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We uncover novel features of three-dimensional natural convection in porous media by investigat-

ing convection in an annular porous cavity contained between two vertical coaxial cylinders. The

investigations are made using a linear stability analysis, together with high-order numerical simula-

tions using pseudospectral methods to model the nonlinear regime. The onset of convection cells

and their preferred planform are studied, and the stability of the modes with respect to different

types of perturbation is investigated. We also examine how variations in the Rayleigh number

affect the convection modes and their stability regimes. Compared with previously published data,

we show how the problem inherits an increased complexity regarding which modes will be

obtained. Some stable secondary modes or mixed modes have been identified and some overlap-

ping stability regions for different convective modes are determined. VC 2011 American Institute of
Physics. [doi:10.1063/1.3637642]

I. INTRODUCTION

Describing fluid flow and transport phenomena in a po-

rous medium is a widely investigated topic. Bear1 gives a

thorough introduction to fluid dynamics in porous media,

while the book of Ingham and Pop2 focuses on the recent

research on transport processes in porous media. Modelling

transport phenomena in porous media is covered in the book

of Bear and Bachmat.3 Important physical and chemical

aspects of our work are relevant for applications in ground-

water flow such as geothermal energy extraction (see, e.g.,

Freeze and Cherry).4

Various aspects of natural convection in porous media

have been investigated in the last half century. The critical

Rayleigh number for the onset of natural convection in a uni-

form horizontal porous layer of infinite extent which is

heated from below was determined to be 4p2 by Horton and

Rogers5 and later Lapwood.6 Horton, Rogers, and Lapwood

confined their interest to cases where the upper and lower

surfaces are impermeable and perfectly heat conducting,

while later work, such as the paper by Nield,7 also investi-

gated permeable upper and lower surfaces subject to constant

heat fluxes. A table showing how the critical Rayleigh num-

ber and the corresponding wavenumber depend on the type

of boundary condition which has been applied may be found

in Nield and Bejan.8

Later works have included enquiries concerning geome-

tries other than horizontally infinite cavities; Beck9 investi-

gated the case of a finite cuboidal box with insulated and

impermeable lateral walls together with perfectly conducting

horizontal surfaces. A very similar paper by Wang10 studies

a lower surface subject to a constant heat flux, whilst the

upper surface remains perfectly conducting. A circular cylin-

der with impermeable walls and insulated sidewalls was con-

sidered by Zebib,11 and Wang12 solved the same problem as

Zebib but subjected the upper surface to constant tempera-

ture and pressure boundary conditions while the lower sur-

face was impermeable but could be held either at a constant

temperature or at a constant heat flux. These last two authors

presented mode maps in the style of Beck.9 The case of a cir-

cular cylinder with perfectly conducting boundaries was con-

sidered by Haugen and Tyvand,13 who also compared their

findings with Zebib’s results. In the papers concerning con-

vection in cylinders, the criterion for the onset of convection

is given as a function of the radius of the vertical outer

boundary. An annular cylindrical cavity with insulated side-

walls was investigated by Bau and Torrance.14 They allowed

the upper surface to be either permeable or impermeable and

found criteria for the onset of convection and preferred mode

shapes as functions of the inner and outer radii of the cavity.

The analytical part of this paper is related to the paper of

Bau and Torrance.14 Using linear stability analysis, we will

determine the criterion for the onset of convection and the

corresponding preferred convective mode for an annular cyl-

inder having impermeable walls. While Bau and Torrance

only considered insulated sidewalls, we will extend their

work and also allow for conducting sidewalls. The two dif-

ferent cases are also compared.

We will also present the results of investigations of the

nonlinear time-dependent equations using an unsteady 3D-

simulator based on pseudospectral methods. The simulator

allows us to determine how far into the nonlinear regime the

onset mode found using the linear theory persists as the

favored mode. We are also able to determine whether sec-

ondary modes or mixed modes become possible stable non-

linear solutions.

The outline of this paper is as follows: We begin by pre-

senting the governing, nonlinear equations and define the do-

main together with boundary conditions in Sec. II. In Sec.

III, we perform a linear stability analysis on the governing

equations; conditions for the onset of convection as well as

preferred convective modes are determined. In Sec. IV, wea)Electronic mail: carina.bringedal@student.uib.no.
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perform some exploratory investigations of the nonlinear re-

gime by means of a suitable unsteady solver for the original

nonlinear equations. Finally, conclusions are made in Sec. V.

II. MATHEMATICAL FORMULATION

A cylinder with an annular planform height, h*, inner ra-

dius, R�w, and outer radius, R*, is filled with a porous medium

(see Figure 1). The porous medium is isotropic and homoge-

neous, and it is assumed that the fluid and solid phases are in

local thermal equilibrium. All the bounding surfaces of the

cylinder, both vertical and horizontal, are impermeable. The

upper and lower surfaces are taken to be perfectly heat con-

ducting and are kept at the constant temperatures T�c and T�h ,

respectively. The cylinder is heated from below and cooled

from above; hence, T�c is smaller than T�h . The vertical side-

walls are either insulated or conducting, meaning that there

is either no heat flow over the sidewalls or it is kept at a

steady temperature which decreases linearly with z from T�h
to T�c . Thus, we consider two cases, namely, that either both

sidewalls are insulated or both sidewalls are perfectly

conducting.

