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In a previous paper (Int. J. Thermal. Sci., vol. 47, pp. 1382–1392, 2008), the authors performed a detailed numerical

investigation of the linear instability of the thermal boundary layer flow over a vertical surface by introducing unsteady

thermal disturbances near the leading edge and by solving numerically the fully elliptic linearized stability equations.

The main aim of the present paper is to extend those results into the nonlinear regime by seeding the boundary layer

with similar disturbances of finite amplitude. The ensuing nonlinear waves are found to exhibit a variety of behaviours,

depending on the precise amplitude and period of the forcing. When the amplitude is sufficiently small, the linearized

theory of the previous work is reproduced, but for larger amplitudes, cell splitting or cell merging may occur as waves

travel downstream. Cell splitting takes place when disturbance frequencies are somewhat smaller than the most strongly

amplified nondimensional disturbance frequency of 0.4 for which the boundary layer response, is at its greatest in terms

of the surface rate of heat transfer (see Fig. 8 in previous paper). Cell merging takes place at frequencies what are

approximately double that of the most strongly amplified disturbance frequency. Attention is focussed on fluids with a

unit Prandtl number.
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1. INTRODUCTION

The effect of introducing a time-periodic thermal distur-
bance near the leading edge of a vertical thermal bound-
ary layer was considered in Paul et al. (2008). Such dis-
turbances are analogous to the spatially localized distur-
bances introduced within the boundary layer by the pres-
ence of suction/blowing slots [e.g., see Fasel and Konzel-
mann (1990), or the varying thermal source of Brooker
et al. (1997) and Herwig and You (1997)]. When such
thermal forcing is of sufficiently small magnitude, a rela-
tively large transient response travels downstream leaving
behind a time–periodic state. Convection cells are found
to stretch gradually as they travel downstream due to the
fact that the basic boundary layer accelerates. The local
amplitude of the periodic response follows what is ex-
pected from linear stability theory using the parallel flow
assumption, namely, that it decays or grows spatially in

a manner that is roughly in accord with the predicted
growth rates for a constant frequency [see Fig. 11 of Paul
et al. (2008)].

In the context of free convection, there are a moderate
number of papers that deal with free convection within ei-
ther square or rectangular containers with sidewall heat-
ing and cooling, and that therefore have a close relation-
ship to the present external flow. Examples of these stud-
ies are the papers by Janssen and Armfield (1996) and
Armfield and Patterson (1991) and an entire issue of the
International Journal for Numerical Methods in Fluids
(vol. 40, no. 8, pp. 951–1144, 2002), which is devoted to
the types of numerical method used for modeling convec-
tion in an 8 × 1 cavity. However, there is a substantial
difference between these cavity flows and the flow con-
sidered here; within cavities the wave disturbances leave
the ascending hot boundary layer, travel across the top of
the cavity, and seed disturbances into the descending cold
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NOMENCLATURE

a scaling factor
A amplitude of the thermal disturbance
C function ofξ andη
d parameter to controlA
J Jacobian
M maximum local response
N minimum local response
Pr Prandtl number
qloc surface rate of heat transfer, Eq. (11)
t time
x, y nondimensional Cartesian coordinates

Greek Symbols
λ temporal frequency

θ nondimensional temperature
φ angle from the

vertical
ψ streamfunction
ω vorticity
ξ,η similarity variables

Subscripts
max maximum value
min minimum value

Superscripts
¯ steady flow quantities
ˆ disturbance quantities

boundary layer. In turn, this introduces disturbances back
into the base of the hot boundary layer. Thus, a feedback
mechanism is set up that does not have a counterpart here.
Moreover, when the hot and cold boundary layers in a
cavity are distinct, the core region is thermally stratified,
unlike the present situation where the ambient tempera-
ture outside the boundary layer is uniformly cold.

To date, there appears to be no published paper deal-
ing with nonlinear phenomena in the vertical boundary
layer treated as an external flow except for the early ex-
perimental study of Szewczyk (1962) who used a dye-
injection technique to follow the transition to turbulence
in water. In that very early paper, there appears to be no
systematic approach to determining criteria for the onset
of secondary instabilities, which take the form of pairs of
counter-rotating streamwise vortices. In the present paper,
we choose to concentrate on a simpler problem, namely,
the response of the boundary layer to time-periodic two-
dimensional thermal disturbances placed on the surface
near the leading edge. The aim of the present paper, then,
is to extend the analysis of Paul et al. (2008) into the non-
linear regime, and our objective is to determine the differ-
ent ways in which nonlinear effects are manifested when
the boundary layer is subjected to such time-periodic dis-
turbances.

2. NONLINEAR DISTURBANCE EQUATIONS

The full nonlinear equations of motion were presented in
Paul et al. (2008), and their derivation is omitted for the
sake of brevity; they take the form,
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the Jacobian operator,J , is defined according to

J(ψ,χ) =
∂ψ

∂ξ

∂χ

∂η
−

∂ψ

∂η

∂χ

∂ξ
, (5)

(whereχ represents either the temperature or the vor-
ticity) and where overbars and circumflexes denote the
steady basic flow variables and the disturbance quantities,
respectively. In the above equations, the value,φ, is the
angular coordinate measured from the upward vertical; it
is not possible to give a simple closed-form expression
for this in terms ofξ andη, but it is straightforward to
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produce the exact values numerically. The boundary con-
ditions to solve the above system of equations are

ψ̂ = ψ̂η = 0, θ̂ = 0 on η = ηmin = 0, (6)

ψ̂ = ψ̂ξ = 0, θ̂ξ = 0 on ξ = ξmin, (7)

ψ̂η = 0, ω̂ = 0, θ̂ = 0 as η = ηmax, (8)

and a buffer/sponge region is used near to the outflow
boundary,ξ = ξmax, in order to dampen out disturbances
and prevent the growth of unphysical reflections; full de-
tails of our procedure may also be found in Paul et al.
(2008).

