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In this paper we study the instability of the developing thermal boundary layer that is induced by suddenly raising the
temperature of the lower horizontal boundary of a uniformly cold semi-infinite region of saturated porous medium. The
basic state consists of no flow, but the evolving temperature field may be described by a similarity solution involving
the complementary error function. In very recent papers, Selim and Rees (2007a) (Part 1) have sought to determine
when this evolving thermal boundary layer becomes unstable and then Selim and Rees (2007b) (Part II) followed the
subsequent evolution of horizontally periodic disturbances well into the nonlinear regime. In this paper we investigate
the secondary instability of the nonlinear cells by introducing subharmonic disturbances into the evolving flow. We
consider three different types of subharmonic disturbance, namely, the 2:1, 3:2, and 4:3 types. Cellular disturbances are
seeded into the evolving basic state, the primary mode having an amplitude that is greater than that of the subharmonic.
In general, we find that the subharmonic decays at first, while the primary mode grows, but at a time that is dependent
on the relative initial amplitudes, the subharmonic experiences an extremely rapid growth and quickly establishes itself
as the dominant flow pattern. A fairly detailed account of the 2:1 case is given, including an indication of how the time
of transition between the primary and the subharmonic varies with wave number and initial amplitudes. The other two
types of subharmonic disturbance yield a richer variety of behaviors; therefore, we present some typical cases to indicate
some of the ways in which the primary mode may be destabilized.

KEY WORDS: boundary layer, secondary instability, sub-harmonic disturbances

1. INTRODUCTION face pollutants are present, or indeed when surface evap-
oration increases the brine density near the surface of a
The study of convection generated by a heated horizorgaline lake (Wooding et al. 1997). In all of these cases the
surface underlying a fluid-saturated porous medium ha®sence of thermal or solutal instability will cause an in-
attracted much interest in recent years due to its apmlieased mixing, which is generally undesirable. In this pa-
cation to the sudden heating of porous rocks from belg@er we shall analyze situations caused by sudden heating
such as might occur in volcanically active regions. Ras the exemplar of the two different cases, although they
cently, convection induced by the sequestration o @0 are essentially identical when the Boussinesq approxima-
saturated porous rocks during oil recovery has receivedtiin applies.
tention (Riaz et al., 2006). Indeed, such convection could When a semi-infinite cold domain has the temperature
easily occur during the long-term underground storagéits lower impermeable surface raised suddenly, the tem-
of CO, gas, as described by Xu et al. (2004), Socoloperature field evolves according to the standard comple-
(2005), and Ennis-King and Paterson (2005), when sumentary error function conduction solution, as given by
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NOMENCLATURE
a  related to disturbance amplitude Greek characters
A amplitude of disturbance «  thermal diffusivity
g  gravity B  expansion coefficient
k  wavenumber of disturbance n  similarity variable
K permeability 8 nondimensional temperature
L natural length scale w  dynamic viscosity
N number of modes used p  density
p  pressure T  scaledtime
q heat transfer VP  streamfunction
qn heat transfer for mode
Ra Darcy—Rayleigh number Superscripts and subscripts
t time ¢ neutral/critical
T  dimensional temperature conditions
u horizontal velocity i initiation time
v vertical velocity s subharmonic transition
x  horizontal coordinate w  wall
y  vertical coordinate oo ambient

Carslaw and Jaeger (1986). This situation is potentiallgnvection. Instead, the full linearized disturbance equa-
unstable since relatively heavy fluid lies over relativeliyons, which are parabolic in time, were solved numeri-
light fluid. A Rayleigh number may be defined using eally in order to assess when disturbance ceases to decay
length scale that is based upon the thickness of the evand begins to grow, thereby determining a critical time.
ing hot region. This value increases as time progressagter a large number of different disturbance wavelengths
and therefore a critical time for the onset of convectiomas considered, a neutral curve was constructed that re-
should be expected. Rees et al. (2008) discuss the mkatgs the critical time and the disturbance wave number. It
ways in which this criterion for the onset of convectiomwas found that the critical time also depends on the time
may be obtained. Various methods have been proposg¢dvhich the disturbance is introduced (unless this time
such as quasistatic theory (i.e., a frozen-time theory) asdvell before the smallest achievable onset time). More
a local Rayleigh number analysis, which are approaurprisingly, it also depends on the manner in which one
mate, but which give a rough idea of the time of onsattempts to define instability (i.e., on how one defines the
and the expected critical wave number. Energy analystength of the evolving disturbance). The resulting neu-
and amplitude theory (in the sense of solving the tim&al curves were compared with the results of a quasistatic
dependent disturbance equations) yield results that shaaifrozen-time approximate theory. The earliest onset time
be expected to tally with experimental results. Howevavas the one that employed a thermal energy functional
these comparisons and the discussions surrounding thenthe measure of the disturbance amplitude. In general,
are lengthy; therefore, the reader is referred to Rees eftalvas found that convection occurs much earlier than is
(2008), and the references cited therein for further infqredicted by the approximate theories. Moreover, and to
mation. one’s initial surprise, it was found that growing cells al-
The present paper is an extension of work by Seliways eventually restabilize and decay.

