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In this paper we investigate the onset of convection in a horizontally partitioned porous layer which is
heated from below. Identical sublayers are separated by thin impermeable barriers. A linear stability
analysis is performed, and dispersion relations are obtained directly and explicitly for two- and three-
layer configurations. A systematic numerical procedure is devised to compute the dispersion relation
for an arbitrary number of sublayers, but from this it is possible to guess the correct analytical form of
the dispersion relation for general cases.

Neutral stability curves are found to organise themselves into natural groups of N members when there
are N sublayers. When the disturbance wavenumber, k, is large, each member of any group lies within an
O(k�1) distance of all other members, but within an O(1) distance of other groups. When the number of
sublayers is large, the system tends towards one with a critical Darcy–Rayleigh number of 12 and a crit-
ical wavenumber of zero; this is the well-known property of a single porous layer with constant heat flux
boundary conditions. An asymptotic analysis is performed in order explore these two apparently dispa-
rate configurations. Finally, another asymptotic analysis is used to determine the critical Rayleigh num-
ber and its associated wavenumber when the number of sublayers is large.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the present paper we consider the onset of convection within
a horizontal porous layer heated from below which has multiple
infinitesimally thin impermeable horizontal partitions embedded
within it. The resulting sublayers are then identical in all respects,
including their height. Thus the sublayers are mechanically decou-
pled but remain thermally coupled since the interfaces present no
barrier to the conduction of heat. This work forms an extension to
our previous paper [1] which was concerned with a two-layer
system.

Many authors have considered how the presence of layering af-
fects the onset of convection and the subsequent nonlinear cellular
flow. Being motivated mostly by geothermal applications, these
layered systems generally tend to have interfaces though which
fluid may flow, unlike the topic of the present paper. The first per-
son to consider layering was Georghitza [2] who considered weak
layering in the sense that the difference in the permeabilities of the
two layers was small. On the other hand, Donaldson [3] considered
a two-layer system where one of the sublayers is impermeable and
computed nonlinear two-dimensional flow patterns. Riahi [4] con-
sidered what might be termed a three-layer configuration where a
ll rights reserved.
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porous layer is sandwiched between two impermeable but con-
ducting regions of infinite height. He conducted a weakly nonlinear
analysis and found that there is a region in parameter space within
which two-dimensional rolls do not form the favoured convection
pattern; this role is passed to a square-cell pattern. Further analy-
ses of this type may be found in Mojtabi and Rees [5] and Rees and
Mojtabi [6]. Masuoka et al. [7] provided some criteria for the onset
of convection in a two-layer configuration where both sublayers
are porous, and Rana et al. [8] conducted a numerical study of a
three-layer configuration which was believed to model well the Pa-
hoa reservoir in Hawaii.

A more systematic approach to these problems was provided in
the 1980s by McKibbin and co-workers who provided comprehen-
sive data on the onset problem [9], post-critical heat transfer [10],
the effects of thin highly permeable cracks [11] and almost imper-
meable sheets [12]. Indeed, the present paper may also be regarded
as an extension of [12] to the case where the sheets are completely
impermeable. Jang and Tsai [13] considered a three-layer system
where the middle sublayer is impermeable but conducting, and
of finite thickness. They showed that the system is at its most sta-
ble when the partition is located centrally, and the system also be-
comes more stable as the partition thickness increases or the
partition conductivity decreases. The paper by Postelnicu [14] is
also of relevance.

Of some interest is the fact that the presence of layering can
cause the neutral stability curve to adopt a shape other than that
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Nomenclature

A, B, C, D constants
c constant in Eq. (43)
d vector
f, g reduced forms of perturbations
F the dispersion relation
ĝ gravity
H height of each sublayer
k disturbance wavenumber
k̂ scaled value of k
K permeability
M;N 4 � 4 matrices
N number of sublayers
p pressure
Ra Darcy–Rayleigh number
S scaled value of Ra
t time
u horizontal velocity
v vector of coefficients
w vertical velocity
x horizontal coordinate
z vertical coordinate

Greek symbols
a exponent
b thermal expansion coefficient
d equal to N�1/2

DT reference temperature drop
h temperature
H disturbance temperature
j thermal diffusivity
k, r constants
l dynamic viscosity
q density
w streamfunction
W disturbance streamfunction