The dimensionless Darcy-Boussinesq equations for con-

vection in a homogeneous and isotropic porous medium are

given by

v ¼ �rPþ RaTk; (1)

r � v ¼ 0; (2)

@T

@t
þ v � rT ¼ r2T; (3)

where the dimensionless Rayleigh number Ra is given by

Ra ¼ gKbh�DT�

�a
: (4)

In the above equation, g is gravity, K is permeability, b is the

thermal expansion coefficient of the saturating fluid,

DT� ¼ T�h � T�c is the temperature difference between the

top and bottom of the cylinder, � is the kinematic viscosity,

and a the thermal diffusivity of the fluid. In Eqs. (1)–(3), k is

a unit vector pointing upwards, v is the fluid velocity, P is

pressure, and T is temperature. The last three quantities are

all nondimensional variables. Cylindrical coordinates are

used; hence, the fluid velocity is the vector

v¼ vrerþ vhehþ vzk, where er and eh are unit vectors in the

radial and the azimuthal direction, respectively.

In nondimensional terms, the cylinder has height 1,

inner radius Rw ¼ R�w=h�, and outer radius R¼R*/h*. The

boundary conditions associated with Eqs. (1)–(3) are imper-

meable sidewalls,

vr ¼ 0 at r 2 fRw;Rg;

together with the top and bottom of the cylinder being imper-

meable and perfectly heat conducting. The lower surface is

heated and the upper surface is cooled, modeled by the

boundary conditions,

T ¼ 1 and vz ¼ 0 at z ¼ 0;

T ¼ 0 and vz ¼ 0 at z ¼ 1:

The thermal boundary conditions on the sidewalls are either

@T

@r
¼ 0 at r 2 fRw;Rg;

when the sidewalls are insulated, or

T ¼ 1� z at r 2 fRw;Rg;

when the sidewalls are perfectly heat conducting.

III. LINEAR STABILITY ANALYSIS AND MODE MAPS

A better understanding of nonlinear convection is gained

by setting it into the context of a linear stability analysis.

Configurations which are unbounded horizontally yield neu-

tral stability curves from which the critical Rayleigh number

and its corresponding wavenumber may be found. In con-

fined cavities, such as the one considered here, attention is

usually focused on the identity of the preferred modal pattern

and how it changes as the cavity aspect ratio changes. There-

fore, our aim in this section is to solve the three governing

equations (1)–(3) by first linearizing them about the basic

conduction state.

A. Linearization about the basic state

Equations (1)–(3) together with the above boundary

conditions have the steady-state solution,

Ts ¼ 1� z; vs ¼ 0; Ps ¼ Raðz� z2

2
Þ þ P0:

We now perturb this basic state by adding the small quanti-

ties T̂, v̂, and P̂, respectively. We insert the perturbed expres-

sion in the governing equations (1)–(3) and linearize,

thereby, obtaining the following equations for the perturbed

quantities:

v̂ ¼ �rP̂þ RaT̂k; (5)FIG. 1. Sketch of the annular cylindrical configuration.
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r � v̂ ¼ 0; (6)

@T̂

@t
� v̂z ¼ r2T̂: (7)

We note that the convective term is the only term to change

from the original nonlinear equations (1)–(3).

On assuming that the principle of the exchange of stabil-

ities applies, we neglect the time dependence and combine

all three Eqs. (5)–(7) to obtain

r4T̂ þ Rar2
1T̂ ¼ 0; (8)

where r2
1 ¼ r2 � @2

@z2. The perfectly conducting boundary

condition for the perturbed temperature at the upper and

lower surfaces of the cylinder is

T̂ ¼ 0 at z 2 f0; 1g: (9)

The condition of impermeable sidewalls may be rewritten in

the form

@

@r
ðr2T̂ þ RaT̂Þ ¼ 0 at r 2 fRw;Rg; (10)

while the fact that the upper and lower surfaces are imperme-

able leads to the conditions that

r2T̂ ¼ 0 at z 2 f0; 1g: (11)

Upon using separation of variables, the general solution of

Eq. (8) is a sum of T̂1 and T̂2 given by

T̂1 ¼ ½AmJmðkrÞ þ BmYmðkrÞ� cosðmhÞ sinðpzÞ; (12)

T̂2¼ CmJm
p2

k
r

� �
þDmYm

p2

k
r

� �� �
cosðmhÞsinðpzÞ; (13)

when the boundary conditions (9) and (11) have been

applied. Here, m is a positive integer, Jm and Y m are Bessel

functions of order m and of the first and second kind, respec-

tively, and k is a wavenumber related to the Rayleigh number

through

Ra ¼ ðk
2 þ p2Þ2

k2
: (14)

This is identical to the definition of the critical Rayleigh

number for rolls in an infinitely large layer when k is identi-

fied as being the roll wavenumber. The smallest value of Ra

is well known to be 4p2 when k ¼p.

