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In this paper, the onset of convection in a horizontally partitioned porous layer is investigated. Two

identical sublayers are separated by a thin impermeable barrier. There exists a background

horizontal flow in one of the layers or, equivalently, flows of half that strength in each sublayer but

in opposite directions. A linearised stability analysis is performed where the horizontal component

of the disturbance is factored into separate Fourier modes, leaving an ordinary differential

eigenvalue problem for the critical Darcy-Rayleigh number as a function of the wavenumber. The

dispersion relation is derived and the neutral stability curves are obtained for a wide range of

horizontal flow rates. The presence of the horizontal flow alters the morphology of the neutral

curves from that which occurs when there is no flow and travelling modes may arise. We also

determine the condition under which the most dangerous disturbance changes from a stationary

mode to travelling mode. Some three-dimensional aspects are also considered. VC 2011 American
Institute of Physics. [doi:10.1063/1.3589864]

I. INTRODUCTION

Convection in a horizontal porous layer heated from

below is now regarded as one of the classical and fundamental

problems in stability analysis even though it also has a consid-

erable importance in engineering applications such as CO2

sequestration, oil recovery techniques, insulation technology,

packed-bed catalytic reactors, and heat storage beds. Termed

the Horton-Rogers-Lapwood or Darcy–Bénard problem,

Horton and Rogers1 and Lapwood2 were the first to show that

convection arises in a uniform unbounded horizontal layer

heated from below occurs when the Darcy-Rayleigh number

is above 4p2. The corresponding wavenumber is p, which

means that the cells which first appear have a unit aspect ratio.

Prats3 investigated the effect of a uniform horizontal

pressure gradient on the onset problem for the Darcy-Bénard

problem and found that the resulting horizontal flow does

not affect the critical Rayleigh number. The full governing

equations, when written in a frame of reference which moves

with the flow, remain identical to those which apply when

the flow is absent. Therefore, all the nonlinear dynamics

which arise for the classical Darcy-Bénard problem in an

unbounded layer are unchanged by the presence of the flow.

No doubt that the presence of Brinkman effects and Local

Thermal Nonequilibrium will alter this conclusion, but anal-

ysis of these types have not yet appeared in the open

literature.

Layered porous media are ubiquitous both in nature and

industrial applications, and numerous studies have been

made of these cases. Although it was not the first paper on

the topic, a very comprehensive analysis of the onset of con-

vection was undertaken by McKibbin and O’Sullivan,4 who

considered two- and three-sublayer configurations. It was

found that the neutral curve sometimes exhibits two local

minima thereby allowing the identity of the critical mode of

convection to change discontinuously as the system parame-

ters change smoothly. This work was later extended into the

weakly nonlinear regime by McKibbin and O’Sullivan.5

Rees and Riley6 also provided a weakly nonlinear stability

analysis and showed that some configurations give rise natu-

rally to three-dimensional convection patterns. A similar

conclusion was obtained earlier by Riahi,7 who considered a

classical Darcy-Bénard layer sandwiched between two con-

ducting solid regions. Other notable works on layered media

have been undertaken by Masuoka et al.8 and Rana et al.9

McKibbin10 investigated the effects of the presence of

an impermeable but conducting layer interposed between the

heat source below and the base of an otherwise homogene-

ous aquifer. He found that the presence of a layer of imper-

meable material between the heat source and the saturated

layer markedly affects the aspect ratio of convection cells

and the heat flux when compared with those which occur

when the heat source is in direct contact with the base of the

aquifer. Another analysis of the linear stability characteris-

tics of two horizontal porous layers separated by a conduc-

tive partition was undertaken by Jang and Tsai.11 They

showed that the system is at its most stable when the parti-

tion is located centrally, and the system also becomes more

stable as the partition thickness increases or the partition

conductivity decreases.

The aim of the present work is to determine the effect of

the presence of a partition within a porous layer heated from

below, and to allow different horizontal flows to exist within

the two sublayers, which are caused by two different pres-

sure gradients. The partition will be considered to be infini-

tesimally thin and completely impermeable so that the

sublayers remain thermally coupled, but are mechanically

decoupled. In addition, the sublayers are of identical thick-

nesses and properties. Given that the convection cells have a

tendency to move with the background flow, the presence of

different flows in each sublayer combined with the thermal

coupling between the layers means that there will be a com-

petition between the sublayers.
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The analysis we present is confined to a linearised sta-

bility theory, and we will show that the onset of convection

may correspond either to a stationary pattern (when viewed

in the correct frame of reference) or, when flow rates are

sufficiently high, to two different travelling wave patterns.

