small-H asymptotic behaviours,
as given by Eqs. (59) and (61).

It is worth noting that Figs. 2–5 illustrate how, for large values
of c, the local thermal equilibrium is approached either for small or
large values of H. This feature is consistent with what has been
pointed out in Section 4.1.1 with respect to the limit c ?1 for a

Fig. 6. Neutral stability curves in the limit H ? 0.

Table 1
Values of cth.

H cth

1 0
500 0.0241359
100 0.104646
50 0.182481
10 0.505054
5 0.687453
1 1.05528
0.5 1.14979
0.1 1.24663
0.05 1.26057
0.01 1.27207
0 1.27500
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finite H. We mention that the limiting case H ? 0, illustrated in
Fig. 6, corresponds to a regime where there is no heat transfer be-
tween the solid and the fluid phase. This regime is the condition
farthest from the local thermal equilibrium. However, Fig. 6 shows
that the departure of the neutral stability curve from that of local
thermal equilibrium is not so marked, provided that c is suffi-
ciently high, say c > 10. A comparison between Figs. 5 and 6 shows
that the neutral stability curves with H = 0.1 and with H ? 0 dis-
play only very slight differences, thus showing that with H = 0.1
we attain a condition very close to the complete thermal decou-
pling between the phases, i.e. to the limiting case H ? 0.

Plots of Rc against c and ac against c are displayed in Figs. 8
and 9 for different values of H. These figures show clearly that

the critical conditions for the onset of the instability are the
same as for local thermal equilibrium, i.e. ac = 0 and Rc = 12,
when c > cth. For lower values of c, we gather from these figures
that Rc is an increasing function of c, while ac is a decreasing
function of c. In particular, we expect from Fig. 8 that Rc ? 0
when c ? 0, for every value of H.

5.2. The limiting case c ? 0

Physically, the limit c ? 0 means a condition where the solid
phase is much more conducting than the fluid phase, on assuming
that the porosity is kept fixed.

The eigenvalue problem Eqs. (27)–(30) can be formulated so

Fig. 7. Variation of cth with H as given by Eq. (57). Also shown are the large and
small-H asymptotic behaviours, as given by Eqs. (59) and (61).

Fig. 8. Plots of Rc versus c for assigned values of H.

Fig. 9. Plots of ac versus c for assigned values of H.

Fig. 10. Neutral stability curves, bR versus a, for c� 1 and different values of H:
comparison between the numerical solution with c = 0.001 (dashed lines) and the
analytical solution, Eq. (73), in the limit c ? 0 (continuous lines).
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that it is well-posed when c ? 0. We define the modified Darcy–
Rayleigh number as

bR ¼ 1þ c
c

R: ð64Þ

Then, on taking c ? 0 with a finite bR, Eqs. (27)–(30) yield

eW 00 � a2 eW þ abR eH ¼ 0; ð65ÞeU 00 � a2 eU ¼ 0; ð66ÞeH 00 � a2 eH þ HðeU � eHÞ þ a eW ¼ 0; ð67Þ

z ¼ 0;1 : eW ¼ 0; eU0 ¼ 0; eH ¼ eU: ð68Þ

Eq. (66) with the boundary conditions on U expressed by Eq. (68)
admits, for an arbitrary a, the unique solution U = 0. Then the sys-
tem Eqs. (65)–(68) can be reduced to

eW 00 � a2 eW þ abR eH ¼ 0; ð69ÞeH 00 � ða2 þ HÞ eH þ a eW ¼ 0; ð70Þ
z ¼ 0;1 : eW ¼ 0; eH ¼ 0: ð71Þ

Eqs. (69)–(71) can be solved analytically with

WðzÞ ¼ sinðpzÞ; HðzÞ ¼ A sinðpzÞ; ð72Þ

where A is an integration constant. We obtain

bR ¼ ðp2 þ a2Þðp2 þ a2 þ HÞ
a2 : ð73Þ

By seeking the minimum of bR versus a, we get the critical values

ac ¼
ffiffiffiffi
p
p
ðH þ p2Þ1=4

; bRc ¼ H þ 2pðpþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ p2

p
Þ: ð74Þ

Interestingly enough, Eq. (74) yields the well-known critical values
ac = p and bRc ¼ 4p2, when H ? 0. These values are those obtained
for the Darcy–Bénard problem with Dirichlet boundary conditions
under the assumption of local thermal equilibrium [3].

Eqs. (73) and (74), together with Eq. (64), provide a useful
approximate solution to be employed when c� 1. In particular
one may justify rigorously, on the basis of Eqs. (64) and (74), that
Rc ? 0 with c ? 0 for every value of H, i.e. the behaviour guessed
when we commented on Fig. 8.

