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In this paper we study the instability of the developing thermal boundary layer that is induced by suddenly raising the
temperature of the lower horizontal boundary of a uniformly cold semi-infinite region of saturated porous medium. The
basic state consists of no flow, but the evolving temperature field may be described by a similarity solution involving
the complementary error function. In very recent papers, Selim and Rees (2007a) (Part I) have sought to determine
when this evolving thermal boundary layer becomes unstable and then Selim and Rees (2007b) (Part II) followed the
subsequent evolution of horizontally periodic disturbances well into the nonlinear regime. In this paper we investigate
the secondary instability of the nonlinear cells by introducing subharmonic disturbances into the evolving flow. We
consider three different types of subharmonic disturbance, namely, the 2:1, 3:2, and 4:3 types. Cellular disturbances are
seeded into the evolving basic state, the primary mode having an amplitude that is greater than that of the subharmonic.
In general, we find that the subharmonic decays at first, while the primary mode grows, but at a time that is dependent
on the relative initial amplitudes, the subharmonic experiences an extremely rapid growth and quickly establishes itself
as the dominant flow pattern. A fairly detailed account of the 2:1 case is given, including an indication of how the time
of transition between the primary and the subharmonic varies with wave number and initial amplitudes. The other two
types of subharmonic disturbance yield a richer variety of behaviors; therefore, we present some typical cases to indicate
some of the ways in which the primary mode may be destabilized.

KEY WORDS: boundary layer, secondary instability, sub-harmonic disturbances

1. INTRODUCTION

The study of convection generated by a heated horizontal
surface underlying a fluid-saturated porous medium has
attracted much interest in recent years due to its appli-
cation to the sudden heating of porous rocks from below
such as might occur in volcanically active regions. Re-
cently, convection induced by the sequestration of CO2 in
saturated porous rocks during oil recovery has received at-
tention (Riaz et al., 2006). Indeed, such convection could
easily occur during the long-term underground storage
of CO2 gas, as described by Xu et al. (2004), Socolow
(2005), and Ennis-King and Paterson (2005), when sur-

face pollutants are present, or indeed when surface evap-
oration increases the brine density near the surface of a
saline lake (Wooding et al. 1997). In all of these cases the
presence of thermal or solutal instability will cause an in-
creased mixing, which is generally undesirable. In this pa-
per we shall analyze situations caused by sudden heating
as the exemplar of the two different cases, although they
are essentially identical when the Boussinesq approxima-
tion applies.

When a semi-infinite cold domain has the temperature
of its lower impermeable surface raised suddenly, the tem-
perature field evolves according to the standard comple-
mentary error function conduction solution, as given by
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1040 Selim & Rees

NOMENCLATURE

a related to disturbance amplitude Greek characters
A amplitude of disturbance α thermal diffusivity
g gravity β expansion coefficient
k wavenumber of disturbance η similarity variable
K permeability θ nondimensional temperature
L natural length scale µ dynamic viscosity
N number of modes used ρ density
p pressure τ scaled time
q heat transfer ψ streamfunction
qn heat transfer for moden
Ra Darcy–Rayleigh number Superscripts and subscripts
t time c neutral/critical
T dimensional temperature conditions
u horizontal velocity i initiation time
v vertical velocity s subharmonic transition
x horizontal coordinate w wall
y vertical coordinate ∞ ambient

Carslaw and Jaeger (1986). This situation is potentially
unstable since relatively heavy fluid lies over relatively
light fluid. A Rayleigh number may be defined using a
length scale that is based upon the thickness of the evolv-
ing hot region. This value increases as time progresses,
and therefore a critical time for the onset of convection
should be expected. Rees et al. (2008) discuss the many
ways in which this criterion for the onset of convection
may be obtained. Various methods have been proposed
such as quasistatic theory (i.e., a frozen-time theory) and
a local Rayleigh number analysis, which are approxi-
mate, but which give a rough idea of the time of onset
and the expected critical wave number. Energy analyses
and amplitude theory (in the sense of solving the time-
dependent disturbance equations) yield results that should
be expected to tally with experimental results. However,
these comparisons and the discussions surrounding them
are lengthy; therefore, the reader is referred to Rees et al.
(2008), and the references cited therein for further infor-
mation.

The present paper is an extension of work by Selim
and Rees (2007a, 2007b), hereafter referred to as Parts I
and II. The former of these papers did not rely upon an
approximate theory to give a critical time for the onset of

convection. Instead, the full linearized disturbance equa-
tions, which are parabolic in time, were solved numeri-
cally in order to assess when disturbance ceases to decay
and begins to grow, thereby determining a critical time.
After a large number of different disturbance wavelengths
was considered, a neutral curve was constructed that re-
lates the critical time and the disturbance wave number. It
was found that the critical time also depends on the time
at which the disturbance is introduced (unless this time
is well before the smallest achievable onset time). More
surprisingly, it also depends on the manner in which one
attempts to define instability (i.e., on how one defines the
strength of the evolving disturbance). The resulting neu-
tral curves were compared with the results of a quasistatic
or frozen-time approximate theory. The earliest onset time
was the one that employed a thermal energy functional
as the measure of the disturbance amplitude. In general,
it was found that convection occurs much earlier than is
predicted by the approximate theories. Moreover, and to
one’s initial surprise, it was found that growing cells al-
ways eventually restabilize and decay.