When one is not confined to two-dimensional flow and the

background pressure gradients are not in the same direc-

tion, then it is possible to show that there is a roll direction

which minimises the critical Darcy-Rayleigh number, and a

simple formula is obtained for the direction of the axis of

that roll.

II. GOVERNING EQUATIONS

The main aim of this study is to investigate the onset of

convection within a uniform horizontal porous layer, which

is heated isothermally from below and cooled isothermally

from above, and within which a thin horizontal impermeable

partition is placed; the configuration is as shown in Fig. 1.

When there is no applied horizontal pressure gradient,

the basic state is one of no motion. We may, without any

loss of generality, impose opposing pressure gradients in the

two sublayers; any other situation may be reduced to this by

the introduction of a suitable moving frame of reference in

the manner of Prats.3

We assume that the Boussinesq approximation is valid

and that the fluid motion satisfies Darcy’s law with the addi-

tional effect of buoyancy. Initially, we consider only two-

dimensional convection in the ðx; zÞ-plane, as shown in Fig. 1,

and the nondimensional governing equations are given by,

@uj

@x
þ @wj

@z
¼ 0; (1)

uj ¼ �
@pj

@x
; wj ¼ �

@pj

@z
þ Ra hj; (2)

@hj

@t
þ uj

@hj

@x
þ w

@hj

@z
¼ @

2hj

@x2
þ @

2hj

@z2
; (3)

where u and w are the horizontal and vertical flux velocities,

respectively, p is the pressure, h the temperature, and t the

time. The values j ¼ 1; 2 denote the identity of the sublayer,

which is being considered. In the above, Ra is the Darcy-

Rayleigh number:

Ra ¼
qðqCÞf ĝbHKDT

lj
: (4)

Here, H is the height of a sublayer, rather than of the full

layer (which has dimensional height, 2H) and DT is the basic

temperature drop across a sublayer. These choices have been

made so that our results may be compared directly with the

classical single-layer configuration. Moreover, q is the den-

sity, C the heat capacity, ĝ gravity, b the coefficient of cubi-

cal expansion, K permeability, l the dynamic viscosity, and

j the thermal diffusivity. Nondimensionalisation has taken

place using H, H2ðqCÞm=j, and j=HðqCÞf as scales of

length, time, and velocity, respectively, where the subscripts

f and m correspond to fluid and effective properties of the

porous medium, respectively.

The streamfunction w is defined using,

uj ¼ �
@wj

@z
; wj ¼

@wj

@x
; (5)

and, therefore, the non-dimensional equations take the fol-

lowing forms:

@2wj

@x2
þ
@2wj

@z2
¼ Ra

@hj

@x
;

@hj

@t
þ
@wj

@x

@hj

@z
�
@wj

@z

@hj

@x
¼ @

2hj

@x2
þ @

2hj

@z2
:

(6)

We impose different pressure gradients in the x-direction in

the two sublayers and these are such that the basic velocity

fields in the two sublayers,

u
ðbÞ
1 ¼

1

2
U; u

ðbÞ
2 ¼ �

1

2
U; (7)

where U is termed the velocity differential. Therefore, the

equations are to be solved subject to the boundary and inter-

face conditions,

z ¼ 0: w1 ¼ 0; h ¼ 2;

z ¼ 1: w1 ¼ w2 ¼
1

2
U; h1 ¼ h2;

@h1

@z
¼ @h2

@z
:

z ¼ 2: w2 ¼ 0; h ¼ 0:

(8)

We note that the constant conditions for w1 and w2 express

the fact that the interface and boundaries are impermeable,

while the continuity conditions for the temperature and its

vertical derivative at z ¼ 1 represent the fact that the conduc-

tion is unhindered by the presence of the partition.