Subscripts and superscripts
(b) basic state
c critical conditions
j sublayer index
m iteration number
0 derivative with respect to z
1,2, . . . pertaining to a sublayer
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with the classical single minimum. McKibbin and O’Sullivan [9]
found cases where the neutral curve has a double minimum, and
it is often the case that a small change in a system parameter (such
as the permeability of one of the sublayers) causes a discontinuous
change in the critical wavenumber; this is due to the neutral curve
having two minima and the small change in the parameter has
simply caused the identity of the mode with the smaller Rayleigh
number to swap from one wavenumber to the other. Rees and Ri-
ley [15] provided a systematic analysis of two- and three-layer
configurations and they traced out the locus in parameter space
where such bimodality arises. They also found that it is possible
to have three-layer configurations which are trimodal, i.e. that
three minima exist each having the same Rayleigh number. More-
over, they also determined regions in parameter space where
square-cell convection forms the stable pattern.

In the present paper we will be considering the onset of convec-
tion in a porous layer where the layering is brought about by hav-
ing equally-spaced infinitesimally thin horizontal partitions within
the layer. Thus all the sublayers are identical in all of their proper-
ties. Such a configuration is an extension of the recent work by
Genç and Rees [1] who considered a two-layer system. Much of
the analysis we present arises from the dispersion relation which
may be calculated by hand fairly easily for two- and three-layer
systems, but which may be computed easily for larger numbers
of sublayers. It is found that this type of layered system has some
unusual properties, namely (i) the neutral curves clump together
into groups of N curves when there are N sublayers; (ii) that the
curves comprising each group lie within an O(k�1) distance of
one another when the wavenumber, k, is large; (iii) the critical
Darcy–Rayleigh number and wavenumber for the first mode tend
towards the respective values 12 and 0 as the number of sublayers
increases, which corresponds to the single-layer values when con-
stant heat flux boundary conditions are applied.
Fig. 1. Depicting a horizontally layered porous medium consisting of five sublayers.
2. Governing equations

We consider the onset of convection in a horizontal porous
layer which is comprised of a number of identical sublayers which
are themselves separated by infinitesimally thin impermeable
partitions. Therefore, while fluid may not pass between sublayers,
conductive heat transfer is unhindered by the presence of these
partitions. A five-sublayer version of the configuration we consider
is shown in Fig. 1.

We will assume that the Boussinesq approximation is valid, that
the porous medium is homogeneous and isotropic, that the phases
are in local thermal equilibrium, and that the fluid motion satisfies
Darcy’s law with the additional effect of buoyancy. Each sublayer
has height, H, which means that a system comprised of N sublayers
has height, NH. We will use H as the value against which to nondi-
mensionalise the governing equations, rather than NH; this has the
advantage of yielding much easier comparisons between cases
which consist of different numbers of sublayers, particularly the
classical single-layer Darcy–Bénard problem.
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Given that we are considering a linear stability analysis in a hor-
izontally unbounded layer, and given that all three-dimensional
modes in this type of stability problem may be decomposed into
two-dimensional roll cells, we shall present our analysis in terms
of two-dimensional equations. The full governing equations in
nondimensional form are given by

@uj

@x
þ @wj

@z
¼ 0; ð1Þ

uj ¼ �
@pj

@x
; wj ¼ �

@pj

@z
þ Rahj; ð2Þ

@hj

@t
þ uj

@hj

@x
þwj

@hj

@z
¼ @

2hj

@x2 þ
@2hj

@z2 ; ð3Þ

where all quantities are given in the Nomenclature, where
j = 1,2, . . .,N denotes the identity of the sublayer which is being con-
sidered, and where N is the number of sublayers. In the above equa-
tions, Ra is the Darcy–Rayleigh number given by

Ra ¼ qĝbHKDT
lj

; ð4Þ

and DT is the basic temperature drop across a single sublayer. We
note that, if we had used the overall height of the layer and the total
temperature drop as the respective length and temperature scales
in the nondimensionalisation, then the corresponding Darcy–
Rayleigh number would be a factor of N2 larger than the one given
in Eq. (4).