The steady state basic flow is computed first, as de-
scribed in detail in Paul et al. (2008). Then the nonlin-
ear disturbance Eqs. (1)–(3) are solved for a variety of
disturbance frequencies and amplitudes in order to deter-
mine the nonlinear characteristics of the disturbed bound-
ary layer flow. The instabilities are induced in the same
way as in Paul et al. (2008), namely, by introducing the
following time-periodic thermal disturbance on the heated
surface near the leading edge:

θ̂(ξ, 0) = Ae−a(ξ−ξ0)
2

sin(λt), (9)

whereλ is the temporal frequency,a = 0.1 a chosen
scaling factor,A the disturbance amplitude, and where
ξ0 = 20 defines the location of the leading edge of the
heated surface. As nonlinear waves are being considered,
the magnitude ofA is now important. In fact, whenA is
sufficiently large (e.g.,A = 2 × 10−5 whenλ = 0.4)
the starting transient is sufficiently powerful that regions
of high shear and high temperature gradient are formed.
The very poor resolution associated with these regions
causes the numerical method to become highly inaccurate
and sometimes unstable. Therefore, we adopted an ad hoc
procedure wherebyA is regarded as a function oft, which
rises slowly from10−8 (a level for which no numerical
instability arises for any value ofλ) to the required am-
plitude. Therefore, the negative effects of a large starting
transient are reduced substantially and the flow is able to
settle to a time-periodic state. We used the following ex-
pression forA(t):

log10 [A(t)] = −8 + d(1 − e−bt)2. (10)

This expression shows thatA = 10−8 initially, but A →

10−8+d ast → ∞. The valueb = 0.01 was found to yield
suitably good results when 15,000 time steps of length
δt = 0.1 were taken. Once the transients have decayed,
the resulting time-periodic response of the boundary layer

was found to be independent of the value ofb that was
chosen.

Much of our description of the dynamics of the insta-
bility involves the rate of heat transfer at the surface, and
therefore, it is convenient to define the quantity,

qloc(ξ, t) = −
∂θ̂

∂η

∣

∣

∣

∣

∣

η=0

. (11)

Of course, this expression yields different values when
compared with they derivative, but given that we are gen-
erally interested either in whereqloc = 0, or in variations
in time at a fixed point in space, the distinction between
the different derivatives is not important.

3. NUMERICAL METHOD

Finite difference techniques were used to solve the sys-
tem of nonlinear Eqs. (1)–(3). The two equations with
time derivatives were discretized using second-order ac-
curate central difference approximations, and the DuFort-
Frankel scheme was employed for the time deriva-
tive. The Jacobian terms were approximated using the
Arakawa (1966) formulation, which was designed to be
particularly suitable for unsteady flows. Neumann bound-
ary conditions were approximated using a standard ghost
point approach, which therefore maintains second-order
accuracy and has an asymptotically smaller discretization
error than a one-sided first-order approximation.

The Poisson equation (1) was solved using a multi-
grid correction scheme algorithm to accelerate iterative
convergence. It incorporates a V-cycle algorithm involv-
ing line Gauss-Seidel relaxation. The method is based on
the pointwise method described in Briggs (1987), but it
adopts two line relaxations per coordinate direction on
each multigrid level.

In the simulation,ξmax = 620 was chosen as the loca-
tion of the outflow boundary and the buffer region started
from ξ = 520. The buffer domain technique of the out-
flow boundary follows the methodology introduced by
Kloker et al. (1993).

A total of 480 steps were used in the rangeξ direction
with a uniform step length,δξ = 1.25. In theη direction,
48 equal intervals were used in the0 ≤ η ≤ ηmax = 12,
and therefore the step length wasδη = 0.25. Given that
the step lengths satisfyδξ = 5δη, which corresponds to
a cell aspect ratio of5, a line relaxation method is essen-
tial to maintain a fast iterative convergence of the Poisson
equation, even with multigrid smoothing. We were able
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to take five multigrid levels, and each V-cycle was com-
prised of two relaxation sweeps in each coordinate direc-
tion for each grid. At each time step, the new vorticity and
temperature fields are calculated first, followed by the so-
lution of the Poisson equation for the streamfunction, and
finally the boundary vorticity is computed in the way pre-
sented in Roache (1972).

Finally, it is essential to undertake grid independence
tests to check the values ofδt, δξ, andδη used in the sim-
ulations. These were undertaken by halving the intervals
in both directions. Details may be found in the Appendix.

4. COMPUTATIONS FOR λ = 0.4

In this section, we consider the forcing frequency,λ =
0.4, because the linear analysis of Paul et al. (2008) shows
that the this frequency elicits the largest response of the
boundary layer to periodic forcing; therefore, we call this
the most strongly amplified disturbance frequency for the
linear regime. We have found that the maximum value
of A for which we were able to compute solutions is
A = 2 × 10−5. At larger values ofA, the strength of the
nonlinearity is such that the generation of narrow shear
layers causes numerical instability due to poor spatial res-
olution, as mentioned above. Therefore, we concentrate
on this maximum value ofA, and various views of the
resulting flow are given in Figs. 1–4.