III. LINEAR STABILITY ANALYSIS

The basic state consists of different uniform horizontal

flows within the respective sublayers and a linear tempera-

ture drop, and it is

hðbÞ1 ¼ hðbÞ2 ¼ 2� z; wðbÞ1 ¼
1

2
U z; wðbÞ2 ¼

1

2
U ð2� zÞ: (9)

The conditions governing the onset of convection are deter-

mined by using a linear stability analysis. Thus the basic so-

lution is perturbed as follows; we substitute

wj ¼ wðbÞj þWj; hj ¼ hðbÞj þHj; (10)

into Eq. (6), and then linearise for W and H,FIG. 1. Geometry of the horizontally partitioned porous medium.
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@2Wj

@x2
þ @

2Wj

@z2
¼ Ra

@Hj

@x
;

@Hj

@t
þ u

ðbÞ
j

@Hj

@x
� @Wj

@x
¼ @

2Hj

@x2
þ @

2Hj

@z2
:

(11)

This partial differential system may be transformed into ordi-

nary differential eigenvalue form by factoring out a horizon-

tal Fourier mode with wavenumber, k, as follows:

Wj ¼ i fjðzÞ ektþikx þ c:c:; Hj ¼ gjðzÞ ektþikx þ c:c:; (12)

where c.c. denotes the complex conjugate and k is the com-

plex exponential growth rate. Equation (11) now becomes,

fj
00 � k2fj ¼ Ra k gj; gj

00 � k2gj� iku
ðbÞ
j gj� kfj ¼ kgj; (13)

subject to the boundary and interface conditions,

z ¼ 0: f1 ¼ g1 ¼ 0;

z ¼ 1: f1 ¼ f2 ¼ 0; g1 ¼ g2; g01 ¼ g02;

z ¼ 2: f2 ¼ g2 ¼ 0:

(14)

Equations (13) and (14) represent an eigenvalue problem for

k in terms of k and Ra. The solutions for f and g are complex

when the velocity differential, U, is nonzero. When the real

part of k is zero then disturbances neither grow nor decay

and this is termed neutral stability.

The neutral curves were obtained by a variety of meth-

ods, including (i) a suitably modified shooting method code

coupled with a fourth order Runge-Kutta method, (ii) a ma-

trix eigenvalue solver, which is applied after Eq. (13) was

discretised by using a second order central difference for-

mula on a uniform grid (see Rees and Bassom12 for details),

and (iii) the analytical determination of a complex dispersion

relation (see Appendix A). In the case of the first method, it

was necessary to adopt a normalization constraint of the

form g0ð0Þ ¼ 1. The two numerical methods were used to

verify the correctness of the somewhat complicated complex

dispersion relation given in Eq. (A1) and therefore, we omit

the details of their implementation. In the present paper, all

our results were obtained by analysis of the dispersion rela-

tion and, therefore, our data are, to all intents and purposes,

exact. Solutions were obtained using Newton-Raphson itera-

tion with an extremely small convergence tolerance.

IV. TWO-DIMENSIONAL RESULTS FOR U ¼ 0

When the velocity differential is zero, the dispersion

relation may be found by attempting to solve Eq. (13) ana-

lytically. The application of the boundary and interface con-

ditions, Eq. (14), results in the dispersion relation. We found

that for even–numbered modes, we have

sin r1 ¼ 0; (15)

while for odd numbered modes, we have

r1 cos r1 sinh r2 þ r2 cosh r2 sin r1 ¼ 0; (16)

where the quantities, r1 and r2 are given by,

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ffiffiffiffiffiffi
Ra
p

� k2

q
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ffiffiffiffiffiffi
Ra
p

þ k2

q
: (17)

Equation (15) yields the neutral curve for the classical sin-

gle-layer Darcy-Bénard problem,

Ra ¼ ðk
2 þ n2p2Þ2

k2
; for n ¼ 1; 2; : : :; (18)

while Eq. (16) cannot be rearranged to yield Ra explicitly in

terms of k.