The linear theory was extended into the nonlinear re-
gime in Part II in order to determine how finite-amplitude
disturbances evolve. A mixed finite-difference and Fou-
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rier series method was used to follow the evolution of
nonlinear cells. Although detailed results were given on
the effects of varying the initiation time and amplitude of
the disturbance, the most important feature that was found
is that even nonlinear cells eventually restabilize and de-
cay. Indeed, nonlinear cells were found to restabilize ear-
lier than their small-amplitude counterparts. This property
of restabilization is seemingly at odds with the fact that
the Darcy–Rayleigh number based on the thickness of the
evolving basic state continues to grow, and therefore the
whole configuration becomes increasingly thermoconvec-
tively unstable with time. The aim of the present paper is
to begin the process of resolving this apparent conflict.

In this paper, then, we are interested in the role played
by secondary instabilities of the evolving nonlinear cells.
That secondary instabilities should form the correct mode
of disturbance may be predicted using the fact that the
basic thermal boundary layer thickness grows in time,
and larger wavelengths of cells (i.e., smaller wave num-
bers) are required to ensure that convection cells remain
with roughly anO(1) aspect ratio. The shape of the neu-
tral stability curve is also such that the time interval over
which growth can occur is much longer for smaller wave
numbers. Therefore, it is worth investigating whether sec-
ondary disturbances with relatively small wave numbers
can destabilize evolving nonlinear cells, thereby allowing
strong convection to be maintained at later times.

We concentrate on the 2:1, 3:2, and 4:3 subharmonic
cases where the respective wave numbers of the primary
and subharmonic modes are in the ratio,m:n.

2. GOVERNING EQUATIONS AND BASIC
SOLUTION

We are considering the instability of a basic state that
is composed of a quiescent semi-infinite region of satu-
rated porous medium at the uniform cold temperatureT∞,
in which the lower horizontal boundary has its tempera-
ture raised suddenly to a new uniform levelTw, where
Tw > T∞. The porous medium is considered to be ho-
mogeneous and isotropic, and the solid and fluid phases
are in local thermal equilibrium. We assume that the flow
is governed by Darcy’s law modified by the presence of
buoyancy and subject to the Boussinesq approximation.
Thus, the governing equations for the fluid motion and
temperature field for buoyancy-driven convection are ex-
pressed in the following nondimensional form:

∂u

∂x
+

∂v

∂y
= 0 (1a)

u = −∂p

∂x
(1b)

v = −∂p

∂y
+ θ (1c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

∂2θ

∂x2
+

∂2θ

∂y2
(1d)

The appropriate boundary conditions are as follows:

y=0 : v=0, θ=1 and y →∞ : v, θ → 0 (1e)

while θ = 0 everywhere within the porous medium when
t = 0. In Eqs. (1a) and (1b)x andy are the horizontal
and vertical coordinates, respectively, whileu andv are
the corresponding seepage velocities. In addition,p is the
pressure whileθ is the temperature.

It is essential to mention that there is no physical length
scale in this semi-infinite domain, but that it is possible to
define a length scale in terms of the properties of the fluid
and porous matrix:

L =
µα

ρgβK(Tw − T∞)
(2)

whereρ, g, β, K, Tw, T∞, µ and α are the reference
density, gravity, coefficient of cubical expansion, perme-
ability, wall temperature, ambient temperature, dynamic
viscosity, and effective thermal diffusivity, respectively.
This definition of the length scale means that the usual
Darcy–Rayleigh number takes a unit value

Ra= ρgβKL(Tw − T∞)/µα = 1. (3)

After eliminating pressurep between Eqs. (1b) and
(1c) and on introducing stream functionψ, which is de-
fined according to

u =
∂ψ

∂y
and v = −∂ψ

∂x
(4)

then the continuity equation is satisfied. Equations (1b)–
(1d) now reduce to the pair

∂2ψ

∂x2
+

∂2ψ

∂y2
=

∂θ

∂x
(5a)

∂θ

∂t
+

∂ψ

∂x

∂θ

∂y
− ∂ψ

∂y

∂θ

∂x
=

∂2θ

∂x2
+

∂2θ

∂y2
(5b)

which are to be solved subject to the boundary conditions

y=0 : ψ=0, θ=1 and y→∞ : ψ, θ→0 (5c)
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1042 Selim & Rees

and the initial condition that

ψ = θ = 0 at t = 0 (5d)

Therefore, att = 0, the temperature of the lower bound-
ary of the semi-infinite region of porous medium is raised
suddenly from 0 to 1 where it remains for allt > 0.

The basic conduction profile is independent ofx with
no flow, and the thermal energy equation reduces to

∂θ

∂t
=

∂2θ

∂y2
(6)

Equation (6) admits the well-known solution,

θ = erfcη =
2√
π

∫ ∞

η

e−ξ2
dξ (7)

where the similarity variable is given by

η =
y

2
√

t
(8)

In this paper we choose to consider disturbances to the
basic profile given in Eq. (7) by transforming the gov-
erning equations into the new coordinate system(η, τ),
whereη is given above andτ =

√
t; this transformation

of t to τ avoids the explicit appearance of fractional pow-
ers of t within the governing equations. Equations (5a)
and (5b) now become

4τ2 ∂2ψ

∂x2
+

∂2ψ

∂η2
= 4τ2 ∂θ

∂x
(9a)

2τ
∂θ

∂τ
+ 2τ

(
∂ψ

∂x

∂θ

∂η
− ∂ψ

∂η

∂θ

∂x

)
= 4τ2 ∂2θ

∂x2

+
∂2θ

∂η2
+ 2η

∂θ

∂η

(9b)

Given that the coefficient ofθ on the right-hand side of
Eq. (9a) increases with time, it is clear that the strength of
the buoyancy forces also increases. Physically, the thick-
ness of the region over which the temperature varies from
1 on the lower boundary to a nominal value, such as 0.01,
also increases with time, and therefore a local Rayleigh
number based on the thermal boundary layer thickness is
seen to increase.