In the above equations, the constants Am, Bm, Cm, and

Dm depend on m and may be found by applying the boundary

conditions on the sidewalls, that is, the condition of imper-

meable sidewalls (10) and the condition of either conducting

or insulated sidewalls. These two conditions for the per-

turbed temperature are either

@T̂

@r
¼ 0 at r 2 fRw;Rg; (15)

when the sidewalls are insulated, or

T̂ ¼ 0 at r 2 fRw;Rg; (16)

when the sidewalls are heat conducting.

B. The critical Rayleigh number

If we were to apply the boundary conditions (10) and

one of (15) or (16) directly on the perturbed solution T̂,

we would obtain the zero solution since the four boundary

conditions result in four homogenous, linear equations. Non-

zero solutions may be obtained by demanding that the deter-

minant of this linear system of equations is zero. On using

this approach, we get an eigenvalue problem for the wave-

number k. For the insulated sidewalls, we apply the boundary

conditions (10) and (15), and the resulting eigenvalue prob-

lem for k may be simplified into the dispersion relation,

J0mðkRwÞY0mðkRÞ � J0mðkRÞY0mðkRwÞ ¼ 0: (17)

For each value of Rw and R, there will be an infinite number

of solutions of (17) for each m. We search through all the

solutions seeking the wavenumber km, which minimizes the

Rayleigh number; this provides the critical Rayleigh number

for onset of convection,

Rac ¼ min
m

ðk2
m þ p2Þ2

k2
m

" #
: (18)

For the conducting sidewalls case, we use the boundary con-

ditions (10) and (16) and we obtain the dispersion relation,

Jm kRwð Þ Ym kRwð Þ Jm
p2

k Rw

� �
Ym

p2

k Rw

� �
J0m kRwð Þ Y0m kRwð Þ J0m

p2

k Rw

� �
Y0m

p2

k Rw

� �
Jm kRð Þ Ym kRð Þ Jm

p2

k R
� �

Ym
p2

k R
� �

J0m kRð Þ Y0m kRð Þ J0m
p2

k R
� �

Y0m
p2

k R
� �

������������

������������
¼ 0: (19)

As for the insulating sidewalls case, our resulting relation

has an infinite number of solution and for each Rw and R, we

search for the wavenumber km which minimizes the Rayleigh

number.

For both the conducting and insulated sidewalls cases,

and for each value of Rw and R, the critical Rayleigh number

is found by minimizing Eq. (18) over the eigenvalues km.

Hence, we may plot the critical Rayleigh number as a func-

tion of Rw and R.

C. Mode maps

For both the conducting and insulated sidewalls cases, it

is possible to find the preferred convective mode. Because of

the cos(mh) term which appears in Eqs. (12) and (13) for the

perturbed temperature, the value of m, which is determined

by the minimizing wavenumber km, is equal to the number of

local maxima (and minima) of the temperature distribution

in the azimuthal direction. This temperature distribution cor-

responds to 2m convection cells in the azimuthal direction.

For the radial direction, we use the linearized energy equa-

tion (7), with the time dependence neglected, to calculate the
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radial component of v̂z. If p is the number of sign changes of

the radial component of v̂z in the interval [Rw, R], there are p
convection cells in the radial direction. We may, therefore,

associate a convective pattern with the numbers (m,p). For

each value of Rw and R, a unique preferred convective mode

(m,p) can be found for Rayleigh numbers slightly above the

critical. Hence, we can plot (m,p) as a function of Rw and R,

obtaining a mode map.

Some simple plots may be used to illustrate how mode

(m,p) will look in practice. The mode (1,0), which has two

adjacent convection cells in the azimuthal direction and no

convection cells in the radial direction, will behave as illus-

trated in Figure 2(a). The mode (0,1) is axisymmetric since

m¼ 0, and will appear as shown in Figure 2(b). If more con-

vection cells were present in the radial direction, then these

would be adjacent. More complex modes will be combina-

tions of the two above, such as in Figure 2(c), which is the

convective mode (1,1), and in Figure 2(d), which is (2,1).

The plots were made by solving the governing (nonlinear)

equations (1)–(3) using pseudospectral methods (see Sec.

IV). We applied insulated sidewalls and used a Rayleigh

number slightly larger than the critical, hence obtaining the

preferred convective mode for various inner and outer radii.

D. Results and discussion

We have found critical Rayleigh numbers and corre-

sponding mode maps for both the insulated and the conduct-

ing sidewalls case. In the following, we have limited

ourselves to only present results for values of the inner radius

ranging from 0 to 2 and the outer radius between 0 and 4.

1. Critical Rayleigh number

Critical Rayleigh numbers have been found for both the

conducting and insulated sidewall cases. For insulated side-

walls, the function describing the critical Rayleigh number

has several local maxima and minima, see Figure 3. The

maxima occur when the system goes from one preferred con-

vection mode to another, while the minima, all giving a criti-

cal Rayleigh number of 4p2, occur in between the mode

transitions. For increasing values of R, with Rw being held

fixed, the critical Rayleigh number will converge towards

4p2 in the sense that all the local maxima decay towards 4p2.

Both Zebib11 (cylinder) and Bau and Torrance14 (annu-

lar cylinder) found the critical Rayleigh number to have sev-

eral maxima and minima when the sidewalls are insulated.