Figure 2 shows the first four neutral modes. All the

curves have a single minimum and Ra becomes asymptoti-

cally large as either k ! 0 or k !1. Modes 2 and 4 corre-

spond to the n ¼ 1 and n ¼ 2 Darcy-Bénard modes given by

Eq. (18). Figure 3 shows the z-profiles for f and g for modes

1 and 2. The solutions are scaled in such a way that g has a

unit slope on the lower surface. When the wavenumber is

small, the thermal profile for mode 1 has a single maximum

and has a shape which is similar to half of a sine wave. As k
increases, the central part of the profile reduces until it has

two identical maxima and a minimum at the interface. All

the while, the streamfunction profile maintains the same sign

and corresponds to a pair of stacked co-rotating cells. On the

other hand, mode 2, being the usual mode 1 for the classical

Darcy-Bénard problem, consists of a profile which is pre-

ciesly one period of a sine wave, and it corresponds to a

stacked pair of counter-rotating cells.

The critical Darcy-Rayleigh number for mode 1 may be

found easily by minimising the numerical value of Ra with

respect to k; this process yields the value, Rac ¼ 2:74556p2,

which should be compared with 4p2 for mode 2. The re-

spective critical wavenumbers for modes 1 and 2 are k=p
¼ 0:74046 and precisely 1. Thus, the convection pattern for

mode 1 is approximately 35% wider than for mode 2.

Figure 2 also indicates that the neutral curves for modes

1 and 2 become very close indeed when k is large, which is

FIG. 2. The neutral curves corresponding to the first four modes of instabil-

ity for U ¼ 0.
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unusual behaviour. Using an asymptotic analysis of

Eqs. (16) and (18), it is possible to show that the critical val-

ues of Rac have the forms,

RaMode1
c � k2 þ 2p2 � 2

ffiffiffi
2
p

p2k�1 þ ðp4 þ 3p2Þk�2;

RaMode2
c ¼ k2 þ 2p2 þ p4k�2;

(19)

when k is large, and therefore, the difference between these

critical values is of Oðk�1Þ. By contrast, the separation

between different curves for the classical Darcy-Bénard

layer is of Oð1Þ when k is large.

The observed behaviour of both f and g for mode 1,

when k is large, suggests that a large- k analysis should be

performed. We found that

Mode1: f1 ��k sinpz; f2 � k sinpz; g1 � sinpz;

g2 �� sinpz; (20)

Mode2: f1 ��k sinpz; f2 ��k sinpz; g1 � sinpz;

g2 � sinpz; (21)

when k� 1. These expressions have been normalised so

that the mode 1 and mode 2 solutions are identical in the

lower layer, i.e., layer 1, but the consequence is that they

have opposite signs in the upper layer.

V. TWO-DIMENSIONAL RESULTS FOR U 6¼ 0

Given the symmetries inherent to the mathematical

problem we have solved, we confine the presentation of our

results to those cases for which U > 0. The dispersion rela-

tion is now a complex expression, and it is given in

Appendix A.

Figure 4 depicts the neutral curves corresponding to the

first and second modes for the velocity differentials, U ¼ 0,

0:5, 1, 1:5, and 2. The presence of the background counter-

flow alters the morphology of the neutral curves from that

which occurs when there is no flow. For any nonzero flow

rate, no matter how small, there always exists a wavenumber

at which modes 1 and 2 merge into a complex pair of travel-

ling modes as k increases. This transition arises at the turning

point in the neutral curves (i.e., where the tangent to the sta-

tionary-mode neutral curve is vertical) and it occurs at

decreasing wavenumbers as the velocity differential, U,

increases. The value of the Darcy-Rayleigh number at the

turning point is denoted by RaTP.

The corresponding neutral curves for the larger velocity

differentials U ¼ 2:859, 4, and 6, are presented in Fig. 5.

Although the general shape of these curves is the same as

FIG. 3. Profiles of f and g for modes 1

and 2 for U ¼ 0.

FIG. 4. The neutral curves corresponding to the first and second modes

when U ¼ 0 (outermost), 0:5, 1, 1:5, and 2 (innermost).
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those shown in Fig. 4, the important difference is that the low-

est value of Ra now corresponds to a pair of travelling waves.

Indeed, the value U ¼ 2:859 delineates the stationary convec-

tion regime (U < 2:859) from the travelling waves regime

(U > 2:859). The critical Rayleigh number at this transitional

value of U is Rac ¼ 34:322 and the corresponding wavenum-

bers are k ¼ 0:585p (stationary) and k ¼ 0:906p (travelling).