3. NUMERICAL METHOD

In Part II, we undertook a numerical investigation of the
nonlinear evolution of spanwise periodic disturbances by
taking a truncated spanwise Fourier expansion of the form

ψ(x, η, τ) =
N∑

n=1

ψn(η, τ) sin nkx (10a)

θ(x, η, τ) = erfcη +
1
2
θ0(η, τ)

+
N∑

n=1

θn(η, τ) cos nkx
(10b)

wherek is the wave number andN is the truncation level.
In Part I we retained only theψ1 andθ1 terms since they
were assumed to be infinitesimally small in magnitude.
Therefore, nonlinearities were neglected in order to form
a linearized stability theory. In Part IIψ1 andθ1 formed
the primary mode and this mode interacted with itself to
induce components with wave numbers2k, 3k, and so on.
The term 1

2θ0 yields the mean change to the basic state
due to the presence of convective cells. In this paper we
shall refer to the pair(ψn,θn) as moden.

The substitution of the expansions (10) into Eqs. (9a)
and (9b) is very lengthy to present and has been omitted
for the sake of brevity. The resulting system is comprised
of 2N + 1 second-order partial differential equations inη

andτ. In the numerical simulations of Part II, the trunca-
tion level was chosen to beN = 5, which was sufficient
since the magnitude ofθ5 was always very small com-
pared with unity. The full system was then solved by a
standard Keller-box method using the numerical differen-
tiation methodology described by Lewis et al. (1997) to
obtain the Newton–Raphson iteration matrix.

In the present paper we are interested in how subhar-
monic disturbances destabilize the solutions obtained in
Part II. For the 2:1 subharmonic case, mode 2 (which
has wave number2k) is termed the primary mode, while
mode 1 is the potentially destabilizing subharmonic. For
the 3:2 case, mode 3 forms the primary mode while
mode 2 is the subharmonic disturbance. This naming
scheme follows in the obvious way for the 4:3 subhar-
monic case.

In general, then, thermal disturbances are introduced
at the initiation timeτ = τi for a given wave numberk
and the disturbance profiles take the form

θn = Anηe−3η (11)

whereAn is the amplitude of the moden disturbance.
Part II showed that the mode shape is largely irrelevant, as
the disturbances quickly evolve to a common shape that
is essentially independent of the initial disturbance shape
and time of introduction. For the nonlinear study of Part II
we setA1 = A andAn = 0 otherwise. Here, for the 2:1
case, bothA1 andA2 will be nonzero withA2 > A1,
since mode 2 is to be destabilised by mode 1. All other
An values will be set to zero. Likewise, for the 3:2 case
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we will haveA3 > A2 with all other values ofAn set to
zero.

Given thatN = 5 was the smallest truncation level that
yielded reliable results in Part II, we need to takeN = 10
for the 2:1 case,N = 15 for the 3:2 case, andN = 20 for
the 4:3 case.

A rectangular domain inη and τ was used whereη
ranges from 0 to 10 with the uniform step of 0.05, this
maximum value ofη being sufficient to contain the evolv-
ing disturbance, while a step length of0.1 was used in the
τ direction.

For reference, Fig. 1 depicts the neutral stability char-
acteristics obtained in Part I, and forms the context into
which to set the present computations. Two neutral curves
are shown, namely, that obtained using a quasistatic the-
ory (continuous curve) and that obtained by using an en-
ergy integral to determine the magnitude of the evolv-
ing disturbance (symbols). Disturbances decay when the
wave number and time correspond to locations below the
curve, to the right of the right-hand branch and to the
left of the left-hand branch, otherwise they grow. For
the quasistatic approximate theory disturbances for which
k > 0.101053 (see Part I) are always destined to decay,
i.e., they are stable. All other disturbances decay until
they first cross the curve vertically, after which point they
grow, but then they restabilize and decay upon crossing
the upper branch of the curve. The equivalent maximum
wave number for the exact theory isk = 0.1124.

FIG. 1: Neutral stability curve:τ againstk.

Of more importance is the earliest time after which dis-
turbances grow; for the quasistatic theory this critical time
and its associated wave number are given by

τc = 12.944356 and kc = 0.069623 (12a)

while the corresponding data for the exact theory are

τc = 8.9018 and kc = 0.07807 (12b)

Thus, disturbances always decay whenτ < 8.9018.

4. NUMERICAL RESULTS

In this section we present a detailed account of how the
presence of subharmonic disturbances affects the evolu-
tion of the primary mode. In all cases we shall takeτi = 8
as the initiation time for both the primary and the subhar-
monic. This leaves us with a choice of the wave number,
the type of subharmonic (i.e., 2:1, 3:2, or 4:3), and the
amplitudes of the initiating disturbances. The strength of
the various horizontal Fourier modes may be gauged in
terms of the surface rate of heat transfer of each:

qn(τ) =
∂θn

∂η

∣∣∣
η=0

(13)

The overall evolution of the flow is also assisted by the
heat transfer footprint of disturbance,q(x, τ), which is
defined as follows:

q(x, τ) =
1
2
q0 +

N∑
n=1

qn(τ) cos nkx (14)

The expression forq is useful, in particular, for show-
ing how many convection cells are present at any point in
time, and for showing when the peak rates of heat transfer
occur.

