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In a previous paper (Int. |. Thermal. Sci., vol. 47, pp. 1382-1392, 2008), the authors performed a detailed numerical
investigation of the linear instability of the thermal boundary layer flow over a vertical surface by introducing unsteady
thermal disturbances near the leading edge and by solving numerically the fully elliptic linearized stability equations.
The main aim of the present paper is to extend those results into the nonlinear regime by seeding the boundary layer
with similar disturbances of finite amplitude. The ensuing nonlinear waves are found to exhibit a variety of behaviours,
depending on the precise amplitude and period of the forcing. When the amplitude is sufficiently small, the linearized
theory of the previous work is reproduced, but for larger amplitudes, cell splitting or cell merging may occur as waves
travel downstream. Cell splitting takes place when disturbance frequencies are somewhat smaller than the most strongly
amplified nondimensional disturbance frequency of 0.4 for which the boundary layer response, is at its greatest in terms
of the surface rate of heat transfer (see Fig. 8 in previous paper). Cell merging takes place at frequencies what are
approximately double that of the most strongly amplified disturbance frequency. Attention is focussed on fluids with a
unit Prandt] number.
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1. INTRODUCTION a manner that is roughly in accord with the predicted
growth rates for a constant frequency [see Fig. 11 of Paul
The effect of introducing a time-periodic thermal distust al. (2008)].
bance near the leading edge of a vertical thermal bound-n the context of free convection, there are a moderate
ary layer was considered in Paul et al. (2008). Such disimber of papers that deal with free convection within ei-
turbances are analogous to the spatially localized disttiver square or rectangular containers with sidewall heat-
bances introduced within the boundary layer by the preésg and cooling, and that therefore have a close relation-
ence of suction/blowing slots [e.g., see Fasel and Konz&tip to the present external flow. Examples of these stud-
mann (1990), or the varying thermal source of Brookars are the papers by Janssen and Armfield (1996) and
et al. (1997) and Herwig and You (1997)]. When sucrmfield and Patterson (1991) and an entire issue of the
thermal forcing is of sufficiently small magnitude, a reldnternational Journal for Numerical Methods in Fluids
tively large transient response travels downstream Igaviivol. 40, no. 8, pp. 951-1144, 2002), which is devoted to
behind a time—periodic state. Convection cells are foutite types of numerical method used for modeling convec-
to stretch gradually as they travel downstream due to tfien in an8 x 1 cavity. However, there is a substantial
fact that the basic boundary layer accelerates. The loddference between these cavity flows and the flow con-
amplitude of the periodic response follows what is esidered here; within cavities the wave disturbances leave
pected from linear stability theory using the parallel flowhe ascending hot boundary layer, travel across the top of
assumption, namely, that it decays or grows spatially time cavity, and seed disturbances into the descending cold
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NOMENCLATURE

a scaling factor 0 nondimensional temperature

A amplitude of the thermal disturbance ¢ angle from the

C function of ¢ andn vertical

d parameter to controd i) streamfunction

J Jacobian w vorticity

M maximum local response &,m  similarity variables

N minimum local response

Pr Prandtl number Subscripts

qioc  Surface rate of heat transfer, Eq. (11) max maximum value

t time min  minimum value

x,y nondimensional Cartesian coordinates

Superscripts

Greek Symbols B steady flow quantities

A temporal frequency ’ disturbance quantities
boundary layer. In turn, this introduces disturbances back 821IJ 821IJ _cad 1
into the base of the hot boundary layer. Thus, a feedback 082 T o2 w, Sy
mechanism is set up that does not have a counterpart here.
Moreover, when the hot and cold boundary layers in a o 92d 32 N - A R
cavity are distinct, the core region is thermally stratifiedC——- = ——+——+J({, ®)+J (P, ®)+ J, )
unlike the present situation where the ambient tempera- or 9% 8}] .
ture outside the boundary layer is umforr_nly cold. o172 (@ sin ] n 90 cos Q) ’ @)

To date, there appears to be no published paper deal- 0§, 4 0On 4

ing with nonlinear phenomena in the vertical boundary
layer treated as an external flow except for the early ex- 90 920 92
perimental study of Szewczyk (1962) who used a dyec'— e Pr<8£2 + oz
injection technique to follow the transition to turbulence

in water. In that very early paper, there appears to be RfiereC, &, andn are defined according to
systematic approach to determining criteria for the onset

of secondary instabilities, which take the form of pairs of 3\ 2/? 1/3

(&m) ( 4) (£2+n?)