and Rees (2007a, 2007b), hereafter referred to as Parts The linear theory was extended into the nonlinear re-
and Il. The former of these papers did not rely upon @me in Part Il in order to determine how finite-amplitude
approximate theory to give a critical time for the onset dfisturbances evolve. A mixed finite-difference and Fou-

Journal of Porous Media



Begell House Digital Library, http://dl.begellhouse.com Downloaded 2011-1-17 from |IP 138.38.72.242 by University of Bath

Developing Thermal Front Subharmonic Instabilities 1041
rier series method was used to follow the evolution of w= _@ (1b)
nonlinear cells. Although detailed results were given on Ox

the effects of varying the initiation time and amplitude of dp

the disturbance, the most important feature that was found v=- ay +0 (1c)
is that even nonlinear cells eventually restabilize and de-

cay. Indeed, nonlinear cells were found to restabilize ear- 09 90 00 9’0 9%

: . . . tu v = o+ (1d)
lier than their small-amplitude counterparts. This property ot Ox Oy  0x%2  Oy?

of restabilization is seemingly at odds with the fact tha,o appropriate boundary conditions are as follows:
the Darcy—Rayleigh number based on the thickness of the

evolving basic state continues to grow, and therefore the, — . =0, 6=1 and y —oco: v,06 =0 (le)
whole configuration becomes increasingly thermoconvec-
tively unstable with time. The aim of the present paperyghile 8 = 0 everywhere within the porous medium when
to begin the process of resolving this apparent conflict.t = 0. In Egs. (1a) and (1b} andy are the horizontal

In this paper, then, we are interested in the role playardd vertical coordinates, respectively, whileandv are
by secondary instabilities of the evolving nonlinear cellthe corresponding seepage velocities. In additids,the
That secondary instabilities should form the correct mogeessure whild is the temperature.
of disturbance may be predicted using the fact that theltis essential to mention that there is no physical length
basic thermal boundary layer thickness grows in timsgale in this semi-infinite domain, but that it is possible to
and larger wavelengths of cells (i.e., smaller wave numiefine a length scale in terms of the properties of the fluid
bers) are required to ensure that convection cells remaird porous matrix:
with roughly anO(1) aspect ratio. The shape of the neu-
tral stability curve is also such that the time interval over L= Ho 2)
which growth can occur is much longer for smaller wave PR K (Tw — Too)

numbers. Therefore, it is worth investigating Whetherse\ﬁherep g, B, K, Ty, Too, 1 and o are the reference
’ 1 ’ 1 w o<

e i eelniy, oavi, oefcientofcbicl expansion,perme:
strona convection to bgmaintained at Iéter timgs agoility, wall temperature, ambient temperature, dynamic
9 ' vjscosity, and effective thermal diffusivity, respectively.

We concentrate on th? 2.1, 3:2, and 4:3 SUbharmquﬁis definition of the length scale means that the usual
cases where the respective wave numbers of the p“mﬁré'rcy—Raerigh number takes a unit value

and subharmonic modes are in the ration.

Ra= pgBKL(Ty — Too)/pnx = 1. 3)

2. GOVERNING EQUATIONS AND BASIC

SOLUTION After eliminating pressure between Egs. (1b) and

(1c) and on introducing stream functian which is de-
We are considering the instability of a basic state thfined according to
is composed of a quiescent semi-infinite region of satu-
rated porous medium at the uniform cold temperaiure w = N and v = N (4)
in which the lower horizontal boundary has its tempera- dy Ox
ture raised suddenly to a new uniform lev&], where
T, > T.. The porous medium is considered to be h
mogeneous and isotropic, and the solid and fluid pha
are in local thermal equilibrium. We assume that the flow 2P 9 99
is governed by Darcy’s law modified by the presence of 222 T o2 = o (5a)
buoyancy and subject to the Boussinesq approximation.
Thus, the governing equations for the fluid motion and 90 owoe apae 920 9%0
temperature field for buoyancy-driven convection are ex- ottt oroy yor o2 + e (5b)
pressed in the following nondimensional form:

then the continuity equation is satisfied. Equations (1b)—
Eég) now reduce to the pair

which are to be solved subject to the boundary conditions
ou v

%"’aiy_o (1) y=0: V=0, =1 and y—oo: P,0—-0 (5¢C)
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and the initial condition that 0(z,n, 1) = erfcn + %eo(n,”f)

0. (n, k
Therefore, at = 0, the temperature of the lower bound- + Z (n, 7) cos nkz

=1
ary of the semi-infinite region of porous medium is raised "
suddenly from O to 1 where it remains for alt 0. wherek is the wave number an is the truncation level.
The basic conduction profile is independent:ofith  In Part | we retained only thg, and®; terms since they
no flow, and the thermal energy equation reducesto Wwere assumed to be infinitesimally small in magnitude.
Therefore, nonlinearities were neglected in order to form

@ — @ (6) a linearized stability theory. In Partip; and6, formed
ot oy? the primary mode and this mode interacted with itself to

Equation (6) admits the well-known solution, induce components with wave numbeks 3k, and so on.
o oo The term%@o yields the mean change to the basic state
0 = erfcn = —/ e % d§, (7) due to the presence of convective cells. In this paper we