4.1 The 2:1 Subharmonic Case

In this case we specify a relatively large value of am-
plitude A2 of mode 2 (the primary mode) and attempt
to destabilize it with a small disturbance in the form of
mode 1. Figure 2 represents a typical set of cases where
the wave number of the subharmonic isk = 0.035, so that
the primary mode has a wave number of0.07. We have
chosenA2 = 10−1 as the initial amplitude of the primary
mode. A selection of values ofA1 have been used to show
the influence of the amplitude of the subharmonic on how
quickly the primary mode is destabilized. Also included
is the basic case withA1 = 0 in order to show how the
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1044 Selim & Rees

FIG. 2: Variation withτ of the surface rates of heat transfer,qn, corresponding to the modes,n = 0, 1, 2 · · · . These
simulations correspond toτi = 8, k = 0.035, andA2 = 10−1 and a selection of values ofA1.

primary mode varies without subharmonic disturbances
being present. Solutions are presented in terms of the sur-
face rate of heat transfer of the different Fourier modes.

Concentrating first on the unrestricted evolution of the
primary mode, for whichA1 = 0, both Fig. 2 and the data
it represents show that the primary mode begins to grows
at a time that is roughly consistent with thek = 0.07
mode in Fig. 1. It is worthy of note that the neutral curve
shown in Fig. 1 corresponds to a thermal energy criterion
which gives an earlier onset time a curve which is based
on the surface rate of heat of heat transfer; see Part I for a
detailed discussion of this point. The primary mode then
decays atτ ≡ 45, which is well before the stabilization
time for linear theory, which is roughlyτ ≡ 75. The
strength of the nonlinear convection may be gauged by the
magnitude of12q0, which, at its peak, almost doubles the

rate of heat transfer due to the basic temperature profile.
Therefore, strongly nonlinear effects have altered thex-
independent background state from that of the solution
given in Eq. (7), and it is this that causes the premature
restabilization when compared with linearized theory.

Concentrating now on how subharmonic disturbances
alter the evolution of the primary mode, Fig. 2 also pre-
sents the effect of three different subharmonic amplitudes,
A1 = 10−6, 10−4, and10−2, while keeping all other pa-
rameters fixed. We note that the subharmonic, for which
k = 0.035, has a later onset time and a much later resta-
bilization time than the primary mode, which has a wave
number of0.070, at least for linearized theory (see Fig. 1).
In all three cases the subharmonic appears very suddenly
while the primary mode is undergoing a slow decline. In
fact, whenA1 is much smaller than10−2, the primary
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mode has already decayed substantially before the sub-
harmonic begins to grow, and the late appearance of the
subharmonic is due entirely to how small its amplitude
has become sinceτ = τi and the need to be able to grow
again to anO(1) magnitude. However, whenA1 is as
large as10−2, the subharmonic grows well before the
primary modes decay greatly. Figure 2 also shows that
destabilization of the primary mode occurs increasingly
early asA1 increases, but that the peak magnitude ofq0

decreases asA1 increases. In Figs. 1 and 2 the behav-
ior of the higher modes is most easily illustrated by not-
ing the heights of the various maxima situated atτ ' 90
in Fig. 2(b); here, the highest maximum corresponds to
mode 1, the next to mode 2, and so on.

The behavior of the mean rate of heat transferq0 also
deserves some discussion. In Part II we saw that the maxi-
mum magnitude ofq0 is attained at roughly the same time
as the maximum value of the heat transfer since the pri-
mary mode is attained. The large value ofq0 is a con-
sequence of the fact that the mean temperature field has
been altered substantially by the strongly nonlinear con-
vection pattern. Thereafter, the magnitude ofq0 decreases
rapidly, andq0 itself changes sign. This feature also oc-
curs here. However, when the primary mode is destabi-
lized, the magnitude ofq0 rises rapidly once more as the
subharmonic mode is established, and then it falls away
again as the subharmonic mode eventually begins to de-
cay.

Figure 3 shows an alternative view of the solutions
shown in Fig. 2 by depicting the isolines of the surface
rate of heat transfer of the disturbance as a function ofx
andτ; i.e., the heat transfer footprint given by Eq. (14).
In each subfigure, contours are drawn using20 equally

spaced intervals centered at zero. Therefore, the levels
vary from subfigure to subfigure. Four whole wavelengths
of the primary mode are depicted, but the subharmonic
instability reduces this to two wavelengths. The evolution
of the primary mode, for whichA1 = 0, shows a clear
period of growth followed by decay. The strength of the
nonlinearity is indicated by the lack of symmetry between
neighboring thermal cells. The four strongest cells corre-
spond to situations where the fluid is moving toward the
surface, bringing cold fluid downward and increasing the
rate of heat transfer. The weaker cells, which interleave
the stronger ones, correspond to outflow, and these rise up
from the surface (see Part II).

When subharmonic disturbances are present, the ini-
tial evolution of the primary mode is unaffected until well
after they have achieved their maximum rate of heat trans-
fer. In fact, the bottom half of each of the subfigures
with A1 6= 0 are almost identical to the subfigure with
A1 = 0. However, once the subharmonic appears, the
primary cells are destroyed rapidly, as seen by the very
close spacing of the isotherms. In fact, the subharmonic
is so strong that the alternate cells have lifted from the
surface, as will be seen in Fig. 4(a). Thus, the contours
in the very top parts of the nonzeroA1 subfigures corre-
spond to two periods. Figure 3 also shows very clearly
how different values ofA1 affect the time at which the
subharmonic appears.