Figure 1 shows how the time variation ofqloc varies
with distance along the boundary layer. Because the mag-
nitude of the heat transfer may vary over many orders of
magnitude asξ increases, each curve in Fig. 1 has been
normalized to display the same amount of vertical vari-
ation, and the mean value of each curve is located at the
corresponding value ofξ on the ordinate of the graph; this
convention also applies to other figures of the same type.
The accelerating nature of the basic boundary layer may
be seen in Fig. 1 by tracking the spatial location of, say,
the maximum value ofqloc ast increases.

For small values ofξ, the variation in the surface heat
transfer is sinusoidal and the boundary layer response is
still within the linear regime. However, strong wave steep-
ening occurs at larger values ofξ, which indicates the
presence of nonlinearity. At such distances from the lead-
ing edge (e.g.,ξ = 520 or, equivalently,x = 2850), the
value ofqloc is seen to decrease very slowly and then to
rise sharply before the next gentle decrease. The sharp
rise is associated with the streamwise advection of the re-
gion near the heated surface just upstream of where the
isotherms displayed in Figs. 2 and 3 are widely spaced
(e.g., see the black triangle in Fig. 3). In Figs. 2 and 3,

1 4 0 1 4 2 1 4 4 1 4 6 1 4 8 1 5 0

ξ

t/10

70.0

132.5

195.0

257.5

320.0

382.5

445.0

507.5

FIG. 1: Variation witht of the normalised values ofqloc.
The forcing frequency and amplitude areλ = 0.4 and
A = 2 × 10−5, respectively.

we also see how the evolving wave like disturbances have
become sufficiently strong that a severe distortion of the
overall thermal field is obtained. WhenA is chosen to take
larger values, then similar distortions occur progressively
further upstream.

Figure 4 shows contours ofqloc as a function of both
x andt. Of particular interest here is how the symmetry
between positive and negative rates of heat transfer is bro-
ken as the flow becomes nonlinear. At the large values of
x, the “nose” corresponding toqloc = 8 × 10−2 (e.g., at
x = 2700 andt = 1410) occurs at a smaller value ofx
than does that corresponding toqloc = −8 × 10−2 (e.g.,
at x = 2740 and t = 1406). This lack of symmetry is
caused by an essential difference in the thermal response
to a strong flow directed toward the surface and one away
from it. In the former case, cold fluid is pushed toward
the surface causing a large positive change in the rate of
heat transfer. In the latter case, the hot fluid is pulled away
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x = 3600x = 37

t = 1500.0

t = 1498.0

t = 1496.1

t = 1494.1

t = 1492.1

t = 1490.2

t = 1488.2

t = 1486.2

t = 1484.3

FIG. 2: Isotherms of theθ field at eight equally spaced
time intervals over one forcing period forλ = 0.4 and
A = 2 × 10−5. Contours are drawn at intervals of0.1.

t = 1484.3 t = 1486.2 t = 1488.2 t = 1490.2

t = 1492.1 t = 1494.1 t = 1496.1 t = 1498.0

FIG. 3: Close-up view of the isotherms (θ) shown in
Fig. 2. Each frame is plotted in the range2500 < x <
3080. The black triangle indicates whereqloc attains its
minimum value.

from the surface, but because the overall temperature gra-
dient cannot become positive (since that would imply the
existence of a region of fluid that is hotter than the sur-
face). The value ofqloc must therefore be bounded below,
but it is effectively unbounded above.

Qualitatively similar results to those shown above are
obtained whenλ takes values fairly close to0.4, although

2 0 0 2 1 0 2 2 0 2 3 0 2 4 0 2 5 0 2 6 0 2 7 0 2 8 0
1 4 0

1 4 2

1 4 4

1 4 6

1 4 8

1 5 0

x/10

t/10

FIG. 4: Contours ofqloc λ = 0.4, andA = 2×10−5. The
contour levels are at±8× 10−2, ±4× 10−2, ±2× 10−2,
±10−2, ±5 × 10−3, and0. The contours,qloc = 0, are
those that cross the ordinate.

it is possible to use larger values ofA in these cases since
the spatial growth of the disturbance is smaller asλ re-
cedes from0.4. However, whenλ differs substantially
from 0.4, new nonlinear effects arise and these form the
subject of the next few sections and is the primary focus
of this paper.

5. SUPERHARMONIC RESONANCES (λ < 0.4)

In this section, we will cover those cases for which the
forcing frequency is< 0.4. Whenλ is sufficiently small,
the presence of nonlinearities serves to substantially mod-
ify the manner in which waves travel downstream, and the
patterns obtained are entirely different from those given
by the linearized theory presented in Paul et al. (2008).
That this should happen is easily understood if, when
considering the evolution withξ of a disturbance with
λ = 0.2, it is realized that the nonlinear interaction of
the corresponding wave train with itself generates waves
with double the local wavenumber. Such waves are then
of roughly the same wavelength as those generated by a
disturbance with frequencyλ = 0.4, and they are there-
fore able to grow preferentially. This could be termed a
1:2 superharmonic resonance because the local wavenum-
ber is found to double at a position in the boundary layer,
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which turns out to be dependent on both the amplitude
and frequency of the initiating disturbance.

Other superharmonic resonances, namely, 1:3 and 1:4,
occur asλ decreases, and these are also shown below.
Further resonances of this type are suspected to be likely
to occur, but the present computational domain is insuffi-
ciently large to represent them well.

5.1 1:2 Superharmonic Resonance

The nonlinear evolution of the flow for values ofλ close
to 0.2 are considered. The manner in which the flow de-
velops is again depicted in a variety of ways in order to
gain some understanding of the role played by the ampli-
tude and frequency of the disturbance. Some examples of
this development are shown in Figs. 5–9.