VT shall refer to the paif,,, 8,,) as moden.

where the similarity variable is given by The substitution of the expansions (10) into Egs. (9a)
y and (9b) is very lengthy to present and has been omitted
n= Tﬁ (8) for the sake of brevity. The resulting system is comprised

of 2N + 1 second-order partial differential equationsjin

In this paper we choose to consider disturbances t0 §}&y |n the numerical simulations of Part I, the trunca-
basic profile given in Eq. (7) by transforming the 9oV, jevel was chosen to b = 5, which was sufficient

erning equations into the new coordinate systenm), gince the magnitude of; was always very small com-
wheren is given above and = Vi, this transformation hareq with unity. The full system was then solved by a
of ¢ to T avoids the explicit appearance of fractional pOWsandard Keller-box method using the numerical differen-
ers of within the governing equations. Equations (5tion methodology described by Lewis et al. (1997) to
and (5b) now become obtain the Newton—Raphson iteration matrix.

A 00 0% A 5,00 9 In the present paper we are interested in how subhar-

T onz + omz T o (98)  monic disturbances destabilize the solutions obtained in

20 20 990 5%0 Part 1l. For the 2:1 subharmonic case, mode 2 (which
2T 4 27 <8‘1’ _ ‘1’) 4T272 has wave numbek) is termed the primary mode, while

ot dzom  On dx Oz (9b) mode 1 is the potentially destabilizing subharmonic. For

020 5 00 the 3:2 case, mode 3 forms the primary mode while

+@ + ﬂ% mode 2 is the subharmonic disturbance. This naming

Given that the coefficient df on the right-hand side of Scheme follows in the obvious way for the 4:3 subhar-
Eqg. (9a) increases with time, it is clear that the strength'&nIC Case.
the buoyancy forces also increases. Physically, the thick-In general, then, thermal disturbances are introduced
ness of the region over which the temperature varies fréhthe initiation timet = ; for a given wave numbek
1 on the lower boundary to a nominal value, such as 0.@0d the disturbance profiles take the form
also increases with time, and therefore a local Rayleigh
number based on the thermal boundary layer thickness is 0, = Apne™" (11)

seen to increase. . ) )
where A,, is the amplitude of the mode disturbance.

Part Il showed that the mode shape is largely irrelevant, as
the disturbances quickly evolve to a common shape that
In Part I, we undertook a numerical investigation of this essentially independent of the initial disturbance shape
nonlinear evolution of spanwise periodic disturbances bpd time of introduction. For the nonlinear study of Part 11
taking a truncated spanwise Fourier expansion of the fowe set4d; = A and A4,, = 0 otherwise. Here, for the 2:1
N case, both4; and A, will be nonzero withA, > A,
W(a,m, 1) = le)n(n,”t) sin nka (10a) Since mode 2 is to be destabilised by mode 1. All other
n=1

3. NUMERICAL METHOD

A,, values will be set to zero. Likewise, for the 3:2 case
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we will have A3 > A, with all other values of4,, set to Of more importance is the earliest time after which dis-

Zero. turbances grow; for the quasistatic theory this critical time
Given thatV = 5 was the smallest truncation level tha@nd its associated wave number are given by

yielded reliable results in Part Il, we need to take= 10

for the 2:1 casel = 15 for the 3:2 case, ani¥ = 20 for T =12.944356 and k. = 0.069623 (12a)
the 4:3 case. : .

A rectangular domain im andt was used where while the corresponding data for the exact theory are
ranges from 0 to 10 with the uniform step of 0.05, this T, = 89018 and k. = 0.07807 (12b)

maximum value of} being sufficient to contain the evolv-
ing disturbance, while a step length®1 was used in the Thus, disturbances always decay whes 8.9018.
T direction.

Fo_r r_eferenc_e, Fig. 1 depicts the neutral stability chaL{'- NUMERICAL RESULTS
acteristics obtained in Part I, and forms the context into
which to set the present computations. Two neutral curvgsthis section we present a detailed account of how the
are shown, namely, that obtained using a quasistatic thgesence of subharmonic disturbances affects the evolu-
ory (continuous curve) and that obtained by using an di¢n of the primary mode. In all cases we shall take- 8
ergy integral to determine the magnitude of the evolas the initiation time for both the primary and the subhar-
ing disturbance (symbols). Disturbances decay when thenic. This leaves us with a choice of the wave number,
wave number and time correspond to locations below e type of subharmonic (i.e., 2:1, 3:2, or 4:3), and the
curve, to the right of the right-hand branch and to tramplitudes of the initiating disturbances. The strength of
left of the left-hand branch, otherwise they grow. Fdhe various horizontal Fourier modes may be gauged in
the quasistatic approximate theory disturbances for whigtims of the surface rate of heat transfer of each:
k > 0.101053 (see Part I) are always destined to decay, 90
i.e., they are stable. All other disturbances decay until qn(T) = —
they first cross the curve vertically, after which point they o In=0
grow, but then they restabilize and decay upon crossifige overall evolution of the flow is also assisted by the

the upper branch of the curve. The equivalent maximufeat transfer footprint of disturbance(z, t), which is
wave number for the exact theorykis= 0.1124. defined as follows:

(13)

50

N
1
q(z,T) = 5 + E qn (T) cos nkx (14)
n=1

The expression foy is useful, in particular, for show-
ing how many convection cells are present at any point in
time, and for showing when the peak rates of heat transfer
occur.