9>+J(1p 0)+J(b, 8+, 8), (3)

counter-rotating streamwise vortices. In the presentpape

we choose to concentrate on a simpler problem, namely, 4

the response of the boundary layer to time-periodic two- P (&+ iﬂ)] = (z +iy)®, 4)
dimensional thermal disturbances placed on the surface

near the leading edge. The aim of the present paper, then
is to extend the analysis of Paul et al. (2008) into the notE'e Jacobian operataf, is defined according to

linear regl_me gnd our quectlve is to determme the differ- M Ix Oy

ent ways in which nonlinear effects are manifested when J(,x) = Edn O O (5)
the boundary layer is subjected to such time-periodic dis-

turbances. (wherex represents either the temperature or the vor-
ticity) and where overbars and circumflexes denote the

2. NONLINEAR DISTURBANCE EQUATIONS steady basic flow variables and the disturbance quantities,

respectively. In the above equations, the valfigis the

The full nonlinear equations of motion were presented amgular coordinate measured from the upward vertical; it
Paul et al. (2008), and their derivation is omitted for thie not possible to give a simple closed-form expression

sake of brevity; they take the form, for this in terms ofg andn, but it is straightforward to
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Thermal Receptivity of Free Convective Flow 3

produce the exact values numerically. The boundary cavas found to be independent of the valuebahat was
ditions to solve the above system of equations are chosen.

SO R Much of our description of the dynamics of the insta-
Y=19y=0, 6=0 on n=nmin=0, (6) pjlity involves the rate of heat transfer at the surface, and
therefore, it is convenient to define the quantity,

| =0 D=0 é =0 = Mmax; 8 8é
ll)ﬂ ’ w ’ as n n ( ) qloc(av t) = T a.

and a buffer/sponge region is used near to the outflow on n=0
boundary§, = &,,,.«, in order to dampen out disturbances
and prevent the growth of unphysical reflections; full déXf course, this expression yields different values when
tails of our procedure may also be found in Paul et &ompared with thg derivative, but given that we are gen-
(2008). erally interested either in wherg,. = 0, or in variations
The steady state basic flow is computed first, as de-time at a fixed point in space, the distinction between
scribed in detail in Paul et al. (2008). Then the nonlithe different derivatives is not important.
ear disturbance Eqgs. (1)—(3) are solved for a variety of
disturbance frequencies and amplitudes in order to detgr-
mine the nonlinear characteristics of the disturbed bound-
ary layer flow. The instabilities are induced in the sanmnite difference techniques were used to solve the sys-
way as in Paul et al. (2008), namely, by introducing them of nonlinear Egs. (1)—(3). The two equations with
following time-periodic thermal disturbance on the heateghe derivatives were discretized using second-order ac-

(11)

NUMERICAL METHOD

surface near the leading edge: curate central difference approximations, and the DuFort-
. Calt—£o)? Frankel scheme was employed for the time deriva-
0(E,0) = Ae ° sin(At), (9) tive. The Jacobian terms were approximated using the

here is the t | f _ o1 h Arakawa (1966) formulation, which was designed to be
w Tre flst eAetrr?p(()jr_at rgquencyr, _I't d a cdose;]n particularly suitable for unsteady flows. Neumann bound-
scaiing tactor, € disturbance amplitude, and w erSry conditions were approximated using a standard ghost

£o = 20 defines the location of the leading edge of thﬁ’\o'nt approach, which therefore maintains second-order

thheated su_:fadce. '215. nonlln_ear W?vets ?ref betlnghcopr"lls_ldeae uracy and has an asymptotically smaller discretization
€ magnitude okt IS how important. In fact, Wnem 1S o than 4 one-sided first-order approximation.