The streamfunction, w, is defined using,

uj ¼ �
@wj

@z
; wj ¼

@wj

@x
; ð5Þ

and therefore the non-dimensional equations take the following
forms:

@2wj

@x2 þ
@2wj

@z2 ¼ Ra
@hj

@x
;

@hj

@t
þ
@wj

@x
@hj

@z
�
@wj

@z
@hj

@x
¼ @

2hj

@x2 þ
@2hj

@z2 : ð6Þ

These equations are to be solved subject to the boundary and inter-
face conditions,

z ¼ 0 : w1 ¼ 0; h1 ¼ 0;

z ¼ j : wj ¼ wjþ1 ¼ 0; hj ¼ hjþ1;
@hj

@z ¼
@hjþ1
@z ; ðj ¼ 1; . . . ;N � 1Þ;

z ¼ N : wN ¼ 0; hN ¼ �N:
ð7Þ
3. Linear stability analysis

3.1. Perturbation equations

The basic state which we analyse for stability is one with no
flow and a linear temperature drop:

hðbÞj ¼ �z; wðbÞj ¼ 0 ðj ¼ 1; . . . ;NÞ: ð8Þ

Disturbances are introduced by substituting,

wj ¼ wðbÞj þWj; hj ¼ hðbÞj þHj; ð9Þ

into Eq. (6), and then linearising to find the governing equations for
Wj and Hj:

@2Wj

@x2 þ
@2Wj

@z2 ¼ Ra
@Hj

@x
;

@Hj

@t
� @Wj

@x
¼ @

2Hj

@x2 þ
@2Hj

@z2 : ð10Þ

These perturbation equations may be proved to be self-adjoint, and
therefore the onset of convection is stationary, and we may neglect
the time-derivative term in Eq. (10). We may also factor out a hor-
izontal Fourier mode with wavenumber, k, by setting,

Wj ¼ fjðzÞ cos kx; Hj ¼ gjðzÞ sin kx: ð11Þ
Eq. (10) now become,

f 00j � k2fj ¼ Rakgj; g00j � k2gj ¼ kfj; ð12Þ

and are subject to the boundary and interface conditions,

z ¼ 0 : f 1 ¼ g1 ¼ 0;
z ¼ j : f j ¼ 0; gj ¼ gjþ1; g0j ¼ g0jþ1; ðj ¼ 1; . . . ;N � 1Þ
z ¼ N : f N ¼ gN ¼ 0:

ð13Þ

Eqs. (12) and (13) now represent an eigenvalue problem for Ra in
terms of k.

The analysis for the onset of convection in a single layer is well-
known, but is repeated here in a slightly different fashion (i.e. by
determining a dispersion relation) so that the analysis might be ex-
tended easily for multiple sublayers.

3.2. Single layer analysis

Eq. (12) form a linear constant-coefficient system, and therefore
all possible complementary function solutions take the form, eaz,
for which 4 possible values of a may be found for all possible val-
ues of Ra and k. Therefore the solutions to these equations in layer
1 may be written in the form,

f1 ¼ Ra1=2½A1 sinh kzþ B1 cosh kzþ C1 sinrzþ D1 cos rz�; ð14Þ
g1 ¼ A1 sinh kzþ B1 cosh kz� C1 sinrz� D1 cos rz: ð15Þ

In these equations the constants, A1, B1, C1 and D1 are presently
arbitrary, while k and r are defined according to,

k ¼ ðkRa1=2 þ k2Þ1=2
; r ¼ ðkRa1=2 � k2Þ1=2

: ð16Þ

For a single layer, we have four boundary conditions to satisfy,
namely,

f1ð0Þ ¼ g1ð0Þ ¼ f1ð1Þ ¼ g1ð1Þ ¼ 0; ð17Þ

and substitution of all of these into Eqs. (14) and (15) yields the
following,

0 1 0 1
sinh k cosh k sin r cos r

0 1 0 �1
sinh k cosh k � sin r � cos r

0
BBB@

1
CCCA

A1

B1

C1

D1

0
BBB@

1
CCCA ¼

0
0
0
0

0
BBB@

1
CCCA: ð18Þ

The first and third of the equations given in (18) yield B1 = D1 = 0,
while the second gives A1 sinhk = 0 from which we conclude that
A1 = 0. Finally, the fourth yields the dispersion relation for the
one-layer system, namely,

sinr ¼ 0; ð19Þ

while C1 naturally remains arbitrary. Eq. (19) is equivalent to the
familiar expression for the Darcy–Bénard neutral curve, namely,

Ra ¼ ðk
2 þ n2p2Þ2

k2 : ð20Þ

Here, mode n consists of n vertically stacked contra-rotating rolls,
and n = 1 yields the mode with the lowest critical Rayleigh number,
namely Rac = 4p2 and kc = p.