Figures 4(a) and 4(b) show the detailed isotherms and
streamlines of the evolving disturbance, respectively, at
various values ofτ for theA1 = 10−2 case, which is cov-
ered in Figs. 2 and 3. In Figs. 2 and 3, two whole horizon-
tal periods of the primary mode are depicted, and this cor-
responds to one period of the subharmonic. In Fig. 4(a),

FIG. 3: Isolines of the surface rate of heat transfer,q(x, τ), for the wave number,k = 0.035, usingτi = 8, A2 =
10−1, and a selection of values ofA1. The horizontal coordinate varies betweenx = 0 andx = 8π/k; i.e., four
horizontal periods, and the vertical axis varies betweenτ = τi = 8 andτ = 100.
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1046 Selim & Rees

(a)

(b)

FIG. 4: (a) Contours of the perturbation temperature profiles and(b) streamlines of the flow at chosen times for the
evolution of the subharmonic instability given byτi = 8, k = 0.035, A1 = 10−2, andA2 = 10−1. The horizontal
coordinate varies betweenx = 0 andx = 4π/k; i.e., two horizontal periods.
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the transition from the fully developed primary mode to
the fully developed subharmonic is shown. At first, the
two thermal cells on either side of the central cell shrink
compared with the others due to inflow, and it is these
cells which are responsible for the higher rates of heat
transfer seen in Fig. 3. Whenτ = 50, the outer half-cells
have grown to such an extent that all three cells in the
middle are smaller. Although the central cell was larger
than its two nearest neighbors whenτ = 35, it shrinks
and does so to such an extent that these neighbors drive
it to extinction at the surface, whereupon they grow and
merge. Att = 70 the process is complete and the rate
of heat transfer at the heated surface is now very large in-
deed, as is seen by the closeness of the isotherms there,
and by the magnitude ofq0 in Fig. 2. Whenτ = 100 the
isotherm spacing has increased, thereby reducing the sur-
face rate of heat transfer once more.

Figure 4(b) depicts the corresponding behavior of the
streamlines and this shows an alternative view of the sub-
harmonic instability. Betweenτ = 10 andτ = 35 the
momentum boundary layer decreases in thickness. This
happens because eachψn function, as given in Eq. (9a),
satisfies an equation of the form

ψ′′n − 4n2k2τ2ψn = −4nk2τ2θn (15)

and therefore, for a givenk, the e-folding distance de-
creases asτ increases. Afterτ = 35 the inner two cells
gradually weaken forming a pair of recirculating regions
which gradually diminish in size and strength. Just after
τ = 60 they disappear, leaving a relatively thick region
where the subharmonic forms the dominant solution. The
e-folding distance of the subharmonic is double that of the
primary mode, which is why the disturbance has roughly
doubled in thickness. At later times the thickness of the
subharmonic will begin to decrease once more.

Figure 5 shows a summary of the situation depicted in
Figs. 2–4 and of a much larger set of computations. Fig-
ure 5 displays what we shall call the transition time as a
function of the initial amplitudes of the primary mode and
the subharmonic. The transition timeτs is defined as be-
ing that time at which the values ofq1 andq2 have exactly
the same magnitude. The valuea on the abscissa corre-
sponds to an initial subharmonic amplitude ofA1 = 10−a

(i.e.,a = − log10 A1), while the different symbols corre-
spond to different initial primary cell amplitudes; these
are indicated in the caption to Fig. 5.

The interpretation of Fig. 5 is as follows. Below the
horizontal line all modes of the chosen wave number de-
cay, but the primary mode begins to grow upon crossing

the line, as the line represents the onset criterion. Given
the information represented by Fig. 2, the primary mode
then reaches a maximum and subsequently decays. When
the symbol representing the chosen value ofA2 is encoun-
tered, it is at this point in time that the surface heat transfer
due to the growing subharmonicq1 is equal to that of the
decaying primary mode, as given byq2.

Focusing first on the casek = 0.04, for which the pri-
mary mode has a wave number of0.08, it is clear that for a
chosen value ofA2, the transition time increases with in-
creasing value ofa, i.e., for decreasing amplitudes of the
subharmonic disturbance. This happens because it takes a
longer time for the subharmonic to grow until it reaches
anO(1) magnitude. When we consider the variation in the
transition time as a function ofA2, it is also clear that the
transition time increases asA2 decreases. This behavior
may be understood easily, for a reduction in the strength
of the primary mode requires a less strong subharmonic
to destabilize it.

Whenk = 0.035 we obtain a similar pattern of tran-
sition times as fork = 0.04, but they occur later because
the primary mode has the wave number0.07, which is
very close to the critical wave number given in Eq. (12),
and therefore it grows more strongly than that given in
Fig. 5(a). This trend continues ask is reduced, and be-
comes more marked because the linearized onset time for
the subharmonic now begins to grow quite rapidly com-
pared with that for the primary mode. Thus, the 2:1 sub-
harmonic route to destabilization becomes less effective
for these wave numbers.

A corollary of the above conclusion is that if the pri-
mary mode is sufficiently weak, then the subharmonic
may even be too strong for the “primary” mode to become
established. In fact, the absence of data belowτ ' 32
in Fig. 5(a) is because the subharmonic grows in prefer-
ence to the primary mode and establishes itself first. This
also explains the presence of some “anomolous” transi-
tion points in Fig. 5(d) for smaller values ofa; in this
case, the data points represent a reverse transition where
the mode with the smaller wave number is destabilized by
the mode with the higher wave number.

When the wave number of the primary mode is greater
than0.08 (and the subharmonic has a wave number grea-
ter thank = 0.04), the opposite effect is true. In this case,
the transition times are earlier because the onset times for
the primary mode and its subharmonic are much closer,
as may be seen in Fig. 1, and there is now only a small
interval of time over which the primary mode can grow.
Therefore, this primary mode is easier to destabilize using
subharmonic disturbances.
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FIG. 5: Variation in the values of the transition time,τs, with a = − log10 A1 for different values ofA2 for the wave
numbers(a) 0.04, (b) 0.035, (c) 0.03, and(d) 0.02. The line near toτ = 13 corresponds the onset of instability of the
primary cell. The symbols•, ♦, ¨, and∗ refer toA2 = 10−1, 10−2, 10−3, and10−4, respectively.