Figure 5 shows how the evolution ofqloc with time
changes its character asξ increases for the case,λ = 0.18,
when the disturbance amplitude isA = 2 × 10−3. Fig-

1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1 5 0

ξ

t/10

70.0

132.5

195.0

257.5

320.0

382.5

445.0

507.5

FIG. 5: Variation witht of qloc for the 1:2 superharmonic
resonance, whereλ = 0.18 andA = 2 × 10−3.

(h)

(a) (b) (c) (d)

(e)
(f)

(g)

FIG. 6: Limit cycles of the phase trajectories ofqloc at
various positions along the surface forλ = 0.18, A =
2× 10−3: (a)ξ = 175, (b)ξ = 270, (c)ξ = 288, (d)ξ =
300, (e)ξ = 313, (f) ξ = 325, (g) ξ = 350, and (h)ξ =
500. The horizontal coordinate isqloc, while the vertical
coordinate is∂qloc/∂t.

ure 5 shows clearly that the boundary layer responds at
the same frequency as the thermal forcing whenξ ∈

(70, 300), but that it responds at twice the frequency when

x = 3600x = 37

t = 1473.8

t = 1469.4

t = 1465.1

t = 1460.7

t = 1456.4

t = 1452.0

t = 1447.6

t = 1443.2

t = 1438.9

FIG. 7: Isotherms of̂θ at eight equally spaced times in
one period forλ = 0.18 andA = 2 × 10−3. Contours
are plotted for̂θ = ± (10−2, 10−3, 10−4, 10−5, 10−6,
and10−7). The black triangles mark the start and end of
a complete cell pair att = 1438.9, which becomes two
pairs att = 1473.8, one forcing period later.
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FIG. 8: Zero contours of̂θ over three periods forλ = 0.18, with (a) A = 2 × 10−4, (b) A = 3 × 10−4, (c)
A = 3.5× 10−4, (d)A = 3.8× 10−4, (e)A = 4 × 10−4, and (f)A = 2 × 10−3. Positive (+) and negative (−) signs
correspond to whereqloc > 0 and< 0, respectively.
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FIG. 9: Variation withA of the position of the 1:2 super-
harmonic resonance for (a)λ = 0.18, (b)λ = 0.2, and (c)
λ = 0.22.

ξ > 350, with a short transition regime between the two
regions. The temporal frequency within the second region
is 0.36, which is close to the most strongly amplified dis-
turbance frequency,0.4. At the maximum value ofξ de-
picted in Fig. 5, the variation with time of the heat transfer
is roughly sinusoidal, showing that the disturbances to the
basic flow are still too small to have yet reached the fully
nonlinear regime. However, the 1:2 resonance is a nonlin-
ear phenomenon and it may be explained by the very dif-
ferent spatial growth rates associated with theλ = 0.18
and theλ = 0.36 wave trains. The former grows slowly
relative to the latter, and the self-interaction of the former
causes a disturbance of the form of the latter which then
grows more rapidly and eventually dominates after a cer-
tain distance has been traveled.

In Fig. 6, we show the limit cycles of the phase trajec-
tories ofqloc at different positions along the surface. In
Fig. 6, as with others of its type presented later, the hor-
izontal coordinate isqloc, while the vertical coordinate is
∂qloc/∂t, which was calculated using a central difference
approximation in time.
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Figure 6a is close to being an ellipse, which indicates
that the waves are roughly sinusoidal and confirms the
above statement that the disturbance is still essentially
linear. As ξ increases, the flow becomes progressively
contaminated by the growing superharmonic wave. At
a point just downstream ofξ = 288 and upstream of
ξ = 300 (Figs. 6c and 6d, respectively) a loop devel-
ops in the phase trajectory and it is this position which
may be considered to mark the transition point between
the two regimes. Atξ = 500 (Fig. 6i), the second loop
is almost identical to the first loop and this represents the
full establishment of the superharmonic response. Again,
these final loops are roughly circular, which confirms the
linearity of the disturbance.

We emphasise that the transition from Figs. 6a–6h is
not a period doubling, because the curves are drawn over
only one forcing period. Rather, this represents a period
halving and is one that occurs spatially, rather than tem-
porally or as a governing parameter changes.

In Fig. 7, we have plotted a corresponding set of distur-
bance isotherms over eight equally spaced intervals over a
complete forcing period in time. The maximum and min-
imum levels shown are±10−2, and therefore, the magni-
tude of the disturbance field is not particularly large. The
black triangles shown in Fig. 7 represent one wavelength
corresponding to the thermal forcing frequency and are
used to show the manner in which the period halving takes
place. Ast increases, the leading cell of the two elongates,
compared to the second, and eventually splits into three
by the generation of a small cell of the opposite sign; this
is a typical scenario for other values ofA andλ.

Contours corresponding toqloc = 0 over three forc-
ing periods have been plotted in Fig. 8 in order to aid
the investigation of the effect of different disturbance am-
plitudes on the qualitative nature of the resonance. Here,
the forcing frequency remains atλ = 0.18, but A takes
different values. In Fig. 8, thermal cells are delineated
by the contours and the number of cells that exist at a
chosen value ofx may be determined by placing a verti-
cal line at that value ofx and counting the intervals be-
tween the intersections of the line with the contours. Fig-
ure 8d shows an example with three vertical lines placed
near the transition region. At the left hand line,6 cells (3
pairs) exist, but these undergo a complex transformation
to 12 cells (6 pairs) at the right hand line. The middle line
shows the manner in which the new cells appear. The po-
sitions marked by “a” in Fig. 8 correspond to the appear-
ance or disappearance of cells. In Figs. 8a, 8b, 8e, and
8f, a new cell simply appears in the middle of an already-
established but distended cell. In the other images, the res-

onance process is more complicated; a careful inspection
of Fig. 8d shows that one cell transforms to three, then a
different grouping of three becomes one by destroying the
middle cell, and then a final one-to-three transformation
takes place. Thus, whenA is relatively small a cell for
which qloc > 0 splits into three, but whenA is relatively
large, this happens to a cell for whichqloc < 0.