3.3. Analysis for an arbitrary number of sublayers

The most convenient form for expressing the solutions in other
sublayers is the following,

fjðzÞ ¼ Ra1=2 Aj sinh kzj þ Bj cosh kzj þ Cj sinrzj þ Dj cosrzj
� �

; ð21Þ
gjðzÞ ¼ Aj sinh kzj þ Bj cosh kzj � Cj sinrzj � Dj cosrzj; ð22Þ

where zj = z � (j � 1) lies in the range, 0 6 zj 6 1, in sublayer j.
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In sublayer 1 we have the following three boundary conditions,

f1ð0Þ ¼ 0; f 1ð1Þ ¼ 0; g1ð0Þ ¼ 0; ð23Þ

which translates into the matrix/vector form,

0 1 0 1
sinh k cosh k sinr cosr

0 1 0 �1

0
B@

1
CA

A1

B1

C1

D1

0
BBB@

1
CCCA ¼

0
0
0

0
B@

1
CA: ð24Þ

It is again straightforward to show that B1 = D1 = 0, as for the single
layer. Eq. (24) also yields the relation,

A1 sinh kþ C1 sin r ¼ 0; ð25Þ

for which we adopt the solution,

A1 ¼ sin r; C1 ¼ � sinh k: ð26Þ

Therefore we may write the solution for sublayer 1 in the form,

v1 ¼

A1

B1

C1

D1

0
BBB@

1
CCCA ¼

sinr
0

� sinh k

0

0
BBB@

1
CCCA; ð27Þ

where we define vj = (Aj,Bj,Cj,Dj)T for simplicity of notation.
Now we need to consider the boundary conditions for f in sub-

layer j + 1 and the thermal interface conditions between sublayers j
and j + 1:

fjþ1ðjÞ ¼ 0; f jþ1ðjþ 1Þ ¼ 0; gjðjÞ ¼ gjþ1ðjÞ; g0jðjÞ ¼ g0jþ1ðjÞ: ð28Þ
These conditions may be translated into matrix/vector form, as
follows,

0 1 0 1
sinh k cosh k sinr cosr

0 1 0 �1
k 0 �r 0

0
BBB@

1
CCCA

Ajþ1

Bjþ1

Cjþ1

Djþ1

0
BBB@

1
CCCA

¼

0 0 0 0
0 0 0 0

sinh k cosh k � sinr � cos r
k cosh k k sinh k �r cosr r sinr

0
BBB@

1
CCCA

Aj

Bj

Cj

Dj

0
BBB@

1
CCCA;

ð29Þ

and they may, in turn, also be expressed in the more compact form,

Mv jþ1 ¼ Nv j: ð30Þ

Thus it is possible to solve for vj+1 in terms of vj, and therefore the
solution in the uppermost sublayer, sublayer N, may be written in
the form,

vN ¼ ðM�1NÞN�1v1: ð31Þ

Finally, the upper surface boundary condition for gN, which is
the final boundary condition to be applied, takes the simple form
that gN(N) = 0. This may be written in the form,

sinh k cosh k � sin r � cosrð Þ

A2

B2

C2

D2

0
BBB@

1
CCCA ¼ 0: ð32Þ

If we define the row vector, d = (sinhk, coshk,�sinr,�cosr), then the
application of this last boundary condition yields an expression for
the desired dispersion relation:

d � vN ¼ d � ðM�1NÞN�1
h i

� v1 ¼ 0: ð33Þ

This is a relatively simple formula to encode, and the task is made
even simpler when one recognises that the inversion of M may
be replaced by the inversion of two 2 � 2 matrices instead.
The appropriate dispersion relation for two sublayers is quite
quick to determine on paper, and the above formula gives precisely
the following expression,

4 sinr sinh kðk cosh k sin rþ r cos r sinh kÞ ¼ 0: ð34Þ

Therefore neutral stability corresponds to when either

sinr ¼ 0; or k sin r cosh kþ r sinh k cosr ¼ 0 ð35Þ

the former of which is the single-layer (or standard Darcy–Bénard)
dispersion relation as given above. The latter expression cannot be
rearranged into a form whereby Ra is given explicitly in terms of k,
and therefore computational methods which are described later
have to be used. Eq. (35) shows that there are two families of curves
when there are two sublayers.

The corresponding dispersion relation for three sublayers was
also derived analytically and found to be the product of three fac-
tors. Thus neutral stability corresponds to when the following are
satisfied:

sinr ¼ 0;
or k sin rðcosh kþ 1

2Þ þ r sinh kðcos rþ 1
2Þ ¼ 0;

or k sin rðcosh k� 1
2Þ þ r sinh kðcos r� 1

2Þ ¼ 0:
ð36Þ

For three sublayers we see that there are three families of curves.
Details of these families will be discussed in the next section.