It is quite clear from both Figs. 4 and 5 that the value of

Ra for any chosen wavenumber for travelling modes varies

very little as U varies, although the minimum value of the

stationary part of the curves and the location of the turning

point vary greatly. This is summarised graphically in Fig. 6,

where we show the variation with U of the critical values

(i.e., local minima) of the Rayleigh number for both station-

ary and travelling modes. Thus Rac increases slowly and in a

parabolic-like manner as U increases, but then the critical

mode switches suddenly to travelling modes and Rac is

roughly constant. The reason for the roughly constant value

of Rac for travelling modes is that the convection is now tak-

ing place almost exclusively in one sublayer and, therefore,

the presence of the counterflow in the other sublayer affects

the stability criterion only very slightly.

Figure 6 also shows the behaviour of the turning point in

the stationary part of the neutral curve as U varies. This

curve has its minimum when U ¼ 1:908 and, therefore, the

travelling mode part of the neutral curve has a minimum (in

the sense that the derivative of Ra with respect to k is zero)

only when U > 1:908. This may be understood more clearly

with reference to the U ¼ 2 curve in Fig. 4, where we see

that the minimum in the travelling wave part of the curve is

very close to the turning point in the stationary mode part of

the curve. Thus the travelling mode branch shown in Fig. 6

emerges from the minimum in the travelling wave curve

when U ¼ 1:908.

When the value of U decreases towards zero, Fig. 6

shows clearly that the location of the turning point recedes

towards infinity in both k and Ra, which we see in Fig. 4. A

detailed analysis of this aspect is contained in Appendix B,

but it is worth noting here that (i) the value of k at which the

turning point may be found is given by k2 � 2 p2
ffiffiffi
2
p

=U and

(ii) the corresponding value of Ra is, to order k�1, exactly

midway between the critical values for modes 1 and 2, which

are given in Eq. (19).

The wavenumbers corresponding to the Rayleigh num-

bers displayed in Fig. 6 are shown in Fig. 7. Here, we see the

moderately slow reduction in the critical wavenumber for

stationary modes as U increases, which was also seen in

Fig. 4. Once the bullet symbol is encountered, then there is a

sudden transition in the identity of the preferred mode to the

travelling mode, and we see again that critical wavenumber

hardly varies as U increases further. The travelling mode

branch emerges from the turning point curve at U ¼ 1:908,

as discussed earlier.

FIG. 5. The neutral curves corresponding to the first and second modes

when U ¼ 2:859, 4, and 6.

FIG. 6. Variation with U of the values of Ra corresponding to the turning

point and to the minima in the neutral curve for both stationary and travel-

ling modes.

FIG. 7. Variation with U of the values of k=p corresponding to the turning

point and to the minima in the neutral curve for both stationary and travel-

ling modes. Also shown is the transition point between stationary and travel-

ling waves forming the favoured mode (�).
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Figure 8 shows the streamlines and isotherms corre-

sponding to stationary modes for different values of U.

When U ¼ 0, the pattern corresponds to the critical mode,

but for the other values of U, the pattern corresponds to the

turning point. The width of each frame shows the precise as-

pect ratio of the pattern, given the value of the wavenumber.

As U increases, an increasing distortion in the isotherms is

induced, which indicates quite clearly that the background

flow is from left to right in the lower layer and in the

opposite direction in the upper layer. The streamlines dis-

play their own peculiar form of distortion by having the

cells in one layer being displaced from their counterparts in

the lower layer.

Figure 9 shows the streamlines and isotherms for trav-

elling modes and these correspond to values of the Ray-

leigh number at the minimum of the travelling mode part

of the neutral curves. When U ¼ 2, there is very little dif-

ference between the strength of the pattern in the upper

layer from that in the lower, but it is nevertheless discern-

able here. When U increases from this value, the convec-

tion pattern becomes concentrated increasingly within the

lower layer, with only a weak contribution in the upper

layer. Thus the patterns shown are a snapshot in time, and

they represent modes which are moving to the right. There-

fore, the pattern at a later time differs from what is shown

by the distance it has travelled along the layer. The corre-

sponding left-moving patterns are obtained by rotating

these frames through 180�, and they have exactly the same

critical Rayleigh number.

We also note that suitable combinations (i.e., the sum of

equal-amplitude forms) of the two travelling waves will yield

standing waves, which will oscillate in time with a periodic

reversal of the direction of circulation of the convective cells.