The critical Rayleigh numbers found here are, in general, the

same as in the paper of Bau and Torrance, but substantially

more values of Rw and R have been considered.

For the conducting sidewall cases, the critical Rayleigh

number decreases monotonically as the outer radius R
increases, while it increases as the inner radius Rw increases

with R held fixed, see Figure 4. For fixed values of Rw, the

critical Rayleigh number reduces towards 4p2 as R increases,

but it does so at a slower rate than for the insulated sidewall

cases. The small bumps in the contour plot correspond to

transitions from one convective mode to another.

Haugen and Tyvand,13 who considered a circular cylin-

der of porous medium with a perfectly conducting sidewall,

showed that the critical Rayleigh number is a monotonically

decreasing function of R and it decreases towards 4p2 when

R ! 1. For fixed nonzero values of Rw, our results are in

qualitative agreement. Both Refs. 13, 15 showed that a con-

ducting sidewall does not correspond to a natural cell bound-

ary, and that cells near such a boundary are wider than their

insulating sidewall counterparts. Thus, a larger value of R
means that an increasing amount of the porous cavity is unaf-

fected by the presence of the boundary. The presence of the

inner cylinder does not change this fact and provides a

FIG. 2. (Color online) Various simple mode patterns. The shading describes

the vertical velocity at z¼ 0.5; lighter shades indicate larger, positive veloc-

ities, while darker shades indicate larger, negative velocities. The arrows are

the radial and azimuthal velocities at z¼ 1 seen from above. (a) The mode

(1,0) produced using Rw¼ 0.01 and R¼ 0.6. (b) The mode (0,1) produced

using Rw¼ 0.1 and R¼ 1.2. (c) The mode (1,1) produced using Rw¼ 0.2 and

R¼ 1.6. (d) The mode (2,1) produced using Rw¼ 0.5 and R¼ 2.

FIG. 3. (Color online) Contour plot of the critical Rayleigh number, Rac, as

a function of Rw and R when the sidewalls are insulated.
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further restriction to convective flow. When the outer radius,

R, is held fixed and the inner radius, Rw, is increased, the crit-

ical Rayleigh number increases since the two conducting

sidewalls are now closer together, restraining the convection

even more. Therefore, it is no surprise that the critical Ray-

leigh numbers found here for chosen values of the outer ra-

dius are always larger than those given by Haugen and

Tyvand.

For any choice of values Rw and R, the critical Rayleigh

number will be larger for the conducting sidewalls than for

the insulated sidewalls. Haugen and Tyvand13 observed the

same for their non-annular cylinder and explained this by

conduction being stabilizing as it takes away buoyancy. The

presence of an inner cylinder does not change this fact but,

instead, we see that a large value of the inner radius increases

the critical Rayleigh number even further in the conducting

sidewalls case, as more buoyancy is taken away. In the insu-

lated sidewalls case, the effect of an inner cylinder on the

critical Rayleigh number is not large. As for the solid cylin-

der, we observe several maxima and minima related to jumps

between different convective modes, but we do not observe a

large increase on the critical Rayleigh number when R is

fixed and Rw increases.

2. Mode maps

Using the method sketched in Sec. III D 1, the preferred

convective mode, (m, p), may be found for both the conduct-

ing and insulated sidewall cases. The following mode maps

have been produced by finding the values of m and p on a

1000� 1000 grid. For insulated sidewalls, we find that a

complex pattern forms, which delineates the regions within

which different modes are preferred; see Figure 5. The pat-

tern is impossible to describe except in general terms. It is

clear that the overall pattern in terms of m has a banded

structure where narrow bands exist at certain discrete values

of R�Rw, which is the width of the annular cavity. When

this width is sufficiently small, the number of cells in the azi-

muthal direction increases as Rw increases, and they also cor-

respond to p¼ 0 implying that the cells have little radial

dependence.

The values of m and p were also found by Bau and Tor-

rance,14 and they made a similar mode map with the inner ra-

dius on the x-axis and the quotient between the outer and the

inner radius on the y-axis. Converting our plot in the same

manner enables us to compare our mode map with the one

made by Bau and Torrance; see Figure 6. Note that the nota-

tion of Bau and Torrance is slightly different from ours; their

mode (m,p) corresponds to (m,p� 1) in our notation. We

have, in general, found the same modes as Bau and Torrance;

hence, we have not named our modes in the figure. We find

more details in the mode map than Bau and Torrance, and

simulations confirm these results. Bau and Torrance do not

explain in detail how they obtained their mode map, but we

can conclude that their method was not able to produce a suf-

ficiently detailed mode map in some regions. Bau and Tor-

rance concluded that the preferred convection modes are

predominantly asymmetric; that is, m is nonzero. In our

study, we also find m to be nonzero in general, but several

axisymmetric convection modes are found. Hence, we

FIG. 4. (Color online) Contour plot of the critical Rayleigh number, Rac, for

conducting sidewalls.

FIG. 5. (Color online) Depiction of the mode maps for insulated sidewalls.

(a) The values of m and (b) the values of p.
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cannot support Bau and Torrance’s conclusion of preferred

modes being predominantly asymmetric.