It may be noted that the dispersion relations for both two and
three sublayers given above may be written in a general form. Thus
either sinr = 0, or else

k sinr½cosh k� cosðjp=NÞ� þ r sinh k½cosr� cosðjp=NÞ� ¼ 0;

ð37Þ

for j = 1, . . .,N � 1, for a system of N sublayers. Indeed, this formula
also applies for N > 3, a fact which we were able to confirm numer-
ically for all N 6 10 and for N = 20 by comparison with the matrix-
based procedure described above.

4. Numerical method

Two numerical procedures were followed to obtain the neutral
curves and their respective minima. First, the curves themselves
were obtained by means of finding the zero contour of the disper-
sion relation (be it an explicit definition, as given above, or the
matrix-based computational method) on a very fine grid of values
of Ra and k; such a procedure was used by Rees and Bassom [16]
for convection in inclined layers. In all cases we found that the
neutral curves have a single well-defined minimum. Then, second,
those minima were obtained by adapting a Newton–Raphson
scheme, as follows.

A straightforward Newton–Raphson scheme may be created to
evaluate values of Ra for chosen values of k – in such cases the dis-
persion relation may be written in the form, FðRa;kÞ ¼ 0, and the
iteration scheme is, simply,

Ramþ1 ¼ Ram �
F

@F=@Ra

����
Ram ;k

; ð38Þ

where the subscript, m, denotes the iteration number. At a mini-
mum in the neutral curve both F ¼ 0 and @F=@k ¼ 0 are satisfied,
and this extra condition enables us to find the value of k. The new
iteration scheme is,

Ramþ1

kmþ1

� �
¼

Ram

km

� �
�

@F
@ Ra

@2F
@ Ra @k

@F
@k

@2F
@k2

0
@

1
A
�1
F
@F
@k

 !
: ð39Þ

This method was implemented using a simple numerical differenti-
ation procedure to evaluate the derivatives in the iteration matrix,
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which, given the complexity of the definition of F , is substantially
quicker than by attempting to find the derivatives analytically.

5. Results and asymptotic analyses

5.1. Neutral curves and profiles

Fig. 2 shows a selection of neutral curves for 2, 3, 5, and 10 sub-
layers. These curves show a number of distinctive features which
will be discussed in turn. Clearly they all have the classical shape
of having only one minimum and they satisfy Ra ?1 as k ? 0
and as k ?1.

The principal and most striking observation gained from Fig. 2 is
that, when there are N sublayers, the neutral curves tend to collect
together into groups of N curves; this is seen most effectively when
N = 10 in Fig. 2. In each group the uppermost curve corresponds to
a single-layer Darcy–Bénard mode. More specifically, mode nN for
Fig. 2. The neutral curves corresponding to the first 3N mode
the present multilayer system corresponds to mode n of the single-
layer Darcy–Bénard system, and these curves are given by Eq. (20).
Below each of these Darcy–Bénard curves lie N � 1 other curves,
and they correspond to the dispersion relation given by Eq. (37)
where j = 1 corresponds to the lowest curve in each group.

Fig. 3 displays the first 10 neutral mode profiles for the case of 5
sublayers where the wavenumbers for each correspond to the min-
imum in the respective neutral curve. Concentrating first on the
first 5 modes, the temperature profile for mode 1 looks very much
like a slightly wavy version of a half sine wave, while mode 2 is a
similar version of a full sine wave, and so on. The corresponding
streamfunction profiles, on the other hand, are constrained greatly
by the presence of the interfaces as they have to take a zero value
at those places. Mode 1 consists of five curves, each of which is
close to being half sine waves, but where the amplitudes increase
towards the middle sublayer and then decrease once more. In prac-
tice, this pattern corresponds to a vertically stacked system of
s of instability for N sublayers, where N = 2, 3, 5 and 10.



Fig. 3. Profiles of the reduced streamfunction, f(z) (dashed lines), and the reduced temperature, g(z) (continuous lines), for modes 1–10 for N = 5 sublayers.

Fig. 4. Reduced temperature profiles for N = 2, 3, 4, 5, 10 and 20 as a function of z/N.
The curves correspond to where Ra = Rac and k = kc.
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co-rotating cells and arises irrespective of the number of sublayers.
This system bears some similarity to a counter-flow heat exchan-
ger because the flow either side of each interface is in the opposite
direction, and the temperature gradient at the interface is small
relative to that within the bulk of the sublayer. Mode 2 has the
property that sublayers 1 and 2 contain corotating cells, that sub-
layers 4 and 5 also have corotating cells but whose direction of cir-
culation is opposite to that in sublayers 1 and 2, while sublayer 3,
the central sublayer, contains a stacked pair of weakly contrarotat-
ing cells. Mode 5, which is a Darcy–Bénard mode, consists of iden-
tical vertically stacked contrarotating cells.