Whether this will arise in practice or whether travelling waves

will be favoured can only be determined using a nonlinear

analysis, which is outside the scope of the present work.

VI. THREE-DIMENSIONAL CASES

Finally, we generalise the two-dimensional cases con-

sidered already to ones where the horizontal direction of the

flows in the sublayers take arbitrary directions. Now we shall

allow the basic velocity fields in the sublayers to have the

forms, ðuðbÞj ; v
ðbÞ
j Þ for j ¼ 1; 2. The linear stability analysis

presented earlier has to be reworked and the most convenient

FIG. 8. Streamlines (left column) and

isotherms (right column) for stationary

mode convection for U ¼ 0 (upper-

most), 2, 4,and 6 (lowest).

FIG. 9. Streamlines (left column) and isotherms (right column) for travel-

ling mode convection for U ¼ 2 (uppermost), 4, and 6 (lowest).
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form for this is in terms of the vertical velocity and tempera-

ture. The linearised stability equations, which are the three-

dimensional equivalent of Eq. (11) are

@2Wj

@x2
þ@

2Wj

@y2
þ@

2Wj

@z2
¼Ra

@2Hj

@x2
þ@

2Hj

@y2

� �
;

@Hj

@t
þu
ðbÞ
j

@Hj

@x
þv
ðbÞ
j

@Hj

@y
�Wj¼

@2Hj

@x2
þ@

2Hj

@y2
þ@

2Hj

@z2
;

(22)

where W is the vertical velocity disturbance. Roll solutions

corresponding to axes at an angle, c, to the y-axis may now

be introduced as follows:

Wj ¼ �k fjðzÞ ektþikðx cos c�y sin cÞ;

Hj ¼ gjðzÞ ektþikðx cos c�y sin cÞ;
(23)

where c ¼ 0 corresponds to the two-dimensional rolls con-

sidered above. Equations (22) now become,

fj
00 � k2fj ¼ Ra k gj;

gj
00 � k2gj � ikðuðbÞj cos c� v

ðbÞ
j sin cÞgj � kfj ¼ kgj;

(24)

and are subject to the boundary and interface conditions

given in Eq. (14). Equation (24) reduces to the form given

by Eq. (13) when v
ðbÞ
1 ¼ v

ðbÞ
2 ¼ 0. Thus, given the form of

the coefficient of ikgj in Eq. (24), and given that the critical

value of Ra shown in Fig. 6 is an increasing function of U, it

is clear that the minimising value of the roll orientation, c, is

that one for which the value of ðuðbÞj cos c� v
ðbÞ
j sin cÞ is the

same in the two layers. This would then correspond to a sit-

uation where the two background velocity components,

which are perpendicular to the roll orientation are equal to

one another. Therefore we need,

u
ðbÞ
1 cos c� v

ðbÞ
1 sin c ¼ u

ðbÞ
2 cos c� v

ðbÞ
2 sin c; (25)

to be true, and this may be rearranged to yield,

tan c ¼ u
ðbÞ
1 � u

ðbÞ
2

v
ðbÞ
1 � v

ðbÞ
2

: (26)

One example case is when the background flow is in the

x-direction with strength, U, in layer 1 and in the y-direction

also with strength, U, in layer 2. The above formula yields

tan c ¼ �1, and hence c ¼ �45�.
A second example is given by the two-dimensional

cases considered earlier. If u
ðbÞ
1 and u

ðbÞ
2 take arbitrary values

but v
ðbÞ
1 ¼ v

ðbÞ
2 ¼ 0, then c ¼ 90�, and the preferred rolls lie

in the direction of the x-axis, rather than in the direction of

the y-axis, which corresponds to the two-dimensional flow

considered above.

In both these cases, when the optimum roll orientation

forms the disturbance, the critical Darcy-Rayleigh number

and the corresponding wavenumber correspond to when

U ¼ 0 for two-dimensional convection. Thus, for the transi-

tion to moving patterns to be observed in practice, it is essen-

tial that the flow is forced to be two-dimensional by

restricting the width of the layer in the y-direction, or by con-

sidering the corresponding Hele-Shaw system.