For conducting sidewalls, the overall structure of the

mode map is much more structured. We see that the value of

m increases as the inner radius Rw is increased and the outer

radius R is held fixed; see Figure 7. Although not visible in

the figure, m will become zero when Rw is smaller than

10� 4. The value of p is zero when the outer radius is not

much larger than the inner radius, while for larger values of

R, we get larger values of p.

An increasing value of m for increasing Rw means that we

get more convection cells in the azimuthal direction for a

larger inner radius. This is reasonable since, for R held fixed,

an increasing Rw means that the porous medium is getting

more narrow, and it is more convenient for the fluid to flow in

the azimuthal direction than in the radial since the closeness

of the inner and outer sidewalls takes away buoyancy. Also, it

is hard for the convection cells to stretch around the inner ra-

dius of the cylinder; hence, we get many small convection

cells instead of a few large. The increase of p for increasing R
can be explained in a similar manner; when the outer radius is

not much larger than the inner radius, the narrowness of the

porous media makes it difficult for convection cells in the ra-

dial direction to occur. Hence, a wider porous medium

encourages convection cells in the radial direction to appear.

This far, we have concentrated only on primary modes,

i.e., those which minimize the Rayleigh number, but higher

modes also exist and these have to be computed as part of the

minimization procedure for Ra. For any positive integer n, we

denote the nth order Rayleigh numbers by Rac,n, where Rac,1 is

the overall critical Rayleigh number. We note that, for both

conducting and insulated sidewalls, these higher order Rayleigh

numbers which are larger than the critical Rayleigh number

also vary with R and Rw, but they converge towards 4p2 at the

same rate as in the same speed as for the primary mode. Rac,n

will be equal to Rac,nþ 1 at the bifurcation trajectories in the

mode map for (mn, pn). For increasing R, this occurs more

frequently, meaning that higher order modes are clustered.

3. The limiting case when Rw goes to zero

Zebib11 and Haugen and Tyvand13 undertook linear sta-

bility analyses similar to ours for a circular (rather than an

FIG. 6. Comparison between the mode map of Bau and Torrance, and that

of the present analysis for insulating sidewalls. (a) The mode map made by

Bau and Torrance and is a copy of Figure 3 in Ref. 14. (b) Our version of

the Bau and Torrance mode map. Reprinted with permission from H. H. Bau

and K. E. Torrance, Phys. Fluids 24(3), 382 (1981). Copyright 1981,

American Institute of Physics.

FIG. 7. (Color online) Depiction of the mode maps for conducting side-

walls. (a) The values of m and (b) the values of p.
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annular) cylinder. Their cylinders had insulated and heat

conducting sidewalls, respectively. In our eigenvalue prob-

lems, the dispersion relations given by Eqs. (17) and (19)

may be studied in the limit as the inner radius approaches

zero in order to determine if our problem reduces to those of

Zebib and of Haugen and Tyvand.

Letting the inner radius approach zero in Eqs. (17) and

(19) is not straightforward since the Bessel functions of sec-

ond kind, Ym, are singular at zero. The function Ym(x)

behaves as O(x� m) as x! 0, except for Y0(x) which behaves

as O(ln(x)). The derivatives Y0mðxÞ behave as O(x� m� 1). On

the other hand, Bessel functions of the first kind are nonsin-

gular and have nonsingular derivatives at zero. Letting Rw

approach zero in Eq. (17) will cause the second term,

J0m kRð ÞY0m kRwð Þ to dominate the equation; hence, we need

J0mðkRÞ ¼ 0; (20)

which is the same equation obtained by Zebib. We can apply

a first order Taylor series expansion to Eq. (17) around

k ¼ k0 þ O R2m
w

	 

when m= 0 and around k ¼ k0 þ O R2

w

	 

when m¼ 0 as Rw approaches zero. Here, k0 are the corre-

sponding wavenumbers found by Zebib and k are the wave-

numbers found by us using a small value of Rw. This

approach will balance all terms in Eq. (17), hence implying

that Rac ¼ Ra0
c þ O R2m

w

	 

when m= 0 and

Rac ¼ Ra0
c þ O R2

w

	 

when m¼ 0. Here, Ra0

c are the critical

Rayleigh numbers found by Zebib for a non-annular cylin-

der. Using Rw¼ 10� 4, our critical Rayleigh numbers was

approximately the same as the ones found by Zebib, see Fig-

ure 8, and we found the same preferred convective modes.

Hence, a very small inner radius does not affect the results in

a significant manner, and we regard the problems studied by

Zebib as a special case of our analysis.