The chief difference between modes 1–5 and modes 6–10 lies in
the fact that each sublayer generally contains a single cell for the
first set of five and a pair of contrarotating cells for the second
set. This, perhaps, is a reason why the modes split into natural
groups of five, or, more generally, into groups of N modes when
there are N sublayers.

When N is odd, we may make very similar observations to those
in the last-but-one paragraph. The comment on mode 1 remains
the same, while mode 2 consists of two sets of corotating cells in
the upper and lower halves of the layer, while the central sublayer,
namely sublayer 1

2 ðN þ 1Þ still has the pair of counter-rotating cells.
The Darcy–Bénard layer with its identical counter-rotating cells is
now mode N. When N is even similar observations also apply, ex-
cept that mode 2 now consists of one set of corotating cells in sub-
layers 1 to N/2 and a second set of corotating cells in the remaining
sublayers, albeit with the opposite circulation to the first set.

Fig. 4 shows the variation in the temperature profiles for mode
1 for different values of N. Once more we see the fact that the over-
all shape is that of a half sine wave. The corresponding streamfunc-
tion profiles are omitted for the sake of brevity, but they may be
caricatured well by the function, jsinpzjsin(pz/N).



Fig. 5. Values of Racj as a function of 1/N. For each value of N we show Racj for j = 1
(lowest) to j = N (highest).

Fig. 6. Values of kcj as a function of 1/N. For each value of N we show kcj for j = 1
(lowest) to j = N (highest).

Table 1
Values of Rac and kc for various numbers of sublayers, together with data from which
asymptotic expansions for N� 1 will be derived.

N Rac N(Rac � 12) kc/p N1/2kc/p

5 17.236333 26.1817 0.457578 1.02318
10 14.471082 24.7108 0.322080 1.01851
20 13.199202 23.9840 0.227374 1.01685
40 12.590616 23.6246 0.160671 1.01617
80 12.293076 23.4461 0.113578 1.01587
160 12.145982 23.3571 0.080301 1.01574
320 12.072852 23.3126 0.056777 1.01566
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5.2. Analysis for large values of k

Fig. 2 also shows that each group of N curves tends towards a
common curve as the wavenumber, k, increases. This is most obvi-
ous for the lowest group of curves in each case, but our computa-
tions (not shown) for larger values of k show this very clearly. This
behaviour may be confirmed by performing an asymptotic analysis
of the dispersion relation given in Eq. (37).

Beginning with Eq. (37), we set both Ra� 1 when k� 1. In turn
this means that k� 1 and hence that sinhk � coshk with an expo-
nentially small error. Therefore we may replace Eq. (37) by,

k sin rþ r½cos r� cosðjp=NÞ� ¼ 0: ð40Þ

We already know that Ra = k2 + 2p2 + k�2 for the Darcy–Bénard
mode, which is exactly equivalent to r = p. Therefore the second
term in Eq. (40) is of O(1) magnitude. Given that k = O(k), we need
sinr = O(k�1) to render the first term in Eq. (40) to be of O(1) mag-
nitude too. This may be achieved by setting,

Ra ¼ k2 þ 2p2 þ ck�1 þ Oðk�2Þ; ð41Þ

because it yields r = p + O(k�1), as required. Substitution of the
above expression for Ra into the definitions of k and r and their sub-
sequent substitution into Eq. (40) give the following expression at
leading order,

�
ffiffiffi
2
p

c
4p
þ p½�1� cosðjp=NÞ� ¼ 0: ð42Þ

Therefore we have

c ¼ �2
ffiffiffi
2
p

p2½1þ cosðjp=NÞ�; ð43Þ

and hence,

Ra � k2 þ 2p2 � 2
ffiffiffi
2
p

p2½1þ cosðjp=NÞ�
h i

k�1
; ð44Þ

for j = 1, . . .,N � 1. This latest expression is valid only for the first
group of N curves for a general N-sublayer configuration. Therefore
the individual curves comprising the first group lie at an O(k�1) dis-
tance from one another when k is large. A similar analysis may be
undertaken to show that such a conclusion is also true for other
groups, although each group lies at an O(1) distance from any other
group.