4.2 The 3:2 Subharmonic Case

We now turn to the 3:2 subharmonic route to destabiliza-
tion. Here, we consider the primary mode to have wave
number3k while the disturbance has wave number2k.
We shall consider two cases in detail, namely, those for
which the primary mode has wave numbers0.07 and0.09.
These cases represent the typical behavior found during
our various simulations.

We consider first the case where3k = 0.07. We take
A3 = 0.1 as the disturbance amplitude of the primary

mode,A1 = 0, andA2 taking the values,0, 10−6, 10−4,
and10−2. Figure 6 represents the variation of the surface
rate of heat transferqn with τ.

WhenA2 = 0, bothq3, the surface rate of heat trans-
fer of the primary mode, andq0, the mean change of heat
transfer, follow precisely the same evolutionary path as
shown in Fig. 2 when neglecting the influence of the sub-
harmonic disturbance, as the wave number of the primary
mode is the same in both cases. The other three subfigures
show how the primary mode is affected by the presence
of three different subharmonic disturbances. In all three
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FIG. 6: Variation withτ of the surface rate of heat transfer,qn, corresponding to the modes,n = 0, 1, 2, and3. The
simulations correspond toτi = 8, 3k = 0.07, andA1 = 0; A3 = 10−1; and a selection of values ofA2. Short dashes:
q1; medium dashes:q3; long dashes:q4; unbroken curves:q0, q2, and all other modes—this convention also applies
to Figs. 9 and 12.

of these cases,q1 and q2 begin to grow at roughly the
same rate, although with different signs. However, mode 1
eventually grows faster, takes over as the dominant mode,
with mode 2 following the growth of mode 1 as the latter
is the first superharmonic of the former.

On comparing Fig. 6 with Fig. 2, we see that mode 1
also grows very rapidly here, although it is not the sub-
harmonic mode that was introduced. Of interest is the fact
that destabilization occurs earlier for the 3:2 case than for
the 2:1 case, and the largest absolute mean change to the
surface heat transferq0 achieves larger values. Thus, it
would appear that the 3:2 destabilization is stronger in its
effect than the 2:1 case.

Isolines of the surface rate of heat transfer of distur-
bancesq(x, τ) are shown in Fig. 7 for the cases displayed

in Fig. 6. As before, contours are drawn using 20 equally
spaced intervals in each subfigure with the middle con-
tour corresponding to a zero value ofq. The growth and
decay of the primary mode, i.e., whenA2 = 0, is shown
for reference. The chief difference between these isolines
and those in Fig. 3 is that the peak rate of heat transfer
for the present case is maintained at a roughly constant
level after mode 1 has become established, whereas, for
the 2:1 case, the heat transfer begins to decay steadily just
after the peak is reached. In fact, this feature is more ev-
ident when comparing theq1 curves in Fig. 6 with those
in Fig. 3.

Figures 8(a) and 8(b) represent the detailed isotherms
and streamlines of the evolving disturbance, respectively,
at different chosen times for theA2 = 10−2 case. Three
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FIG. 7: Isolines of the surface rate of heat transfer,q(x, τ), for 3k = 0.07, usingτi = 8, A1 = 0, A3 = 10−1, and a
selection of values ofA2. The horizontal coordinate varies betweenx = 0 andx = 12π/k; i.e., six horizontal periods,
and the vertical axis varies betweenτ = τi = 8 andτ = 100.

periods of the primary mode are shown and these reduce
to one period of mode 1. The evolution of the thermal
cells with time is fairly complex and centers around the
fact that next-but-one neighbors are not equal in strength.
Nonlinear competition then serves to inhibit some thermal
cells and to enhance others. If, in the top row of Fig. 8(a),
we were to label the cells from 0 to 6, then cells 0 and 2
combine first, thereby eliminating cell 1. The same hap-
pens between cells 4 and 6 where cell 5 is eliminated. In
the meantime, the middle cell grows and we are left with
just one period of a cellular pattern. During the transition,
then, two cells disappear while two pairs merge; there-
fore, at no time do we see a pattern which is at all like
a mode 2 pattern with two periods being evident. A simi-
lar process happens with the streamlines in Fig. 8(b). Both
sets of figures yield a rapidly expanding region of activity,
one that is much larger than is depicted in Fig. 4, and this
is because the e-folding distance according to Eq. (15) is
larger due tok being smaller here than for the cases shown
in Fig. 4.

Essentially the same figures are now reproduced in
Figs. 9–11 for the case where the primary mode has a
wave number of0.09. We show these because qualita-
tively different behavior may be found for this choice of
wave number.

Figure 1 shows that the expected interval of growth of
a mode with a wave number of0.09 is relatively short,
although significant growth can happen. TheA2 = 0 sub-
figure of Fig. 9 appears to show little activity, but this is
simply scaled in the same way as for the remaining subfig-
ures. On the other hand, theA2 = 0 subframe of Fig. 10
shows clearly the period of time over which growth oc-
curs, and the mismatch between neighboring thermal cells

shows that the mode has become nonlinear, although not
strongly so.

Figure 9(b), for whichA2 = 10−6, gives an evolution-
ary behavior that is identical qualitatively to those shown
in Fig. 6, in that while mode 2 destabilizes the primary
mode (mode 3), it is mode 1 that appears. On the other
hand, when the initial amplitude of mode 2 is increased to
A2 = 10−4, there is a clear, but short, interval in which
mode 2 is dominant before it, too, is overtaken by mode 1.
This may be seen in Fig. 10(c) at the point marked by
an asterisk where there are now four periods showing, as
compared with the original six periods. At larger values
of τ there are only two periods of the mode 1 cell.