The determinant in Eq. (19) includes a term

which involves the factor Y0mðkRwÞYm
p2

k Rw

� �
� YmðkRwÞ

h
Y0m

p2

k Rw

� �i
. This term will dominate all the others when Rw

approaches zero. Hence, this term must be set to zero,

thereby yielding the condition

JmðkRÞJ0m
p2

k
R

� �
� J0mðkRÞJm

p2

k
R

� �
¼ 0; (21)

which is the same as that obtained by Haugen and Tyvand in

their analysis. Haugen and Tyvand found m¼ 0 to be the pre-

ferred convective mode for all R. Applying a Taylor series

expansion of the determinant (19) with m¼ 0 yields terms of

O(ln(Rw)/Rw), O(1/Rw), O(Rw) and higher order terms. The

O(ln(Rw)/Rw)-term is the one corresponding to Eq. (21). We

now let k0 be the wavenumbers obtained by Haugen and

Tyvand, and k be the wavenumber obtained by us using a

small value of Rw and use a Taylor series approach as in the

insulated sidewalls case to balance the O(1/Rw)-term. We

therefore apply k¼ k0þO(1/ln(Rw)) and this choice of k
implies that Rac ¼ Ra0

c þ O 1=ln Rwð Þð Þ, where Ra0
c are the

critical Rayleigh numbers found by Haugen and Tyvand.

Hence, our critical Rayleigh numbers will approach the Ray-

leigh numbers found by Haugen and Tyvand as O(1/ln(Rw))

when Rw goes to zero, and we may consider the cylinder

studied by Haugen and Tyvand as a special case of the annu-

lar cylinder case when the inner radius approaches zero.

Figure 8 shows the difference between the critical Ray-

leigh number for the circular cylindrical configuration of

Ref. 13 and the present annular cylinder, with Rw¼ 10� 4.

Despite the inner radius being very small, there remains a

strong effect in terms of the critical Rayleigh number. How-

ever, the above analysis shows that this difference tends to

zero as the inner radius shrinks further.

IV. NUMERICAL SIMULATIONS AND THE NONLINEAR
REGIME

An unsteady 3D-solver which approximates the solution

of the original nonlinear equations (1)–(3) has been written

using pseudospectral methods in space and MATLAB’s built-in

package ODE15s in time. The solver finds the temperature

distribution and velocity field for given values of Rw, R, and

Ra. Therefore, it is possible to investigate how the nonlinear

regime differs from that of the linearized system. The solver

may also be used to examine the stability of existing convec-

tion cells: Through simulations, we may investigate the

effect of variations in the Rayleigh number and find out how

a specific convective mode responds when the domain

changes or when a numerical perturbation is added during a

simulation.

A. Pseudospectral discretization

Pseudospectral methods belong to the class of methods

which approximate the unknown solution u(x) by a sum of

(Nþ 1) basis functions ui(x) which span a finite subset of the

full solution space,

uðxÞ � uNðxÞ ¼
XN

i ¼ 0

ai/iðxÞ:

When solving the differential equation Lu¼ f, the goal of

finite-dimensional function space representations is to

choose the coefficients faig such that the residual defined by

FIG. 8. Variation of Rac with R for (i) circular cylinder with an insulated

sidewall (Ref. 11, lowest curve), (ii) circular cylinder with a perfectly con-

ducting sidewall (Ref. 13, middle curve), (iii) annular cylinder with perfectly

conducting sidewalls and with Rw¼ 10� 4. (The figure is adapted from

Figure 1 in Ref. 13.)
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Rðx; a0; a1;…; aNÞ ¼ LuN � f

is minimized in some appropriate sense. In contrast to varia-

tional type methods (wherein most finite element methods

fall), pseudospectral methods constrain the solution space by

setting the residual to zero in (Nþ 1) so-called collocation

points fxig, that is,16

Rðxi; a0; a1;…; aNÞ ¼ 0 for i ¼ 0;…;N:

The choice of collocation points is a critical aspect of the

method. For linear differential operators, the above strategy

leads to a linear system of equations which may be written in

the form,

La ¼ b;

where L is an (Nþ 1)� (Nþ 1) matrix with entries given by

aij ¼ L/jjxi
:

The (Nþ 1) –vector b has the entries

bi ¼ f ðxiÞ;

while the vector a consists of the unknown coefficients faig.
We use basis functions that are non-linear interpolating func-

tions having value 1 at one collocation point and 0 at all the

others, that is,

/iðxjÞ ¼ dij:

Hence, the coefficients faig are the function values of the

approximated solution uN in the nodes fxig. Each line in the

matrix equation represents an equation for the function value

in a specific node. Boundary conditions are handled by find-

ing the matrix lines corresponding to which nodes the bound-

ary conditions are applied and by substituting a discrete

version of the boundary condition.

The grid points fxig are selected with care in order to

ensure that the numerical solution is of high accuracy. The

optimal choice of grid points is dependent on the geometry

of the domain. As we use cylindrical coordinates, we apply

different choices of grid points for the radial, azimuthal, and

vertical directions. The azimuthal direction is the finite

interval [0,2p] having the extra property of the solution

being periodic. Here, the optimum choice is the Fourier

nodes,17 which are equally spaced in the angular coordinate

given by

xi ¼
2pi

N
for i ¼ 1; 2;…;N:

Both the radial and vertical direction are finite intervals ([Rw,

R] and [0,1], respectively) without any periodicity. For these

two intervals, the Chebyshev nodes are the optimum

choice.17 The Chebyshev nodes are given by

xi ¼ cos
pi

N

� �
for i ¼ 0; 1;…;N

and these are easily shifted and scaled to fit into either of the

two intervals.