5.3. Critical values of Ra and k

Physically, the most important value of Ra is the one which cor-
responds to the minimum point of the neutral curve for the first
mode. This value will be denoted by Rac and linear theory predicts
that all disturbances decay when Ra < Rac. The value of k at which
Ra = Rac is denoted by kc and it is called the critical wavenumber. In
addition we define Racj to correspond to the minimum value of Ra
for mode j, and therefore Rac = Rac1.

A good idea of how the values of Racj and kcj vary with N and j
may be gleaned from Fig. 2, but a much clearer view is given in
Figs. 5 and 6 where we show the dependence of these values on
1/N for the first N modes. In both figures the values for mode N
are the largest values displayed and they take the classical
Darcy–Bénard values of 4p2 and p, respectively. Of more interest
are the lowest values which correspond to mode 1. Fig. 5 appears
to suggest that Rac is approaching a value close to 12 as N in-
creases. On the other hand, it is a little more difficult to discern
what is happening in Fig. 6, but it looks as though kc might be
approaching 0 as a function of N�1/2.

In Table 1 we display the values of Rac and kc for different values
of N, where the data is correct to the given number of significant
figures. Further columns in that table show the results of process-
ing that raw data.
Table 1 demonstrates clearly that Rac ? 12 and kc ? 0 as
N ?1. This suggests that the present multilayered problem in
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the large-N limit might display some relationship to the single-
layer constant-heat-flux form of the Darcy–Bénard problem (which
we shall abbreviate to CHFDB1) which has exactly the same critical
values. As a first step in investigating such a possibility, neutral
curves for mode 1 for various values of N have been plotted in
Fig. 7 together with that for mode 1 for the CHFDB1 problem.

Fig. 7 indicates firstly that, for a chosen value of k, the multi-
layer neutral curves clearly approach that for the CHFDB1 problem
as N increases. However, that convergence is not uniform because
the neutral curve for any chosen value of N, however large, rises to
infinity when k is sufficiently small, whereas the curve for the
CHFDB1 problem tends toward 12 as k ? 0. These two aspects will
be dealt with in turn in the next two subsections.

Given that the asymptotic limit of N ?1 reproduces the criti-
cal parameters which are usually associated with the application
of constant heat flux boundary conditions on a single porous layer,
it is natural to ask if there are any physical reasons why there is a
connection between the two problems. For a large number of sub-
layers, particularly if one views the overall layer as a system with
narrow sublayers, the porous medium becomes strongly aniso-
tropic and fluid is able to flow more easily in the horizontal direc-
tion but there remains a relatively weak vertical velocity in order
to maintain an overall circulation within each sublayer. Given
the presence of this almost parallel flow one ought to have had
an a priori expectation that the critical mode has a wavelength
which is much larger than the height of a sublayer. An examination
of the N = 20 case shown in Fig. 4 also reveals the fact that the tem-
perature gradient at the interfaces is substantially smaller than
that found within the interior of a sublayer, particularly when that
sublayer is near the middle of the layer. Therefore interior sublay-
ers are approximate versions of the CHFDB1 problem, with the
approximation becoming less valid as the upper and lower bound-
aries of the layer are approached.
5.4. Asymptotic analysis for N� 1 for fixed values of k

In this subsection we focus on the limiting case of a large num-
ber of sublayers for fixed values of k. This task is made relatively
Fig. 7. Neutral curves displaying values of Ra as functions of k for mode 1, for N = 1
(the Darcy–Bénard layer), 2, 3, 5, 10, 20 and 100. Also shown is the neutral curve for
mode 1 of the CHFDB1 problem, which is exact equivalent to the limit, N ?1; this
curve takes the value, 12, when k = 0.
straightforward by the existence of the dispersion relation given
in Eq. (37). We already know that the first mode is given by j = 1
in Eq. (37), and therefore, as N ?1, the multilayer dispersion rela-
tion for mode 1 becomes

k sinr½cosh k� 1� þ r sinh k½cosr� 1� ¼ 0: ð45Þ

On the other hand, the dispersion relation for the CHFDB1 problem
may be shown easily to take the form,

k2 sinh k sinrþ krðcos r cosh k� 1Þ ¼ 0: ð46Þ

These two expressions look very different, and therefore we plotted
the neutral curves corresponding to each, and found that the
respective odd-numbered modes (1st, 3rd and so on) were identical
to within round-off accuracy, but the even-numbered modes were
quite different from one another. This unusual behaviour may be
explained by the fact that Eqs. (45) and (46) may both be factorised.
Thus Eq. (45) may be written in the form,

sinr=2 sinh k=2½k cos r=2 sinh k=2� r sin r=2 cosh k=2� ¼ 0;