It is clear from Fig. 8 that the position at which the ap-
pearance of new cells occur depends on the forcing am-
plitude,A. Figure 8 also suggests that cell splitting occurs
nearer to the leading edge asA increases, which is intu-
itive. This has been investigated using many more values
of A than are represented in Fig. 8 and for the three values,
λ = 0.18, 0.2, and0.22; the results are shown in Fig. 9.

The curves shown in Fig. 9 correspond to where cells
are either created or destroyed, or in mathematical terms,
where the contoursqloc = 0 in Fig. 8 have turning points;
we denote these positions byxc. Figure 9 clearly shows
the general trend forxc to increase as the forcing am-
plitude decreases, although the evolution ofxc with A is
not straightforward. On taking theλ = 0.18 curve, it is
seen that there are three values atlog10 A = −3.4 (i.e.,
A ≈ 3.8 × 10−4), which correspond to the three turning
points displayed in Fig. 8d. Given that resonance begins at
the smallest value ofxc for an given value ofA, it is clear
that asA decreases the value ofxc increases to∼ 1960,
after which it jumps to near2130, which is near wherea is
placed in Fig. 8d. Similar jumps occur at the other values
of λ. We also see the general trend forxc to increase asλ
increases (at least over the range of values presented).

5.2 1:3 Superharmonic Resonance

In this section, we present the nonlinear evolution of
the flow for forcing frequencies which are close toλ =
(1/3) × 0.4. In this case, the nonlinear self-interaction
of the wave train should generate new waves with three
times the wavenumber obtained by linear theory. This de-
velopment is displayed in Figs. 10–13 in an identical fash-
ion to those for 1:2 superharmonic case.

Figure 10 shows the variation ofqloc for the case where
λ = 0.13 and the disturbance amplitude isA = 4 × 10−2

[i.e., d ' 6.60 in Eq. (10)]. Figure 10 clearly shows that
there are now three different spatial wavelengths present
in three different regions, which are given approximately
by ξ ∈ (70, 190), ξ ∈ (190, 320), andξ ∈ (320, 520).

The first region,ξ ∈ (70, 190), is where the waves
oscillate with the forcing frequencyλ = 0.13 and these
are again generated directly by the thermal forcing. At the
end of the first region, there is a transition to a regime that
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1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1 5 0
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t/10
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132.5

195.0

257.5

320.0

382.5

445.0

507.5

FIG. 10: Variation witht of the normalised values ofqloc

for the 1:3 superharmonic resonance in the case where
λ = 0.13 andA = 4 × 10−2.

(h)
(g)

(e)

(f)

(d)
(c)(b)(a)

FIG. 11: Limit cycles of the phase trajectories ofqloc at
various positions along the surface forλ = 0.13, andA =
4 × 10−2: (a)ξ = 75, (b) ξ = 225, (c) ξ = 275, (d) ξ =
313, (e)ξ = 338, (f) ξ = 363, (g) ξ = 400, and (h)ξ =
450. The horizontal coordinate isqloc, while the vertical
coordinate is∂qloc/∂t.

oscillates with double the original frequency. The tem-
poral frequency within this second region, i.e., atξ ∈

(190, 320) is 0.26; this transition is quite similar to that

x = 3600x = 37

t = 1487.9

t = 1481.9

t = 1475.8

t = 1469.8

t = 1463.7

t = 1457.7

t = 1451.6

t = 1445.6

t = 1439.6

FIG. 12: Contours of disturbance temperature (θ̂) at eight
equally spaced intervals in a forcing period forλ = 0.13
andA = 4 × 10−2. The contour levels arêθ = ± (10−1,
10−2, 10−3, 10−4, 10−5, 10−6). The black triangles mark
the start and end of a complete cell pair att = 1439.6,
which becomes three pairs att = 1487.9.

seen in Fig. 5 for the 1:2 superharmonic resonance case.
At the end of the second region, there is a second transi-
tion to a state where the waves oscillate with three times
the original frequency. Within this third region, the tem-
poral frequency is0.39, which is very close to the most
strongly amplified disturbance frequency. We note that a
similar sequence of transitions involving the spatial evo-
lution of vortices in a free convective boundary layer in
porous media is given in Rees (2003). In that work, a
spatially evolving steady vortex system first doubles the
number of vortices per unit spanwise length and then af-
fects a second smooth transition to three times the original
number of vortices.

Figure 11 shows the limit cycles of the phase trajec-
tories ofqloc at various distances from the leading edge.
Figure 11a is close to being an ellipse, indicating again
that the waves are essentially linear. Asξ increases, the
disturbance becomes progressively contaminated by the
growing superharmonic waves. The first transition occurs
between Figs. 11a and 11b. Two well-established loops
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FIG. 13: Zero contours ofqloc over the last few periods in time forλ = 0.13, where (a)A = 1.4 × 10−2, (b) A =
1.6 × 10−2, (c) A = 4 × 10−2, (d) A = 5.2 × 10−2, (e)A = 5.6 × 10−2, and (f)A = 6 × 10−2.

appear atξ = 313 (Fig. 11d), but these are of very dif-
ferent amplitudes. This may be seen clearly nearξ = 320
in Fig. 10, where the wave train has alternating maxima.
The second transition occurs just upstream ofξ = 338
(Fig. 11e). Atξ = 450 (Fig. 11h), the three loops are
almost identical and roughly elliptical.