When using spectral methods to discretize space, we

expect the method to (potentially) converge as O(1/NN).16,17

However, the full simulator is not expected to behave with

this spectral accuracy since we have a time discretization

which is also a source of error. For time discretization, we

use MATLAB’s ODE15s package which is an adaptive solver

based on the backward differentiation formula.18 ODE15s is

designed for stiff differential algebraic problems, with adapt-

ive 1st to 5th order accuracy.

B. Solution strategy

The governing equations (1)–(3) are solved by timestep-

ping the Energy equation (3) and updating the velocity field

using Darcy’s Law (1) and the Mass equation (2) in each

time step. For most cases, the steady-state solution T¼ 1� z
is used as initial condition, hence letting the convective pat-

tern appear due to numerical perturbations. Other initial con-

ditions were used in the stability testing of the convective

patterns: we then typically let convective modes from

another stable setting or convective modes with an added nu-

merical perturbation be given as the initial state. All solu-

tions were timestepped until a steady-state solution was

found. The criterion for obtaining a steady-state solution was

that the temperature field could not change with values larger

than 10� 10 during the last 50 (non-dimensional) time units.

C. Results and discussion

The nonlinear code was tested for correctness by

attempting to reproduce the critical Rayleigh numbers for

some chosen values of Rw and R. Steady solutions were

obtained for different values of Ra above the critical value

given by linear theory. Weakly nonlinear theory for systems

in which supercritical bifurcations occur indicates that the

amplitude of convection is proportional to (Ra�Rac)
1/2,

meaning that the square of the amplitude will be proportional

to (Ra�Rac). Thus, we may extrapolate backwards to deter-

mine the critical value of Ra from the point of view of the

nonlinear code. In our context, the amplitude is given by

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
V

T sinðmhÞdV

� �2

þ
ð

V

T cosðmhÞdV

� �2
s

;

where the integrals are taken over the volume of the annular

cylinder. Values of Rac obtained in this way were compared

with the analytical solutions and were found to compare

well, thereby, lending confidence to the accuracy of the nu-

merical coding and the quality of the numerical results.

Simulations of cases where the Rayleigh number is

slightly supercritical generally gave the same convection pat-

tern as the one given by linearized theory. The linear regime

is, therefore, adequate for describing the convection pattern

in the nonlinear regime for Rayleigh number slightly above

the critical. However, when the linear analysis predicted p to

be 4 or larger in the heat conducting sidewalls case, simula-

tions always provided a smaller value of p. The reason is ei-

ther that our solver is not able to reproduce convective

modes with large values of p and heat conducting sidewalls
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or that the linear analysis is not suitable for describing the

nonlinear regime in these cases. When one is close to the

boundary of two regions in the mode maps, the simulations

may yield more than one possible state at onset, but the con-

vective pattern always stabilized at the one predicted from

the linear analysis.

Increasing the Rayleigh number provides several possi-

ble stable convection modes. A detailed comparison would

have to be made with a weakly nonlinear analysis of the re-

spective modes and their interaction, rather than with the lin-

earized theory, and this aspect is outside of the scope of the

present paper. However, Riley and Winters19 made a very

thorough study of the modal exchange mechanisms for con-

vection in a two dimensional porous cavity using a stationary

finite element solver coupled with bifurcation tracking soft-

ware. In that paper, they showed that the second mode which

appears is generally unstable but eventually gains stability as

Ra increases at a bifurcation to a mixed mode. This scenario

also applies in the present three-dimensional context, as may

be seen in Figure 9. Here, we show a case with insulated

sidewalls where Rw¼ 0.1 and R¼ 0.7. The critical Rayleigh

numbers for the first two modes, (1, 0) and (2, 0), are 41.41

and 43.82. The (1,0)-mode remains stable with respect to nu-

merical perturbations within the range of values of Ra we

consider, but the (2,0)-mode is only stable above Ra¼ 50.

The second mode is unstable at lower Rayleigh numbers and

disappears as the Rayleigh number decreases past its critical

value; hence, the basic mode will take over as the sole stable

mode when the secondary is in the process of disappearing

since convection is still possible. Since the different modes

have overlapping stability regions, several modes are some-

times possible for a given Rayleigh number. Therefore, we

cannot speak of a preferred mode since the mode which

appears depends on the initial conditions.

In the insulated sidewalls case, solutions which do not

correspond to single linear modes were found. When the

outer radius is greater than 1, stable mixed mode patterns

could sometimes be found. For example, when Rw¼ 0.7 and

R¼ 2.1, the first and second modes are the (5,0) and (2,1)

modes. The critical Rayleigh numbers corresponding to these

patterns are 39.51 and 39.58. When Ra¼ 39.75, the steady

stable solution shown in Figure 10 arises. It is clear from this

figure that an m¼ 2 pattern dominates near the inner radius

and an m¼ 5 pattern dominates near the outer radius; this

would appear to be a stable mixed mode solution. Indeed, a

physical reason why such a mixed mode should be stable is

to appeal to the fact that the linear (5,0) and (2,1) modes are

themselves concentrated towards the outer and inner radii,

respectively, and this suggests that the presence of both

modes in a stable nonlinear pattern is an example of optimiz-

ing the overall heat transport. The amplitude and stability

regions for the pure (5,0) mode and the mixed mode are

sketched for low Rayleigh numbers in Figure 11. This figure

suggests that the mixed mode bifurcates away from the pure

mode, rendering the latter unstable. The secondary mode

(2,1) is unstable for all low Rayleigh numbers; hence, this

mode is not present in the figure.