However, whenA2 = 10−2, the successive transitions
from mode 3 to mode 2 and from mode 2 to mode 1 takes
place in a very clear way with long intervals of time dur-
ing which each mode is dominant. Interestingly, Fig. 9(d)
shows that the transition from mode 2 to mode 1 yields
a negative value ofq1, which means that this final transi-
tion, a 2:1 subharmonic in effect, yields a pattern that is
180◦ out of phase with those shown in Fig. 3. Figure 10(d)
gives an exceptionally clear representation of both transi-
tions.

Some instantaneous isotherms and streamlines of the
evolving disturbance corresponding to the previous two
figures are shown in Figs. 11(a) and 11(b) for the cases
A1 = 0, A2 = 10−2, andA3 = 10−1. In Figs. 11(a) and
11(b) we see that six cells atτ = 10 transform into four
cells atτ = 50 by cell merging and removal, and then
into two cells atτ = 100. Of particular interest is the very
rapid evolution betweenτ = 90 andτ = 100, where the
cells that are placed close to the heated surface strengthen
suddenly.
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(a)

(b)

FIG. 8: (a) Contours of the perturbation temperature profiles, and(b) streamlines of the evolving flow, at chosen times
for the evolution of the subharmonic instability given byτi = 8, 3k = 0.07, A1 = 0, A2 = 10−2, andA3 = 10−1.
The horizontal coordinate varies betweenx = 0 andx = 6π/k; i.e., three horizontal periods.
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FIG. 9: Variation withτ of the surface rate of heat transfer,qn, corresponding to the modes,n = 0, 1, 2, and3. The
simulations correspond toτi = 8, 3k = 0.09 andA1 = 0, A3 = 10−1, and a selection of values ofA2.

FIG. 10: Isolines of the surface rate of heat transfer,q(x, τ), for the wave number,3k = 0.09, usingτi = 8, A1 = 0,
A3 = 10−1, and a selection of values ofA2. The horizontal coordinate varies betweenx = 0 andx = 12π/k; i.e., six
horizontal periods, and the vertical axis varies betweenτ = τi = 8 andτ = 100.
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(a)

(b)

FIG. 11: (a) Contours of the perturbation temperature profiles, and(b) streamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability given byτi = 8, 3k = 0.09, A1 = 0, A2 = 10−2, and
A3 = 10−1. The horizontal coordinate varies betweenx = 0 andx = 6π/k; i.e., three horizontal periods.
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4.3 The 4:3 Subharmonic Case

Now we will concentrate on the 4:3 subharmonic case,
where modes 3 and 4 in the Fourier expansion represent
the subharmonic and primary modes, respectively.

Figure 12 represents the variation of the surface rate
of heat transferqn with τ. The wave number of the pri-
mary mode is given by4k = 0.07, and therefore the
subharmonic has wave number3k = 0.0525. The initial
amplitudes of modes 1 and 2 are set to zero, and for the
primary disturbance we takeA4 = 10−1. As above, we
have used the following amplitudes for subharmonic dis-
turbance:A3 = 0, 10−6, 10−4, and10−2, whereA3 = 0
is equivalent to having no subharmonic disturbance. We
note that we have again chosen the primary mode to have
wave number0.07, so that all three subharmonic cases
(namely, 2:1, 3:2, and 4:3) may be compared.

Figure 12 shows the evolution of the variousqn val-
ues withτ, and we find that the ultimate fate of flow de-
pends on the magnitude of the subharmonic disturbance.
WhenA3 = 10−6 the primary mode has decayed almost
to nothing before mode 2 makes a brief appearance prior
to the establishment of mode 1 as the dominant mode.
WhenA3 takes larger values, the modal exchanges that
take place favor mode 2 as the final convecting state, at
least forτ ≤ 200. We suspect that mode 1 will destabilize
the evolving mode 2 pattern at later times, although we
have not tested this hypothesis.

Of interest is the fact that the mean change to the sur-
face rate of heat transferq0 is substantially larger when
A3 = 10−6 than whenA3 takes the two larger values de-
picted in Fig. 12. Thus, the magnitude of the response is
not necessarily in proportion to the magnitude of the dis-
turbance, but depends on complicated modal exchanges.

FIG. 12: Variation withτ of the surface rate of heat transfer,qn, corresponding to the modes,n = 0, 1, 2, and3. The
simulations correspond toτi = 8, 4k = 0.07 andA1 = 0, A2 = 0, A4 = 10−1, and a selection of values ofA3.

Journal of Porous Media

Begell House Digital Library, http://dl.begellhouse.com Downloaded 2011-1-17 from IP 138.38.72.242 by University of Bath



Developing Thermal Front Subharmonic Instabilities 1055

The surface rates of heat transfer corresponding to the
four subfigures in Fig. 12 are depicted in Fig. 13. Here,
we see that the initial destabilization of the primary mode
is indeed later for the smaller disturbance amplitudes, as
one might expect intuitively.