Figure 12 shows the corresponding set of disturbance
isotherms over eight equal intervals during one forcing
period. The successive contours in Fig. 12 correspond to
negative integer powers of10 multiplied by the maximum
absolute value of the isotherm field, which is∼ 10−1. The
pairs of black triangles included in Fig. 12 again represent
one wavelength corresponding to the thermal forcing fre-
quency. Ast increases, the trailing cell between the trian-
gles at first elongates, compared to the second, and then
splits into three with the generation of a new small cell.
In a similar manner, whent > 1463.7, the leading cell
of the original pair elongates, splits, and generates a new
cell, finally becoming three.

Contours ofqloc over the last few periods are shown in
Fig. 13. A variety of forcing amplitudes are represented
for λ = 0.13. Once more, it is shown clearly that the
manner in which the superharmonic resonance takes place

is highly dependent on the forcing amplitude. For small
values ofA (e.g.,A = 1.4 × 10−2 and Fig. 13a), re-
gions within whichqloc < 0 each spawn two internal
regions with positive rates of heat transfer; whereas for
the 1:2 superharmonic case, it was only one region that
was spawned. Thus, one cell splits into five. On the other
hand, in Figs. 13b–13f, all cells that exist near to the lead-
ing edge split once; in all cases, the first cell to split has
qloc < 0. In Fig. 13, the positions marked by “a” and “b”
correspond to the appearance of new cells. Once more, as
A increases, the cell-splitting positions move closer to the
leading edge.

In Fig. 13e, vertical lines are again drawn to count eas-
ily the number of cells. The left vertical line has eight
cells, while it becomes16 at the third line and24 at the
fourth line. Although the third line from left has16 inter-
vals, they are unequal in size, which corresponds to the
unequal loops of Figs. 11d–11e.

5.3 1:4 Superharmonic Resonance

In this section, we present the nonlinear evolution of the
flow on taking the value of forcing frequency to be close
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to λ = 0.1, a quarter of the favoured frequency. These
results are shown in Figs. 14–18.

Figure 14 shows the waveform development whenλ =
0.09 andA = 2 × 10−1. Figure 14 shows clearly that
there are now four different regions present. The first re-
gion is whereξ ∈ (70, 132), wherein the waves oscil-
late with the forcing frequencyλ = 0.09. At the end of
this region, there is the first transition and two unequal
waves appear within each forcing period. Thus, the sec-
ond region isξ ∈ (132, 257). Here the waves constituting
each pair are close to one another with a relatively undis-
turbed region between each pair. It is within these quies-
cent regions that a new wave develops to give three waves
per period inξ ∈ (257, 300), and subsequently, a sec-
ond wave is generated to give four waves per period for
ξ > 300. At ξ = 500, each wave appears to be identical
to all other waves and are very similar to those generated
by aλ = 0.36 thermal forcing.

Figure 15 shows the limit cycles of the phase trajecto-
ries of the surface rate of heat transfer at various different

1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0

ξ

t/10

70.0

132.5

195.0

257.5

320.0

382.5

445.0

507.5

FIG. 14: Waveforms showing the 1:4 superharmonic res-
onance in the case whenλ = 0.09 andA = 2 × 10−1.

(c)(a)

(e) (g)

(d)

(h)

(i)
(j) (k)

(l)

(f)

(b)

FIG. 15: Limit cycles of the phase trajectories ofqloc for
λ = 0.09 andA = 2 × 10−1: (a) ξ = 50, (b) ξ = 125,
(c) ξ = 175, (d) ξ = 200, (e) ξ = 225, (f) ξ = 238,
(g) ξ = 250, (h) ξ = 263, (i) ξ = 288, (j) ξ = 313,
(k) ξ = 338, and (l)ξ = 450. The horizontal coordinate
is qloc, while the vertical coordinate is∂qloc/∂t.

x = 3600x = 37

t = 1491.3

t = 1482.6

t = 1473.8

t = 1465.1

t = 1456.4

t = 1447.6

t = 1438.9

t = 1430.2

t = 1421.4

FIG. 16: Contours ofθ̂ at eight equally spaced intervals
in a forcing period forλ = 0.09 andA = 2 × 10−1. Cor-
responding contour levels are plotted forθ̂ = ± 5(10−1,
10−2, 10−3, 10−4, 10−5, 10−6). The black triangles mark
a complete cell pair att = 1421.4, which becomes four
pairs at timet = 1491.3.
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FIG. 17: Zero contours ofqloc over the last few periods in time forλ = 0.09, where (a)A = 5 × 10−2, (b) A =
10 × 10−2, (c) A = 13 × 10−2, (d)A = 13.4 × 10−2, (e)A = 14 × 10−2, and (f)A = 20 × 10−2.
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FIG. 18: Variation withA of the location of the turning
points of the heat transfer forλ = 0.09. Three different
curves are marked by “a”, “b”, and “c”denote the posi-
tions of the three different turning points in Fig. 17.

positions along the surface. Like the previous superhar-
monic cases, Fig. 15a shows an almost elliptic shape, in-
dicating that waves are of small amplitude near the lead-
ing edge. Generally, the development of the superhar-
monic resonance sequence is such that extra single loops
are added in turn to the phase trajectories. We note that
Fig. 15l, which represents the completion of the super-
harmonic resonance, is just within the nonlinear regime,
as may be seen by the non elliptical shape of the trajecto-
ries.