Fig. 10 displays the neutral stability curves, bRðaÞ, with c� 1 and
different values of H. The continuous lines are for the limiting case
c ? 0, and have been obtained by the analytical solution Eq. (73).
The dashed lines are for c = 0.001, and have been obtained by the
numerical solution described in Section 4.3. The agreement is def-
initely satisfactory and represents an argument to assess that Eq.
(73) can be safely employed when c is small, both for small and
for large values of H. We see that the agreement between the re-
sults for c = 0.001 and c ? 0 is almost perfect when H is small
while, for larger values of H, there is a slight discrepancy with
smaller wave numbers.

The comparison between the numerical and the analytical solu-
tions for c = 0.001 and c ? 0, respectively, is displayed also in
Fig. 11, where the critical values bRc and ac are plotted versus H.

Fig. 11. Plots of bRc versus H (left hand frame) and of ac versus H (right hand frame), for c� 1: comparison between the numerical solution with c = 0.001 (dashed lines) and
the analytical solution, Eq. (74), in the limit c ? 0 (continuous lines).
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Again, we conclude that the agreement is very good, except for a
slight discrepancy in the plots of ac versus H when H is approxi-
mately greater than 80.

6. Conclusions

The onset of convection in a plane horizontal porous layer
subjected to a uniform upward heat flux has been investigated.
We have considered cases where local thermal non-equilibrium
exists between the solid and the fluid phases as modelled by an
inter-phase heat transfer coefficient. The stationary basic solution
has a zero velocity field, and displays local thermal equilibrium be-
tween the phases, with a linear temperature distribution in the
vertical direction.

We studied the linear stability of the basic state by solving the
momentum and energy disturbance equations formulated in terms
of a streamfunction, and of the temperature perturbations of the
solid and fluid phases. The disturbance equations for the normal
modes produced a system of three ordinary differential equations.
The governing parameters are (R,H,c), namely the Darcy–Rayleigh
number, the inter-phase heat transfer parameter, and the conduc-
tivity ratio between the phases, as well as the wave number a of
the normal mode. We solved numerically this system of ODEs as
an eigenvalue problem, for prescribed values of (H,c).

The numerical solution, carried out by the Runge–Kutta method
and by the shooting method, yields R as a function of a along the
neutral stability curve and, on seeking the minimum of this curve,
the critical values (ac,Rc). The limiting case H ?1 has been stud-
ied for the regime of local thermal equilibrium. We proved that the
same solution is obtained on keeping H finite and letting c ?1.
The latter limit means a fluid phase much more conductive than
the solid phase. The opposite limit, c ? 0, has been investigated
as well, and an analytical solution was found in this special case.

We proved analytically that the limiting value of R(a) at neutral
stability when a ? 0 is 12, for every choice of (H,c). Nield [14]
pointed out that R ? 12 when a ? 0 under conditions of local ther-
mal equilibrium, for a porous layer with Neumann boundary con-
ditions on the temperature field. We demonstrated that Nield’s
result holds also when the assumption of local thermal equilibrium
is relaxed. In the case of local thermal equilibrium, R = 12 is the
critical value, since the neutral stability curve R(a) is monotonically
increasing. When local thermal non-equilibrium conditions pre-
vail, this behaviour is observed only when c is larger than a thresh-
old value which depends on H. If c is smaller than the threshold
value then Rc < 12 and ac > 0.

The general behaviour is that the local thermal non-equilibrium
has a destabilising effect; a behaviour already observed for the case
of Dirichlet thermal boundary conditions by Banu and Rees [9].

The uniform heat flux condition at the boundaries has been for-
mulated here by adopting the so-called Model A [15]. This model is
based on the energy balance at the boundary of the porous med-
ium, and on the assumption that the solid phase and the fluid
phase temperatures coincide on the boundary, Ts ¼ T f . Without

this additional condition the problem would have been underde-
termined. The boundary condition Ts ¼ T f is justified as far as the
boundary walls are highly conducting, but it is not clear which
condition should be used otherwise. We mention that several pos-
sibilities have been stated by different authors, and a comparison
between them was carried out by Alazmi and Vafai [20]. We can-
not make an a priori assessment of what might happen if Model
A is replaced by another model of the uniform heat flux boundary
conditions. But it is certain that even the basic solution is affected
by an altered form of the uniform heat flux condition at the bound-
aries. These authors think that deeper insights into this aspect of
the stability problem investigated here may be an interesting
opportunity for future research.
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