30t
4.1 The 2:1 Subharmonic Case

In this case we specify a relatively large value of am-
plitude A, of mode 2 (the primary mode) and attempt
to destabilize it with a small disturbance in the form of
mode 1. Figure 2 represents a typical set of cases where
the wave number of the subharmoniéis- 0.035, so that
the primary mode has a wave number0di7. We have
chosend, = 107! as the initial amplitude of the primary
000 0.02 0.0¢ 0.06 0.08 0.10 0.1z  mode.Aselection of values of; have been used to show
k the influence of the amplitude of the subharmonic on how
quickly the primary mode is destabilized. Also included
FIG. 1: Neutral stability curver againstk. is the basic case witll; = 0 in order to show how the

201

10r
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FIG. 2: Variation witht of the surface rates of heat transfgy, corresponding to the modes= 0,1, 2---. These
simulations correspond tg = 8, £ = 0.035, andA4, = 10! and a selection of values df; .

primary mode varies without subharmonic disturbanceste of heat transfer due to the basic temperature profile.
being present. Solutions are presented in terms of the Sthierefore, strongly nonlinear effects have alteredathe
face rate of heat transfer of the different Fourier modesindependent background state from that of the solution
Concentrating first on the unrestricted evolution of tiggven in Eq. (7), and it is this that causes the premature
primary mode, for whictd; = 0, both Fig. 2 and the datarestabilization when compared with linearized theory.
it represents show that the primary mode begins to growsConcentrating now on how subharmonic disturbances
at a time that is roughly consistent with the= 0.07 alter the evolution of the primary mode, Fig. 2 also pre-
mode in Fig. 1. It is worthy of note that the neutral curveents the effect of three different subharmonic amplitudes,
shown in Fig. 1 corresponds to a thermal energy criterieh = 10~°, 10~4, and10~2, while keeping all other pa-
which gives an earlier onset time a curve which is basetineters fixed. We note that the subharmonic, for which
on the surface rate of heat of heat transfer; see Part | fdr & 0.035, has a later onset time and a much later resta-
detailed discussion of this point. The primary mode thduilization time than the primary mode, which has a wave
decays atr = 45, which is well before the stabilizationnumber 0f0.070, at least for linearized theory (see Fig. 1).
time for linear theory, which is roughly = 75. The |In all three cases the subharmonic appears very suddenly
strength of the nonlinear convection may be gauged by tlkile the primary mode is undergoing a slow decline. In
magnitude of%qo, which, at its peak, almost doubles théact, whenA; is much smaller than0—2, the primary
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mode has already decayed substantially before the ssiaced intervals centered at zero. Therefore, the levels
harmonic begins to grow, and the late appearance of tlay from subfigure to subfigure. Four whole wavelengths
subharmonic is due entirely to how small its amplitudef the primary mode are depicted, but the subharmonic
has become since= t; and the need to be able to grovinstability reduces this to two wavelengths. The evolution
again to anO(1) magnitude. However, whed, is as of the primary mode, for whicd; = 0, shows a clear
large as10~2, the subharmonic grows well before th@eriod of growth followed by decay. The strength of the
primary modes decay greatly. Figure 2 also shows thainlinearity is indicated by the lack of symmetry between
destabilization of the primary mode occurs increasingheighboring thermal cells. The four strongest cells corre-
early asA; increases, but that the peak magnitudepf spond to situations where the fluid is moving toward the
decreases ad; increases. In Figs. 1 and 2 the behawsurface, bringing cold fluid downward and increasing the
ior of the higher modes is most easily illustrated by notate of heat transfer. The weaker cells, which interleave
ing the heights of the various maxima situated at 90 the stronger ones, correspond to outflow, and these rise up
in Fig. 2(b); here, the highest maximum corresponds ft@m the surface (see Part I1).
mode 1, the next to mode 2, and so on. When subharmonic disturbances are present, the ini-
The behavior of the mean rate of heat trangfealso tial evolution of the primary mode is unaffected until well
deserves some discussion. In Part Il we saw that the maafter they have achieved their maximum rate of heat trans-
mum magnitude of is attained at roughly the same timéer. In fact, the bottom half of each of the subfigures
as the maximum value of the heat transfer since the paith A; # 0 are almost identical to the subfigure with
mary mode is attained. The large valueggfis a con- A; = 0. However, once the subharmonic appears, the
sequence of the fact that the mean temperature field pamary cells are destroyed rapidly, as seen by the very
been altered substantially by the strongly nonlinear carlese spacing of the isotherms. In fact, the subharmonic
vection pattern. Thereafter, the magnitudegpélecreases is so strong that the alternate cells have lifted from the
rapidly, andg itself changes sign. This feature also osurface, as will be seen in Fig. 4(a). Thus, the contours
curs here. However, when the primary mode is destalni-the very top parts of the nonzerb, subfigures corre-
lized, the magnitude af, rises rapidly once more as thespond to two periods. Figure 3 also shows very clearly
subharmonic mode is established, and then it falls awlagw different values ofd; affect the time at which the
again as the subharmonic mode eventually begins to debharmonic appears.
cay. Figures 4(a) and 4(b) show the detailed isotherms and
Figure 3 shows an alternative view of the solutiorstreamlines of the evolving disturbance, respectively, at
shown in Fig. 2 by depicting the isolines of the surfacarious values of for the A; = 102 case, which is cov-
rate of heat transfer of the disturbance as a function okred in Figs. 2 and 3. In Figs. 2 and 3, two whole horizon-
andr; i.e., the heat transfer footprint given by Eq. (14}al periods of the primary mode are depicted, and this cor-
In each subfigure, contours are drawn ustigequally responds to one period of the subharmonic. In Fig. 4(a),