Figure 16 shows the corresponding set of disturbance
isotherms over eight equally spaced intervals in one forc-
ing period. Ast increases, the leading cell elongates com-
pared to the trailing cell and, finally, it splits into seven by
a complicated sequence of cell generation.

Contours ofqloc = 0 shown in Fig. 17 also represent
the splitting of cells. The positions at which new cells ap-
pear are marked by “a”, “b”, and “c”. In Fig. 17, we see a
complicated variation in the way the superharmonic reso-
nance takes place asA increases. In Fig. 17a a region of
positive heat transfer, denoted by the plus sign, generates
two negative regions, “a”and “b”(so that one cell is trans-
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formed into five), while a negative region, denoted by the
minus sign, generates one positive region “c”(so one that
cell becomes three). Because the positions marked by “a”,
“b”, and “c”are at roughly the same value ofx, this means
that we have a very sudden change atx ' 2200 from, say,
one pair of cells to four pairs.

Similar comments may be made about Fig. 17b, which
corresponds to a larger forcing amplitude. However, the
cell marked a now appears before that marked “b”. As
A increases further, cell splitting occurs much closer to
the leading edge and the manner in which the 1:4 reso-
nance takes place alters markedly. WhenA is as large as
1.34 × 10−1 (Fig. 17d), the first cell splitting creates a
central “positive” cell, which subsequently splits to cre-
ate a central “negative” cell. At larger amplitudes, three
positive cells appear within a negative cell, as displayed
in Fig. 16. A detailed indication of how the turning points
displayed in Fig. 17 vary withA is shown in Fig. 18. This
sequence is also affected by changes in the forcing period.

6. SUBHARMONIC RESONANCES (λ > 0.4)

In Section 5, we presented a selection of cases display-
ing superharmonic resonances by considering the forcing
frequency to be< 0.4. In this section, we present some
cases for which the forcing frequency is> 0.4 for var-
ious values of the forcing amplitude. We find that, for a
wide range of the forcing frequency [λ ∈ (0.55, 1.0)],
the developing nonlinear flow causes cell merging, which
means that the wave train loses half of its cells and that
the local wavenumber halves. Specific examples are given
for the frequencyλ = 0.8. This is termed a subharmonic
resonance and results are displayed in Figs. 19 and 20.

However, in Fig. 19 we provide an overview of our re-
sults for different values of both the forcing amplitude and
the forcing frequency. The results are presented in terms
of the relative maximum local response,M(x), which is
defined as

M(x) = M1(x) − M1(xmin) (12)

where
M1(x) = log10

∣

∣

∣
max

t
qloc(x, t)

∣

∣

∣
, (13)

and that forms the most positive surface rate of heat trans-
fer over time as a function ofx, and the relative minimum
local response,N(x) as

N(x) = N1(x) − N1(xmin) (14)

where
N1(x) = log10

∣

∣

∣
min

t
qloc

∣

∣

∣
, (15)

is the magnitude of the most negative surface rate of heat
transfer over time. We note that these quantities have been
maximized or minimized after the decay of transients as
done in Paul et al. (2008).

The valueM1(x) is the logarithm of the maximum
temperature gradient at the surface over time once the
disturbance has settled into a time-periodic state and is a
measure of how strong the waves are. The quantityM(x)
measures this strength relative to that atx = xmin. Thus,
the computed curves forM(x) should be identical when
A is sufficiently small and nonlinear effects are negligi-
ble. Indeed, within this regime the values ofM(x) and
N(x) are also identical. However, onceA is sufficiently
large that the flow becomes nonlinear, then not only does
M(x) depend on the value ofA, butM(x) andN(x) are
no longer equal.

In Fig. 19, each solid curve corresponds to values of
M(x) while the dashed curve corresponds to values of
N(x). We have plotted four pairs of curves each for differ-
ent values ofA that are marked by a, b, c, and d. Fig. 19a,
which corresponds toλ = 0.55, shows that there is no dif-
ference between the values ofM(x) andN(x), and they
are also independent ofA. Thus, the development of the
waves follows the linearized theory of Paul et al. (2008).

For λ = 0.6 and 0.65, the situation is almost ex-
actly the same, although the curves for the largest ampli-
tude,A = 10−2, are beginning to deviate from those of
smaller amplitudes. Whenλ is as large as0.8 and1.0, the
curves for the different amplitudes are very distinct and
the shapes of the curves could be interpreted in a variety
of ways, including the possibility of mean flow saturation
effects. However, linear theory leads us to expect that all
the curves forλ = 0.8 and1.0 should decay, but for each
case three of them do not. Therefore, we have investigated
this more closely in Fig. 20, which displays isotherms
over two forcing periods forλ = 0.8 andA = 10−2.
It is essential to note that nonlinear effects are sufficiently
strong that the mean disturbance temperature field over
one forcing period is no longer zero, and therefore, we
plot contours of̂θ − θ̂mean rather than̂θ only. We note
that 50, 000 time steps are taken to obtain time periodic
solutions shown in Fig. 20. The immediate response in
the region near to the leading edge consists of traveling
waves of the type that is consistent with linearized theory
for λ = 0.8, namely fairly rapid decay. However, much
further downstream the cells are more consistent with the
λ = 0.4 case and clearly have a longer wavelength.