- a s B

sufﬁuenﬂy large .(e.g..A - .2.>< 107" whenA = 0'4). The Poisson equation (1) was solved using a multi-

the starting transient is sufficiently powerful that region_ . . . i )
rid correction scheme algorithm to accelerate iterative

of high shear and high temperature gradient are formed. : : .
. . . . convergence. It incorporates a V-cycle algorithm involv-
The very poor resolution associated with these regians . . : .
|nl%llne Gauss-Seidel relaxation. The method is based on

causes the numerical method to become highly inaccur, S pointwise method described in Briggs (1987), but it

and sometimes unstable. Therefore, we adopted an ad hoc ; ) . L
) ) . adopts two line relaxations per coordinate direction on
procedure whereby is regarded as a function gfwhich -
each multigrid level.

rises slowly from10~—8 (a level for which no numerical . }
y ( In the simulation{ ..« = 620 was chosen as the loca-

Ir}is'(Lazjb(;m}r/haer:Z?osr;mt.haen%evaf!\ltji?/edfe)ﬁtgcizifr qul:rre: ;mr;ition of the outflow boundary and the buffer region started
P ) ’ 9 ge s'a ?rgm & = 520. The buffer domain technique of the out-

transient are reduced substantially and the flow is ableﬂtoW boundarv follows the methodoloay introduced b
settle to a time-periodic state. We used the following e y gy y

. Kioker et al. (1993).

pression forA (¢): A total of 480 steps were used in the rangelirection

logo [A(t)] = =8 + d(1 — e™")2. (10) Wwith a uniform step length§é = 1.25. In then direction,

48 equal intervals were used in the< 1 < Npax = 12,

This expression shows that = 108 initially, but A — and therefore the step length was = 0.25. Given that
10-8*? ast — oo. The valueh = 0.01 was found to yield the step lengths satisf, = 561, which corresponds to
suitably good results when 15,000 time steps of lengittell aspect ratio 03, a line relaxation method is essen-
5t = 0.1 were taken. Once the transients have decay#d]| to maintain a fast iterative convergence of the Poisson
the resulting time-periodic response of the boundary laysgfuation, even with multigrid smoothing. We were able
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to take five multigrid levels, and each V-cycle was com-
prised of two relaxation sweeps in each coordinate direc2’’>
tion for each grid. At each time step, the new vorticity ang
temperature fields are calculated first, followed by the so-
lution of the Poisson equation for the streamfunction, andus.o
finally the boundary vorticity is computed in the way pre-
sented in Roache (1972).

Finally, it is essential to undertake grid independenc%m5
tests to check the values &f, 5¢, andén used in the sim-
ulations. These were undertaken by halving the intervals

in both directions. Details may be found in the Appendix.
320.0

4. COMPUTATIONS FOR A =0.4

In this section, we consider the forcing frequenky= o575 =
0.4, because the linear analysis of Paul et al. (2008) shows
that the this frequency elicits the largest response of the
boundary layer to periodic forcing; therefore, we call this
the most strongly amplified disturbance frequency for the "' I
linear regime. We have found that the maximum value
of A for which we were able to compute solutions is = =
A =2 x 1075, At larger values of4, the strength of the 1325 ?& =—— —
nonlinearity is such that the generation of narrow shear BE
layers causes numerical instability due to poor spatial res

on this maximum value ofd, and various views of the 140 142 14 146 148 150
resulting flow are given in Figs. 1-4. o ) . £/10
Figure 1 shows how the time variation af.. varies FIG. 1: \(anatlon witht of the normahsed values a@f,..
with distance along the boundary layer. Because the mag€ forcing frequency and amplitude axe= 0.4 and
nitude of the heat transfer may vary over many orders 6f— 2 ¥ 107, respectively.
magnitude ag, increases, each curve in Fig. 1 has been
normalized to display the same amount of vertical vari-
ation, and the mean value of each curve is located at Y@ also see how the evolving wave like disturbances have

corresponding value df on the ordinate of the graph: thidecome sufficie_ntly strong that a severe distortion of the
convention also applies to other figures of the same ty¥erall thermalfield is obtained. Whehis chosen to take
The accelerating nature of the basic boundary layer majger values, then similar distortions occur progresgive
be seen in Fig. 1 by tracking the spatial location of, sdirther upstream.
the maximum value ofy,. ast increases. Figure 4 shows contours a@f,. as a function of both