7 =100

HiL

A =106

FIG. 3: Isolines of the surface rate of heat transtgr;, t), for the wave numbelk = 0.035, usingt; = 8, Ay =
10—, and a selection of values of;. The horizontal coordinate varies between= 0 andx = 87t/k; i.e., four
horizontal periods, and the vertical axis varies betweent, = 8 andt = 100.
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7 =100

(b)

FIG. 4: (a) Contours of the perturbation temperature profiles @mdtreamlines of the flow at chosen times for the
evolution of the subharmonic instability given iy = 8, k = 0.035, A; = 1072, andA; = 10~!. The horizontal
coordinate varies betwean= 0 andx = 47t/k; i.e., two horizontal periods.
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the transition from the fully developed primary mode tthe line, as the line represents the onset criterion. Given
the fully developed subharmonic is shown. At first, thiée information represented by Fig. 2, the primary mode
two thermal cells on either side of the central cell shrirtken reaches a maximum and subsequently decays. When
compared with the others due to inflow, and it is thesee symbol representing the chosen valud ofs encoun-
cells which are responsible for the higher rates of hdated, itis at this pointin time that the surface heat transfer
transfer seen in Fig. 3. When= 50, the outer half-cells due to the growing subharmonijg is equal to that of the
have grown to such an extent that all three cells in tdecaying primary mode, as given by.
middle are smaller. Although the central cell was larger Focusing first on the cage= 0.04, for which the pri-
than its two nearest neighbors when= 35, it shrinks mary mode has a wave numbei0o§8, it is clear that for a
and does so to such an extent that these neighbors ddliesen value ofl,, the transition time increases with in-
it to extinction at the surface, whereupon they grow amdeasing value od, i.e., for decreasing amplitudes of the
merge. Att = 70 the process is complete and the rabharmonic disturbance. This happens because it takes a
of heat transfer at the heated surface is now very large lorger time for the subharmonic to grow until it reaches
deed, as is seen by the closeness of the isotherms than€}(1) magnitude. When we consider the variation in the
and by the magnitude af, in Fig. 2. Whent = 100 the transition time as a function of,, it is also clear that the
isotherm spacing has increased, thereby reducing the sw@mrsition time increases ak, decreases. This behavior
face rate of heat transfer once more. may be understood easily, for a reduction in the strength
Figure 4(b) depicts the corresponding behavior of tloé the primary mode requires a less strong subharmonic
streamlines and this shows an alternative view of the stib-destabilize it.
harmonic instability. Between = 10 andt = 35 the Whenk = 0.035 we obtain a similar pattern of tran-
momentum boundary layer decreases in thickness. T$iigon times as fok = 0.04, but they occur later because
happens because eaph function, as given in Eq. (9a),the primary mode has the wave numlfed7, which is

satisfies an equation of the form very close to the critical wave number given in Eq. (12),
and therefore it grows more strongly than that given in
P! — 4n? k), = —4nk®T?0, (15) Fig. 5(a). This trend continues &sis reduced, and be-

comes more marked because the linearized onset time for

and therefore, for a giveh, the e-folding distance de-the subharmonic now begins to grow quite rapidly com-
creases as increases. Afterr = 35 the inner two cells pared with that for the primary mode. Thus, the 2:1 sub-
gradually weaken forming a pair of recirculating regionsarmonic route to destabilization becomes less effective
which gradually diminish in size and strength. Just aftgsr these wave numbers.
T = 60 they disappear, leaving a relatively thick region A corollary of the above conclusion is that if the pri-
where the subharmonic forms the dominant solution. Theary mode is sufficiently weak, then the subharmonic
e-folding distance of the subharmonic is double that of theay even be too strong for the “primary” mode to become
primary mode, which is why the disturbance has roughdgtablished. In fact, the absence of data betow 32
doubled in thickness. At later times the thickness of the Fig. 5(a) is because the subharmonic grows in prefer-
subharmonic will begin to decrease once more. ence to the primary mode and establishes itself first. This