Black triangles are used in Fig. 20 to clearly show the
resonance between these two states. Att = 4984.3, the
left and middle triangles delimit four cells over two com-
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FIG. 19: Curves representing the growth of instabilities for frequencies of> 0.4. Solid lines correspond toM(x),
and dashed lines toN(x). Here (a)A = 10−2, (b) A = 10−3, (c)A = 10−4, and (d)A = 10−5.

plete forcing periods. As time increases tot = 5000,
these four cells transform into what is effectively two cells
by a process of cell merging, the mechanism for which
may be seen by the evolution of the shaded regions with
time. Therefore, we what we have is called a subharmonic
resonance, where the local spatial wavenumber becomes
half of its original value. Similar resonances take place

for other disturbance amplitudes, but they take place in-
creasingly far from the leading edge as the amplitude de-
creases.

Finally, it is worth contemplating the mechanism
behind the subharmonic resonance, for it is not as
straightforward as the superharmonic resonance, where
a straightforward self-interaction mechanism may be in-
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FIG. 20: Contours of̂θ − θ̂mean at eight equally-spaced
intervals in last two forcing periods. Hereλ = 0.8 and the
maximum amplitude is atA = 10−2. The correspond-
ing contour levels are at±6.5(10−3, 10−4, 10−5, 10−6,
10−7).

voked. Subharmonic resonances have also been obtained
in vortex convection in porous media [see the review
by Rees (2003)], where a nonlinear vortex system of
one spanwise wavenumber undergoes a smooth transfor-
mation to a system with half the wavenumber. In that
convecting system, which is parabolic in space, rather
than time, the subharmonic has to be seeded as a small-
amplitude disturbance, one that is very much smaller than
that which induces the primary vortex system (funda-
mental). The usual scenario is that the primary vortex
system at first grows in strength with distance from the
leading edge while the subharmonic disturbance decays.
The primary vortex eventually saturates and begins to de-
cay, but the subharmonic then begins to grow. The tran-
sition between the primary vortex system being domi-
nant and the subharmonic being dominant is smooth, but
quite rapid. All these factors are present for the boundary
layer considered here except for the fact that the subhar-
monic has not been introduced artificially. In an earlier
review, Rees (1998), argued that linearized systems such
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FIG. 21: Mesh independence test showingqloc at three
different times forλ = 0.4 andA = 2 × 10−5.

as those considered in Paul et al. (2008), and that are el-
liptic, may be treated as a partial differential eigenvalue
problem whose eigenvalues are complex growth rates and
whose eigensolutions are mode shapes. In the present
problem, nonlinearities are present even if they are small
and the nonlinear interactions between the evolving so-
lution and itself are very likely to contain nonzero com-
ponents of all the eigensolutions of the linearized form
of Eqs. (1)–(3), including one corresponding or closely
corresponding to a subharmonic. Nonlinear interactions
will then guarantee that the solution with the same fre-
quency as the disturbance frequency will dominate near
the leading edge, but a subharmonic that is close to the
overall favored frequency will dominate further down-
stream.

7. CONCLUSIONS

We have studied some aspects of the behaviour of non-
linear waves within the free convective flow from a verti-
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cal heated flat plate. A time-periodic thermal disturbance
was introduced near the leading edge to generate waves
and to find the nonlinear response of the boundary layer.
We have found that the nonlinearity has a strong effect
on the evolution of waves in the boundary layer, and the
waveforms that are realized depend strongly on the forc-
ing frequency and disturbance amplitude.

When the forcing frequency is close to0.4, which is
the linearly most amplified frequency found in Paul et al.
(2008) and corresponds to the greatest spatial growth, the
resulting flow retains the same frequency [see Fig. 5 of
Paul et al. (2008)]. We found that it was difficult to obtain
numerical solutions when the disturbance amplitude was
larger than approximately2 × 10−5 due to the inability
to resolve the evolving detailed structures with the chosen
grid. However, whenλ is sufficiently far below0.4, differ-
ent types of superharmonic resonance take place. These
are characterized by cell splitting in order that the flow
resembles closely that corresponding to the favored fre-
quency. The nonlinear interaction of the wave train with
itself generates new waves with double, triple, or quadru-
ple the local spatial wavenumber, depending on the pre-
cise value of the disturbance frequency and its proximity
to an integer submultiple of0.4.

For frequencies that are> 0.4, we have found that
cell merging can take place that halves the wavenumber.
We have attempted to explain this mechanism in terms
of eigensolutions of the linearized elliptic system. Such
resonances are quite well known for systems of vortices
where one wavenumber dominates at stations relatively
close to the leading edge, but which transform smoothly,
if rapidly, to a new system with half the wavenumber [see
Chen et al. (1991) and Zuercher et al. (1998), but these
are rare for two-dimensional wave instabilities].

To our knowledge, the only experimental study of a
vertical boundary layer that concentrates on nonlinear ef-
fects is the paper by Szewczyk (1962). In this work, the
nonlinear two-dimensional wave train was destabilised by
a streamwise vortex system consisting of pairs of vortices,
one of which is fairly close to the heated surface while the
other is further away. At present, we are unaware whether
such a vortex system could be induced in the presence
of unsteady thermal disturbances of the type used here,
or whether they are a natural consequence of destabiliza-
tion in a fairly quiescent environment or a product of the
dye-injection technique used by that author. But it is clear
that a three-dimensional study is required to determine
whether the two-dimensional nonlinear phenomena pre-
sented here are robust.
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APPENDIX

In Fig. 21, one set of results for the mesh-independence
test are presented. Three different instantaneous profiles
of qloc for λ = 0.4 andA = 2 × 10−5 are presented. The
agreement found between them is very good and clearly
indicate that the480 × 48 used here yields a sufficiently
well-resolved and accurate solution. The linear stability
results contained in Paul and Rees (2008) also showed
a similar level of agreement for the mesh-independence
tests using the same grids.
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