For small values of, the variation in the surface heat: and¢. Of particular interest here is how the symmetry
transfer is sinusoidal and the boundary layer responsédé&ween positive and negative rates of heat transfer is bro-
still within the linear regime. However, strong wave steeen as the flow becomes nonlinear. At the large values of
ening occurs at larger values &f which indicates the z, the “nose” corresponding ig,. = 8 x 1072 (e.g., at
presence of nonlinearity. At such distances from the lead= 2700 and¢ = 1410) occurs at a smaller value of
ing edge (e.g.& = 520 or, equivalentlyz = 2850), the than does that corresponding¢@. = —8 x 1072 (e.g.,
value of g is seen to decrease very slowly and then &d z = 2740 andt = 1406). This lack of symmetry is
rise sharply before the next gentle decrease. The sheapsed by an essential difference in the thermal response
rise is associated with the streamwise advection of the tea strong flow directed toward the surface and one away
gion near the heated surface just upstream of where tlt@m it. In the former case, cold fluid is pushed toward
isotherms displayed in Figs. 2 and 3 are widely spactte surface causing a large positive change in the rate of
(e.g., see the black triangle in Fig. 3). In Figs. 2 and Beat transfer. In the latter case, the hot fluid is pulled away
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t = 1500.0
t/10
t=1498.0

t=1496.1

t=1494.1

140900210 220 230 240 250 260 270 260
t = 1486.2
z/10
i1 F1G.4 Contours Ofjioc A = 0.4, andA = 2 x 10~°. The
———eeee—— “ contour levels are at8 x 1072, 44 x 1072, +£2 x 1072,
v =37 @ = 3600 +1072, +5 x 1073, and0. The contoursg,. = 0, are

FIG. 2: Isotherms of thed field at eight equally spacedigse that cross the ordinate.

time intervals over one forcing period for = 0.4 and

A =2 x 107°. Contours are drawn at intervals@f..

it is possible to use larger values 4fin these cases since
the spatial growth of the disturbance is smallea®-
cedes from0.4. However, whenm\ differs substantially
from 0.4, new nonlinear effects arise and these form the

t=1484.3 t = 1486.2 t=1488.2 t =1490.2

W % % % subject of the next few sections and is the primary focus
— =2 E— %& of this paper.

t=1492.1 t=1494.1 t = 1496.1 t =1498.0 5. SUPERHARMONIC RESONANCES (A < 0.4)

=\

FIG. 3: Close-up view of the isotherm®) shown in
Fig. 2. Each frame is plotted in the rangg00 < = <
3080. The black triangle indicates wheug,. attains its
minimum value.

In this section, we will cover those cases for which the

/\/\ forcing frequency is< 0.4. WhenA is sufficiently small,
the presence of nonlinearities serves to substantiallymod
ify the manner in which waves travel downstream, and the
patterns obtained are entirely different from those given
by the linearized theory presented in Paul et al. (2008).
That this should happen is easily understood if, when
considering the evolution witld, of a disturbance with
A = 0.2, it is realized that the nonlinear interaction of
from the surface, but because the overall temperature ghee corresponding wave train with itself generates waves
dient cannot become positive (since that would imply thvéith double the local wavenumber. Such waves are then
existence of a region of fluid that is hotter than the susf roughly the same wavelength as those generated by a
face). The value of;,. must therefore be bounded belowgisturbance with frequency = 0.4, and they are there-
but it is effectively unbounded above. fore able to grow preferentially. This could be termed a

Qualitatively similar results to those shown above afle2 superharmonic resonance because the local wavenum-
obtained wheii takes values fairly close t@4, although ber is found to double at a position in the boundary layer,

.
4
¢
¢
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which turns out to be dependent on both the amplitude ,, )

and frequency of the initiating disturbance. N
Other superharmonic resonances, namely, 1:3 and X4, / \

occur asA decreases, and these are also shown below.