VII. CONCLUSION

A linear stability analysis has been performed to deter-

mine the critical Darcy-Rayleigh number for the onset of

convection in a horizontally partitioned porous layer heated

from below with opposing horizontal pressure gradients. It

has been shown that the stationary convection arises at onset

when the velocity differential satisfies U < 2:859, but

unsteady convection ensues otherwise. In dimensional terms,

this means that stationary convection ensures when the seep-

age velocity is less than 2:859j=HðqCÞf . Streamline and iso-

therm patterns have also been given, and the detailed

behaviour of the local minima and the turning point in the

neutral curve have been presented.

When there is no background flow, then the critical

value of the Darcy-Rayleigh number is Rac ¼ 2:74556p2,

which is less than 4p2, the value for standard Darcy-Bénard

layer. This appears to suggest that the presence of a parti-

tion reduces the critical value of Ra. However, if we had

nondimensionalised using the full height of the layer and

the temperature drop, then the corresponding critical value

would be multiplied by 4 and would be 10:98224p2; all

quoted wavenumbers would then be double the values

quoted here. Thus, the presence of the partition increases

the critical Darcy-Rayleigh number almost three-fold.

The present configuration bears some resemblance to

the inclined form of the classical Darcy-Bénard problem,

which has been studied by many (see, for example, Weber13

and Caltagirone and Bories14) and, most recently, by Rees

and Bassom.12 The basic state in those papers consists of

flow up the lower heated surface and down the upper cooled

surface. Once the layer has been tilted away from the hori-

zontal, stationary modes also coalesce into pairs of travelling

waves, although these latter never form the most unstable

state.

We make the following conclusions for cases, where the

flow is constrained to be two-dimensional:

(1) The presence of the horizontal flow alters the morphol-

ogy of the neutral curves from that which occurs when

there is no flow.

(2) The value of the critical Darcy-Rayleigh number for sta-

tionary mode convection increases as the velocity differ-

ential, U, increases.

(3) The travelling mode branch of solutions bifurcates from

a turning point formed by the merging of two stationary

mode branches.

(4) The turning point recedes to infinity as jUj ! 0 and is

asymptotically proportional to k�2 in that limit.

(5) Travelling modes are characterised by having convection

concentrated primarily in only one of the sublayers.

(6) Travelling modes form the preferred mode of convection

when U > 2:895.

When the fluid occupies a layer of infinite extent in both

horizontal directions, and the background fluid velocities are
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no longer parallel to one another, then the critical Darcy-

Rayleigh corresponds to that roll orientation for which the

perpendicular components of the background flows are iden-

tical and of the same sign. In such instances, the U ¼ 0 result

applies.

Finally, we need to make two comments on the realiz-

ability of the solutions we have found. First, we note that the

configuration we have studied is structurally unstable in the

sense that almost all slight perturbations to the system result

in qualitative changes to the neutral curves. Examples of this

include (i) a non-centrally located partition and (ii) slight

changes in the permeability or diffusivity of one of the

layers. In all of these cases, mode 1 would not retain its sym-

metry about the centre of the layer and the formerly station-

ary patterns would move. Likewise, our computed travelling

wave solutions would now have unequal velocities in oppo-

site directions and slightly different critical Darcy-Rayleigh

numbers. Moreover, the morphology of the turning points

would be altered.

Second, the configuration we have studied is of infi-

nite horizontal extent, whereas any possible practical ex-

perimental work would involve finite layers. This would

mean that the entrance effects would need to be taken

into account in the analysis. Typically, disturbance quan-

tities might be set to zero at inflow and, therefore, each

of the sublayers would have a development region near

the inflow boundary within which any upstream propaga-

tion of disturbances would die out. The papers by Dufour

and Néel15,16 consider this very situation for a single

Darcy-Bénard layer. They show that the upstream propa-

gation of disturbances is sufficiently strong that the entry

region corresponds typically to only a few wavelengths

of the convecting pattern. The length of the entry region

increases with the strength of the background flow, but

decreases as the Darcy-Rayleigh number increases.

Therefore, we can conclude that our analysis could be

modelled in the laboratory even if the length of the layer

is not too large.
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APPENDIX A: COMPLEX DISPERSION RELATION

If we set the exponential growth rate, k, to be equal to

ic, then the following is the dispersion relation for stationary

convection when the velocity differential, U, is nonzero.