ð47Þ

while Eq. (46) may be written in the form,

½r cosr=2 sinh k=2� r sin r=2 cosh k=2�½k cosr=2 sinh k=2
� r sinr=2 cosh k=2� ¼ 0: ð48Þ

These expressions have a common factor, and it is this factor which
corresponds to the odd-numbered modes for each of the separate
problems and, in particular, for the first mode. Therefore we may
conclude that, for fixed values of k, we recover the neutral curve
for the single-layer constant heat flux Darcy–Bénard problem when
we have an asymptotically large number of sublayers.

5.5. Asymptotic analysis of Rac and kc when N� 1

We now address the detailed behaviour of Rac and kc as N ?1.
The analysis is assisted greatly by the behaviour of some of the
data shown in Table 1, which suggests that Rac ’ 12 + 12.3N�1

and kc ’ 1.106pN�1/2. The quantity, cos(jp/N), which occurs in
the dispersion relation, (37), is approximated by 1 � p2/2N2 when
j = 1 and N� 1. Therefore, we shall define the small quantity, d,
according to,

d ¼ N�1=2: ð49Þ

Given that both k and r are now small quantities, the expansion of
the dispersion relation, Eq. (37), is facilitated by first expanding in
terms of k and r. Therefore we may approximate,

k sinr cosh k� 1þ 1
2
p2d4

� 	
þ r sinh k cos r� 1þ 1

2
p2d4

� 	
¼ 0; ð50Þ

by the following,

kr 1�r2

6
þ r4

120
� r6

5040
þ�� �

� �
k2

2
þ k4

24
þ k6

720
þ k8

40320
þ�� �þp2d4

2

 !"

þ 1þk2

6
þ k4
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þ k6

5040
þ�� �

 !
�r2

2
þr4

24
� r6

720
þ r8

40320
þ�� �þp2d4

2

 !#
¼0: ð51Þ

The terms in the square brackets may eventually be simplified to
the form,

k2 � k2Ra
2
þ k4 1

4
� Ra

72
þ Ra2

12096

 !
þ p2d4 þ Oðk6Þ ¼ 0: ð52Þ

If we now substitute the quantities,

Ra ¼ 12þ Sd2; k ¼ k̂d; ð53Þ
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then the O(d2) terms cancel, and the coefficients of d4 yield

S ¼ 12p2

k̂2
þ 8k̂2

7
: ð54Þ

The second term in Eq. (54) corresponds to the second term in the
small-k expansion of the neutral curve for the CHFDB1 problem,
namely that Rac � 12þ 8

7 k2. The first term, however, is the one that
is responsible for the present N� 1 neutral curves ascending to
infinity as k ? 0.

We may now use Eq. (54) to determine the behaviour of Rac and
kc as N ?1. Setting to zero the derivative of S with respect to k̂
yields,

k̂ ¼ 21
2

� �1=4

p1=2 ¼ 1:0155993p; ð55Þ

and the corresponding value of S is

S ¼ 24
2

21

� �1=2

p2 ¼ 23:268397: ð56Þ

Therefore we conclude that the critical values of Ra and k have the
following leading order form,

Rac � 12þ 23:268397N�2; kc � 1:1055993pN�1=2; ð57Þ

as N ?1, both of which compare very well indeed with the
data presented in Table 1. Therefore, when N� 1, there are three
disparate length scales which apply to the layer: the layer has thick-
ness N, the sublayer has height 1, and the horizontal extent of
one convection cell corresponding to the most unstable mode has
length N1/2/1.0155993.

6. Conclusion

In this paper we have given a comprehensive analysis of the on-
set of convection in a multiply-layered systems where each sublay-
er is (i) identical in all respects and (ii) separated by a
infinitesimally thin impermeable interface. Dispersion relations
for two and three sublayers have been obtained, and simple
numerical procedure described for an arbitrary number of sublay-
ers. By examining the form of the dispersion relations for two and
three sublayers, a simple analytical expression for general values of
N has been obtained; see Eq. (37). Some typical onset profiles have
been presented and described. Detailed numerical and asymptotic
analyses have been presented which (i) explains the bunching
characteristic of the neutral curves when k is large, (ii) explains
the approach to the single-layer constant-heat-flux neutral
curve as N ?1, and (iii) determines the values of Rac and kc as
N ?1.
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