These mixed modes would be impossible to detect by

the linear stability analysis, since the solution of the linear-

ized equations only allow for one par of values of m and p to

describe the convection in the whole domain. Hence, the

mixed modes develop due to nonlinear effects and were

observed when the difference between the outer and inner ra-

dius was larger than 1, possibly because of the severe clus-

tering of modes present for these cylinders. We also

observed that for increasing difference in radii, the mixed

modes become more dominating over the basic mode; that

is, the basic mode had a smaller stability region. It is likely

to believe this effect to be even more important when the an-

nular cylinder becomes wider; hence, the classical approach

of assigning one value of m and p will not be sufficient to

describe the convection patterns.

FIG. 9. The variation of the amplitude of convection with Rayleigh number

for modes (1,0) and (2,0) for Rw¼ 0.1 and R¼ 0.7 and with insulated side-

walls. The dashed/dotted line is the amplitude of the basic mode (1,0). The

continuous line is the amplitude of the stable part of the secondary mode

(2,0) branch, while the dashed line is the unstable part.

FIG. 10. (Color online) A stable mixed mode convection pattern corre-

sponding to modes (5,0) and (2,1). The sidewalls are insulated while

Rw¼ 0.7, R¼ 2.1, and Ra¼ 40. The pattern displays m¼ 2 characteristics

near the inner radius and m¼ 5 characteristics near the outer radius. The per-

ceived value of p is either 0 or 1 depending on the chosen azimuthal

position.

094109-9 Linear and nonlinear convection in porous media Phys. Fluids 23, 094109 (2011)

Downloaded 16 Sep 2011 to 138.38.0.53. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



We also note that, while mixed modes are usually unsta-

ble in the free convection context (see Riley and Winters,19

for example), there are a few cases published where mixed

modes may have stability. Examples may be found in the

papers by Knobloch and Guckenheimer,20 Kato and Fuji-

mura,21 and Borońska and Tuckerman.22 This last case is of

most relevance to the present paper because convection occurs

within a cylindrical domain, and the authors show that there

are a large number of stable nonlinear patterns which do not

have simple counterparts in the corresponding linear theory.

We also tested for stability with respect to perturbations

in the domain. Simulations with Rw and R close to bifurca-

tion trajectories and the Rayleigh number over the critical

(and under the secondary critical) always produced the

anticipated convection mode, which then was stable with

respect to numerical perturbations. Initializing the solver

with a convection mode near a bifurcation trajectory, and

perturbing the domain such that another convection mode

should be the preferred according to the linear analysis, pro-

duced this other mode. Hence, the convection modes are not

stable with respect to domain perturbations near the bifurca-

tion trajectories. We may also conclude that the bifurcation

trajectories are sharp; there are no transition zones. The

mode at the other side of the trajectory will appear as a sec-

ondary mode, with stability properties as described above.

The only exception was the appearance of mixed modes at

onset; a mode intermediate of the two modes at each side of

a bifurcation trajectory could be present at onset, but the con-

vective pattern always stabilized at the anticipated mode

when using low Rayleigh numbers.

V. CONCLUSION

For a porous medium filling a vertical, annular cylinder

heated from below and having either conducting or insulated

sidewalls, we have found critical Rayleigh numbers and pre-

ferred convective modes using linear stability analysis. In ac-

cordance with previous studies, we find that the critical

Rayleigh numbers converge to 4p2 and always are larger for

heat conducting sidewalls. The results show that the effect of

an inner radius is more severe for heat conducting sidewalls.

The presence of an inner radius increases the critical Ray-

leigh number significantly compared to the non-annular cyl-

inder studied by Haugen and Tyvand.13 For the insulated

sidewalls, the inner radius does not have a similar effect.

However, letting the inner radius approach zero, our results

show that both the problems with conducting and insulated

sidewalls degenerate into the ones studied by Haugen and

Tyvand and by Zebib.11

The linear analysis provides maps over preferred con-

vective modes for the two cases, and in general, the results

show the appearance of more convection cells in radial direc-

tion for increasing outer radius and more convection cells in

azimuthal direction for increasing the inner radius. For the

insulated sidewalls case, we sometimes find other modes

than Bau and Torrance14 found in their paper. High-

resolution simulations confirm our analysis.

Simulations with various inner and outer radii, and with

Rayleigh numbers near critical, conform in most cases to the

convection modes and critical Rayleigh numbers predicted

from the linear analysis. The results show that the various

modes have Rayleigh number dependent stability regimes,

which is an important factor in predicting the convective

mode occurring in practice. The nonlinear regime also

reveals the appearance of mixed modes that are not repre-

sented in the basis of the linear analysis. As such, the numer-

ical simulations both verify the linear stability analysis as

well as give bounds on its validity.
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