Figure 5 shows a summary of the situation depictedatso explains the presence of some “anomolous” transi-
Figs. 2—4 and of a much larger set of computations. Figpn points in Fig. 5(d) for smaller values af in this
ure 5 displays what we shall call the transition time ascase, the data points represent a reverse transition where
function of the initial amplitudes of the primary mode anthe mode with the smaller wave number is destabilized by
the subharmonic. The transition time is defined as be- the mode with the higher wave number.
ing that time at which the values gf andg, have exactly ~ When the wave number of the primary mode is greater
the same magnitude. The valueon the abscissa correthan0.08 (and the subharmonic has a wave number grea-
sponds to an initial subharmonic amplitudetaf = 10~¢  ter thank = 0.04), the opposite effect is true. In this case,
(i.e.,a = —log,, A1), while the different symbols corre-the transition times are earlier because the onset times for
spond to different initial primary cell amplitudes; thesthe primary mode and its subharmonic are much closer,
are indicated in the caption to Fig. 5. as may be seen in Fig. 1, and there is now only a small

The interpretation of Fig. 5 is as follows. Below thénterval of time over which the primary mode can grow.
horizontal line all modes of the chosen wave number dBherefore, this primary mode is easier to destabilize using
cay, but the primary mode begins to grow upon crossisgbharmonic disturbances.
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FIG. 5: Variation in the values of the transition time,, with « = — log;, A, for different values of4, for the wave

numbergqa) 0.04, (b) 0.035, (c) 0.03, and(d) 0.02. The line near tar = 13 corresponds the onset of instability of the
primary cell. The symbols, ¢, 4, andx refertoA, = 101, 1072, 103, and10~*, respectively.

4.2 The 3:2 Subharmonic Case mode,4; = 0, and A, taking the values), 1076, 1074,
and10~2. Figure 6 represents the variation of the surface
We now turn to the 3:2 subharmonic route to destabilizeate of heat transfey,, with .
tion. Here, we consider the primary mode to have wave When A, = 0, bothgs, the surface rate of heat trans-
number3k while the disturbance has wave numi2ér fer of the primary mode, ang)), the mean change of heat
We shall consider two cases in detail, namely, those teansfer, follow precisely the same evolutionary path as
which the primary mode has wave numbei¥ and0.09. shown in Fig. 2 when neglecting the influence of the sub-
These cases represent the typical behavior found duriragmonic disturbance, as the wave number of the primary
our various simulations. mode is the same in both cases. The other three subfigures
We consider first the case whe3g = 0.07. We take show how the primary mode is affected by the presence
As = 0.1 as the disturbance amplitude of the primamyf three different subharmonic disturbances. In all three
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FIG. 6: Variation witht of the surface rate of heat transfer, corresponding to the modes,= 0, 1, 2, and3. The
simulations correspond tg = 8, 3k = 0.07, andA4; = 0; A; = 10~!; and a selection of values df,. Short dashes:
q1; medium dashesjs; long dashesy,; unbroken curvesy, ¢, and all other modes—this convention also applies
to Figs. 9 and 12.

of these cases;; and g, begin to grow at roughly thein Fig. 6. As before, contours are drawn using 20 equally
same rate, although with different signs. However, modefaced intervals in each subfigure with the middle con-
eventually grows faster, takes over as the dominant motir corresponding to a zero value @fThe growth and
with mode 2 following the growth of mode 1 as the lattatecay of the primary mode, i.e., whel3 = 0, is shown
is the first superharmonic of the former. for reference. The chief difference between these isolines
On comparing Fig. 6 with Fig. 2, we see that modednd those in Fig. 3 is that the peak rate of heat transfer
also grows very rapidly here, although it is not the suler the present case is maintained at a roughly constant
harmonic mode that was introduced. Of interest is the fdevel after mode 1 has become established, whereas, for
that destabilization occurs earlier for the 3:2 case than fbe 2:1 case, the heat transfer begins to decay steadily just
the 2:1 case, and the largest absolute mean change tcafter the peak is reached. In fact, this feature is more ev-
surface heat transfey, achieves larger values. Thus, itdent when comparing the curves in Fig. 6 with those
would appear that the 3:2 destabilization is stronger in itsFig. 3.
effect than the 2:1 case. Figures 8(a) and 8(b) represent the detailed isotherms
Isolines of the surface rate of heat transfer of distuend streamlines of the evolving disturbance, respectively,
bances;(z, ) are shown in Fig. 7 for the cases displayeat different chosen times for thé, = 10~2 case. Three
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7 =100

Ay = 1076 Ay = 1074 Ay = 102

FIG. 7: Isolines of the surface rate of heat transtér;, t), for 3k = 0.07, usingt; = 8, A; =0, A3 = 107!, and a
selection of values afl;. The horizontal coordinate varies betwees:- 0 andx = 127t/k; i.e., six horizontal periods,
and the vertical axis varies between- t; = 8 andt = 100.