Figure 14 shows instantaneous isotherms and stream-
lines for theA3 = 10−2 case, for which mode 2 emerges
as the dominant mode. We have chosen this case par-
ticularly because the surface heat transfer data shown in
Fig. 13 do not give a full picture of the complicated evolu-
tion that takes place. Concentrating first on the isotherms
shown in Fig. 14(a), by the timeτ = 45, the thermal cells
have either risen or fallen depending on whether they are
located where there is outflow or inflow. Moreover, the
amount by which the rising cells have risen varies and the
pattern is reminiscent of the Eckhaus (or sideband) insta-
bility, which is a well-known destabilization mechanism
for Bénard–like problems. Whenτ = 55, the disturbance
pattern has modified rapidly into a form that looks super-
ficially like a mode 1 pattern. However, the central cell of
this pattern has a detailed three-cell structure close to the
surface, and it is this structure that causesq2 to dominate
in Figs. 12 and 13, and that grows strongly asτ increases
further. In fact, whenτ = 100 the disturbance pattern is a
rather unusual mixture of mode 2 near the heated surface
and mode 1 further away.

Similar comments may be made about the evolution
of the streamlines in Fig. 14(b). The Eckhaus amplitude
modulation is very clear whenτ = 10, and so is the dual
modal structure whenτ = 100.

5. DISCUSSION AND CONCLUSIONS

In this paper we have investigated various types of subhar-
monic instability of an evolving cellular pattern in an un-
steady thermal boundary layer in a porous medium. This
is an extension of the nonlinear simulations presented in
Part II where it was found that, contrary to expectations,
the nonlinearly developing cells are always eventually
restabilized. In the present paper we have paid particular
attention to the 2:1, 3:2, and 4:3 subharmonic cases, and
these have all been found to destabilize the primary mode
of convection. For the 2:1 case we have provided a com-
prehensive set of information on how the transition time
between the primary and the subharmonic depends on the
initial amplitudes of each disturbance. For the 3:2 case
we have found two different routes to destabilization: one
where mode 3 evolves directly into mode 1 and the other
where there is a double transition with mode 3 giving way
to mode 2 and then to mode 1. We have also shown some
simulations for the 4:3 case, where we have obtained an
unusual pattern that consists of one mode near the heated
surface and another further away. We have also found that
the strength of the response to subharmonic disturbance
(in terms of the change in mean rate of heat transfer) is
not a smooth function of the amplitude of the disturbance
because the identity of the dominant mode also depends
on that amplitude.

Given that the passage of time may be interpreted as an
increasing Darcy–Rayleigh number, Ra, it is worth mak-
ing some comparisons with the classical Darcy–Bénard

FIG. 13: Isolines of the surface rate of heat transfer,q(x, τ), for the wave number,4k = 0.07, usingτi = 8, A1 = 0,
A2 = 0, A4 = 10−1, and a selection of values ofA3. The horizontal coordinate varies betweenx = 0 andx = 16π/k;
i.e., eight horizontal periods, and the vertical axis varies betweenτ = τi = 8 andτ = 100.
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(a)

(b)

FIG. 14: (a) Contours of the perturbation temperature profiles, and(b) streamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability given byτ = τi = 8, 4k = 0.07, A1 = A2 = 0, A3 = 10−2,
andA4 = 10−1. The horizontal coordinate varies betweenx = 0 andx = 8π/k; i.e., four horizontal periods.
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problem. The first comprehensive study of the stability
of large-amplitude convection in a uniform layer heated
from below was undertaken by Straus (1974), who de-
termined the region in wave number/Ra space in which
steady two-dimensional convection is stable. Generally,
as Ra increases, the range of wave numbers for which
convection is stable moves toward higher wave numbers.
This is consistent with the computations of Georgiadis
and Catton (1986), who found the wave number that cor-
responds to the largest rate of heat transfer at any cho-
sen value of Ra also increases as Ra increases. The im-
plication of the shape of the stability envelope of Straus
(1974) is as follows: should Ra be increased slowly or
quasistatically, then eventually convection at the chosen
(and originally stable) wave number becomes unstable,
and the primary instability mechanism is a cross-roll dis-
turbance with a larger wave number. This observation
marks a major qualitative difference between the Darcy–
Bénard problem and the present unsteady thermal bound-
ary layer where destabilization causes a reduction in the
observed wave number. Although our present calculations
are confined to two dimensions, we would expect that any
three-dimensional instability mechanism would also con-
sist of roll disturbances (within the linear regime, at least),
whose wave number is smaller than that of the evolv-
ing pattern; this is the implication of the previously men-
tioned tendency of cells to try to maintain a roughlyO(1)
aspect ratio as the boundary layer thickens in time.

Our numerical simulations have the nature of a highly
controlled experiment. The adoption of the Fourier ansatz
in Eq. (10) means that the results are not affected by noise,
taking the form of small-scale random fluctuations, such
as one would have quite naturally in a porous medium.
In addition, we have not considered the effect of iso-
lated disturbances, nor of three-dimensionality. Indeed,
the fact that most of Straus’s (1974) stability envelope cor-
responds to the cross-roll instability suggests that three-
dimensional effects may also be significant here. It is also
quite certain that the various transitions that we have ob-
served will change should the initiation time we have
adopted be changed. In addition, the cascade of instabil-
ities that our computations suggest as a possible destabi-
lization mechanism cannot continue to much later times
because the detailed numerical studies of Kimura et al.
(1986) and Riley and Winters (1991) suggest that the nar-
row thermal boundary layer which occurs in the convec-
tion cells near toη = 0 (see theτ = 100 frames in Figs. 4
and 8, for example) may itself be destabilized by travel-
ing waves, thereby leading to yet another potential desta-
bilization mechanism in the present context.

We certainly intend to investigate how isolated distur-
bances propagate, and preliminary work seems to suggest
that the convection cells that are induced tend to have a
wavelength that increases with time (Selim 2009). Riaz
et al. (2006) also provides much information on chaotic
cellular development in two dimensions, but as yet no
three-dimensional simulations have been undertaken; it
is hoped that this issue also will be addressed in the near
future.
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