A2k2 cothk2�A1k1 cothk1

A2�A1

þA4k4 cothk4�A3k3 cothk3

A4�A3

¼ 0;

(A1)

where

A1 ¼
k2

1 � k2 þ iðc� ku
ðbÞ
1 Þ

k
;

A2 ¼
k2

2 � k2 þ iðc� ku
ðbÞ
1 Þ

k
;

A3 ¼
k2

3 � k2 þ iðc� ku
ðbÞ
2 Þ

k
;

A4 ¼
k2

4 � k2 þ iðc� ku
ðbÞ
2 Þ

k
;

and where

k2
1 ¼ k2 þ

ðuðbÞ1 k � cÞiþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Rk2 � ðc� ku

ðbÞ
1 Þ

2
q

2
;

k2
2 ¼ k2 þ

ðuðbÞ1 k � cÞi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Rk2 � ðc� ku

ðbÞ
1 Þ

2
q

2
;

k2
3 ¼ k2 þ

ðuðbÞ2 k � cÞiþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Rk2 � ðc� ku

ðbÞ
2 Þ

2
q

2
;

k2
4 ¼ k2 þ

ðuðbÞ2 k � cÞi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Rk2 � ðc� ku

ðbÞ
2 Þ

2
q

2
:

When u
ðbÞ
1 ¼ �u

ðbÞ
2 , which is the case we have considered,

and when we are concerned solely with stationary modes,

then we set c ¼ 0. In such cases, A2 � A1 ¼ A4 � A1, and the

complex dispersion relation reduces to,

A2k2 cothk2�A1k1 cothk1þA4k4 cothk4�A3k3 cothk3 ¼ 0:

(A2)

This expression reduces still further to that given by Eq. (16)

when u
ðbÞ
1 ¼ u

ðbÞ
2 ¼ 0.

APPENDIX B: TURNING POINT ANALYSIS FOR jU j�1

The aim of this Appendix is to summarise briefly the

analysis of the location of the turning point in the stationary

part of the neutral curve as U ! 0. A detailed inspection of

the numerically obtained values suggests that the appropriate

balance of magnitudes is U / k�2. The turning point must

be located between the neutral stability curves for modes 1

and 2 for the stationary case, U ¼ 0. Therefore, the analysis

begins by setting,

Ra ¼ k2 þ 2p2 þ ak�1 þ � � � ; U ¼ xk�2: (B1)

The auxiliary quantites given in Appendix A become,

A1 ¼ k þ p2

k
þ a

2
� xi

4

� �
1

k2
þ � � � ;

A2 ¼ �k � p2

k
þ a

2
� xi

4

� �
1

k2
þ � � � ;

A3 ¼ k þ p2

k
þ a

2
þ xi

4

� �
1

k2
þ � � � ;

A4 ¼ �k � p2

k
þ a

2
þ xi

4

� �
1

k2
þ � � � ;
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and

k1 ¼
ffiffiffi
2
p

k þ p2

4k
þ xi

16
þ a

8

� �
þ � � � ;

� �
;

k2 ¼ piþ x
8
þ ai

4

� �
1

pk
þ � � � ;

k3 ¼
ffiffiffi
2
p

k þ p2

4k
þ �xi

16
þ a

8

� �
þ � � � ;

� �
;

k4 ¼ piþ �x
8
þ ai

4

� �
1

pk
þ � � � :

After substitution of these expressions into the dispersion rela-

tion Eq. (A2), we obtain the following formula at leading

order:

x2 ¼ �4½2
ffiffiffi
2
p

p2aþ a2	: (B2)

It is clear that x2 takes positive values only when

� 2
ffiffiffi
2
p

p2 
 a 
 0; (B3)

which corresponds exactly to the region between the neutral

curves for modes 1 and 2, which are given by the Oðk�1Þ
terms in Eq. (19). Both extremes of this interval correspond

to x! 0, so that we recover one or the other of the first two

modes for U ¼ 0. The largest value of x arises when

a ¼ �
ffiffiffi
2
p

p2, for which the turning point corresponds to

x ¼ 2
ffiffiffi
2
p

p2. In terms of the original unscaled variables, the

turning point arises at,

RaTP � k2þ 2p2�
ffiffiffi
2
p

p2k�1; kTP � 2
ffiffiffi
2
p

p2=U; (B4)

when U � 1.
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