periods of the primary mode are shown and these redst@ws that the mode has become nonlinear, although not
to one period of mode 1. The evolution of the thermatrongly so.
cells with time is fairly complex and centers around the Figure 9(b), for whichd, = 1075, gives an evolution-
fact that next-but-one neighbors are not equal in strengtiny behavior that is identical qualitatively to those shown
Nonlinear competition then serves to inhibit some thermial Fig. 6, in that while mode 2 destabilizes the primary
cells and to enhance others. If, in the top row of Fig. 8(ajode (mode 3), it is mode 1 that appears. On the other
we were to label the cells from O to 6, then cells 0 andhand, when the initial amplitude of mode 2 is increased to
combine first, thereby eliminating cell 1. The same hap, = 104, there is a clear, but short, interval in which
pens between cells 4 and 6 where cell 5 is eliminated.rhode 2 is dominant before it, too, is overtaken by mode 1.
the meantime, the middle cell grows and we are left witthis may be seen in Fig. 10(c) at the point marked by
just one period of a cellular pattern. During the transitioan asterisk where there are now four periods showing, as
then, two cells disappear while two pairs merge; thereempared with the original six periods. At larger values
fore, at no time do we see a pattern which is at all likef T there are only two periods of the mode 1 cell.
a mode 2 pattern with two periods being evident. A simi- However, wherds = 102, the successive transitions
lar process happens with the streamlines in Fig. 8(b). Bdtbm mode 3 to mode 2 and from mode 2 to mode 1 takes
sets of figures yield a rapidly expanding region of activitglace in a very clear way with long intervals of time dur-
one that is much larger than is depicted in Fig. 4, and thigy which each mode is dominant. Interestingly, Fig. 9(d)
is because the e-folding distance according to Eq. (15klsows that the transition from mode 2 to mode 1 yields
larger due td: being smaller here than for the cases shovamegative value of;, which means that this final transi-
in Fig. 4. tion, a 2:1 subharmonic in effect, yields a pattern that is
Essentially the same figures are now reproduced 1i80° out of phase with those shown in Fig. 3. Figure 10(d)
Figs. 9-11 for the case where the primary mode hagjiges an exceptionally clear representation of both transi-
wave number 00.09. We show these because qualitaions.
tively different behavior may be found for this choice of Some instantaneous isotherms and streamlines of the
wave number. evolving disturbance corresponding to the previous two
Figure 1 shows that the expected interval of growth &fures are shown in Figs. 11(a) and 11(b) for the cases
a mode with a wave number 6f09 is relatively short, A; =0, A, = 10~2, andA43 = 10~!. In Figs. 11(a) and
although significant growth can happen. Thge= 0 sub- 11(b) we see that six cells at= 10 transform into four
figure of Fig. 9 appears to show little activity, but this isells att = 50 by cell merging and removal, and then
simply scaled in the same way as for the remaining subfigto two cells atr = 100. Of particular interest is the very
ures. On the other hand, th, = 0 subframe of Fig. 10 rapid evolution between = 90 andt = 100, where the
shows clearly the period of time over which growth oczells that are placed close to the heated surface strengthen
curs, and the mismatch between neighboring thermal celigidenly.
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FIG. 8: (a) Contours of the perturbation temperature profiles,@)dtreamlines of the evolving flow, at chosen times
for the evolution of the subharmonic instability giventy= 8, 3k = 0.07, A; = 0, A, = 1072, and A3 = 1071,
The horizontal coordinate varies betweer- 0 andz = 67t/k; i.e., three horizontal periods.
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FIG. 9: Variation witht of the surface rate of heat transfeg, corresponding to the modes= 0, 1, 2, and3. The
simulations correspond tg = 8, 3k = 0.09 andA; = 0, A3 = 10!, and a selection of values dff;.
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FIG. 10: Isolines of the surface rate of heat transfgs;, t), for the wave numbeBk = 0.09, usingt; = 8, A; =0,
Az = 1071, and a selection of values df,. The horizontal coordinate varies betweer 0 andxr = 127t/k; i.e., Six
horizontal periods, and the vertical axis varies betweent; = 8 andt = 100.
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(b)

FIG. 11: (a) Contours of the perturbation temperature profiles, @mdtreamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability givenfy= 8, 3k = 0.09, 4; = 0, 4, = 1072, and
Az = 1071, The horizontal coordinate varies betwees- 0 andx = 67t/k; i.e., three horizontal periods.
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4.3 The 4:3 Subharmonic Case Figure 12 shows the evolution of the variogs val-
ues witht, and we find that the ultimate fate of flow de-

Now we will concentrate on the 4:3 subharmonic casgends on the magnitude of the subharmonic disturbance.
where modes 3 and 4 in the Fourier expansion repres@ffien A; = 10~ the primary mode has decayed almost
the subharmonic and primary modes, respectively.  to nothing before mode 2 makes a brief appearance prior

Figure 12 represents the variation of the surface rdtethe establishment of mode 1 as the dominant mode.
of heat transfer,, with t. The wave number of the pri-When A3 takes larger values, the modal exchanges that
mary mode is given byltk = 0.07, and therefore the take place favor mode 2 as the final convecting state, at
subharmonic has wave numbi# = 0.0525. The initial least fort < 200. We suspect that mode 1 will destabilize
amplitudes of modes 1 and 2 are set to zero, and for the evolving mode 2 pattern at later times, although we
primary disturbance we takd, = 10~!. As above, we have not tested this hypothesis.
have used the following amplitudes for subharmonic dis- Of interest is the fact that the mean change to the sur-
turbance:A; = 0, 1075, 1074, and10~2, whereA; = 0 face rate of heat transfey is substantially larger when
is equivalent to having no subharmonic disturbance. Wg = 10~° than when4; takes the two larger values de-
note that we have again chosen the primary mode to hgieted in Fig. 12. Thus, the magnitude of the response is
wave number0.07, so that all three subharmonic case®ot necessarily in proportion to the magnitude of the dis-
(namely, 2:1, 3:2, and 4:3) may be compared. turbance, but depends on complicated modal exchanges.

50 175 200 0 25 50 75 100 125 150 175

(c) Az =10"" T (d) Az = 1072 T

FIG. 12: Variation witht of the surface rate of heat transfeg, corresponding to the modes—= 0, 1, 2, and3. The
simulations correspond tg = 8, 4k = 0.07 andA; = 0, 4, = 0, A, = 107!, and a selection of values df;.
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The surface rates of heat transfer corresponding to 1eDISCUSSION AND CONCLUSIONS
four subfigures in Fig. 12 are depicted in Fig. 13. Here,
we see that the initial destabilization of the primary moda this paper we have investigated various types of subhar-
is indeed later for the smaller disturbance amplitudes, msnic instability of an evolving cellular pattern in an un-
one might expect intuitively. steady thermal boundary layer in a porous medium. This

Figure 14 shows instantaneous isotherms and streasnan extension of the nonlinear simulations presented in
lines for theA; = 10~2 case, for which mode 2 emerge®art Il where it was found that, contrary to expectations,
as the dominant mode. We have chosen this case the nonlinearly developing cells are always eventually
ticularly because the surface heat transfer data showndatabilized. In the present paper we have paid particular
Fig. 13 do not give a full picture of the complicated evolwattention to the 2:1, 3:2, and 4:3 subharmonic cases, and
tion that takes place. Concentrating first on the isothertihese have all been found to destabilize the primary mode
shown in Fig. 14(a), by the time = 45, the thermal cells of convection. For the 2:1 case we have provided a com-
have either risen or fallen depending on whether they gmehensive set of information on how the transition time
located where there is outflow or inflow. Moreover, thietween the primary and the subharmonic depends on the
amount by which the rising cells have risen varies and thmitial amplitudes of each disturbance. For the 3:2 case
pattern is reminiscent of the Eckhaus (or sideband) instee have found two different routes to destabilization: one
bility, which is a well-known destabilization mechanismvhere mode 3 evolves directly into mode 1 and the other
for Bénard-like problems. When= 55, the disturbance where there is a double transition with mode 3 giving way
pattern has modified rapidly into a form that looks supeie mode 2 and then to mode 1. We have also shown some
ficially like a mode 1 pattern. However, the central cell afimulations for the 4:3 case, where we have obtained an
this pattern has a detailed three-cell structure close to thmisual pattern that consists of one mode near the heated
surface, and it is this structure that caugg$o dominate surface and another further away. We have also found that
in Figs. 12 and 13, and that grows stronglyw@acreases the strength of the response to subharmonic disturbance
further. In fact, wherr = 100 the disturbance pattern is gin terms of the change in mean rate of heat transfer) is
rather unusual mixture of mode 2 near the heated surfa a smooth function of the amplitude of the disturbance
and mode 1 further away. because the identity of the dominant mode also depends

Similar comments may be made about the evolutiam that amplitude.
of the streamlines in Fig. 14(b). The Eckhaus amplitude Given that the passage of time may be interpreted as an
modulation is very clear when = 10, and so is the dual increasing Darcy—Rayleigh number, Ra, it is worth mak-
modal structure whem = 100. ing some comparisons with the classical Darcir8rd

T

FIG. 13: Isolines of the surface rate of heat transfgs;, t), for the wave numberdk = 0.07, usingt; = 8, A; =0,
Ay =0, A, = 107, and a selection of values df;. The horizontal coordinate varies betwees 0 andx = 167/k;
i.e., eight horizontal periods, and the vertical axis varies betweern; = 8 andt = 100.
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(b)

FIG. 14: (a) Contours of the perturbation temperature profiles, @dtreamlines of the evolving flow, at chosen
times for the evolution of the subharmonic instability giventoy: t; = 8, 4k = 0.07, A; = Ay = 0, A3 = 1072,
andA4 = 101, The horizontal coordinate varies betwees- 0 andx = 87t/k; i.e., four horizontal periods.

Journal of Porous Media



Begell House Digital Library, http://dl.begellhouse.com Downloaded 2011-1-17 from IP 138.38.72.242 by University of Bath

Developing Thermal Front Subharmonic Instabilities 1057

problem. The first comprehensive study of the stability We certainly intend to investigate how isolated distur-
of large-amplitude convection in a uniform layer heatdzhnces propagate, and preliminary work seems to suggest
from below was undertaken by Straus (1974), who dénat the convection cells that are induced tend to have a
termined the region in wave number/Ra space in whiglavelength that increases with time (Selim 2009). Riaz
steady two-dimensional convection is stable. Generakgy, al. (2006) also provides much information on chaotic
as Ra increases, the range of wave numbers for whaghlular development in two dimensions, but as yet no
convection is stable moves toward higher wave numbettsree-dimensional simulations have been undertaken; it
This is consistent with the computations of Georgiadis hoped that this issue also will be addressed in the near
and Catton (1986), who found the wave number that cdwture.
responds to the largest rate of heat transfer at any cho-
sen v_alue of Ra also increases as Ra increases. TheA@kNOWLEDGEMENTS
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