Further resonances of this type are suspected to be likely

to occur, but the present computational domain is insuffi- ©

)
N
\ f(g) )
ciently large to represent them well.
Y N

FIG. 6: Limit cycles of the phase trajectories gf,. at
The nonlinear evolution of the flow for values dfclose Various positions along the surface for= 0.18, A =
to 0.2 are considered. The manner in which the flow d&-x 1073 (@) & = 175, (b) & = 270, () & = 288, (d) & =
velops is again depicted in a variety of ways in order )0, (€) & = 313, (f) & = 325, (9) & = 350, and (h)§, =
gain some understanding of the role played by the amgif0. The horizontal coordinate ig.., while the vertical
tude and frequency of the disturbance. Some example§@@rdinate i$qgio./0t.
this development are shown in Figs. 5-9.

Figure 5 shows how the evolution gf,. with time ure 5 shows clearly that the boundary layer responds at
changes its character §increases for the case= 0.18, the same frequency as the thermal forcing wiiere
when the disturbance amplitude s = 2 x 1073. Fig- (70, 300), but that it responds at twice the frequency when

(©)

—
_/

AN

NPV,
oyl

5.1 1:2 Superharmonic Resonance

t=1473.8

t = 1469.4

t = 1465.1

t = 1460.7

t =1452.0

t =1447.6

t=1443.2

t =1438.9

z = 3600

FIG. 7: Isotherms ofd at eight equally spaced times in
0, . ===~~~ ~=-~ (e period foA = 0.18 andA = 2 x 10~3. Contours
120 1o 130 135 140 143 t/10150 are plotted for® = + (102, 1073, 1074, 10?, 1076,
and10~7). The black triangles mark the start and end of
FIG. 5: Variation witht of ¢, for the 1:2 superharmonica complete cell pair at = 1438.9, which becomes two
resonance, whee= 0.18 andA4 = 2 x 1073. pairs att = 1473.8, one forcing period later.
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FIG. 8: Zero contours 0B over three periods foh = 0.18, with (a) A = 2 x 1074, (b)) A = 3 x 1074, (¢)
A=35x10"4(d)A=38x10"% (e)Ad=4x10"% and (A = 2 x 103, Positive {+) and negative<{) signs
correspond to wherg,. > 0 and< 0, respectively.
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& > 350, with a short transition regime between the two
regions. The temporal frequency within the second region
is 0.36, which is close to the most strongly amplified dis-
turbance frequency,.4. At the maximum value of, de-
picted in Fig. 5, the variation with time of the heat transfer
is roughly sinusoidal, showing that the disturbances to the
basic flow are still too small to have yet reached the fully
nonlinear regime. However, the 1:2 resonance is a nonlin-
ear phenomenon and it may be explained by the very dif-
ferent spatial growth rates associated with the- 0.18

and theA = 0.36 wave trains. The former grows slowly
relative to the latter, and the self-interaction of the farm
causes a disturbance of the form of the latter which then
grows more rapidly and eventually dominates after a cer-
tain distance has been traveled.

In Fig. 6, we show the limit cycles of the phase trajec-
tories of ¢, at different positions along the surface. In
Fig. 6, as with others of its type presented later, the hor-

FIG. 9: Variation with A of the position of the 1:2 super-izontal coordinate ig.., while the vertical coordinate is
harmonic resonance for (&)= 0.18, (b) A = 0.2, and (¢) dqi../It, which was calculated using a central difference

A =0.22.
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Figure 6a is close to being an ellipse, which indicatemance process is more complicated; a careful inspection
that the waves are roughly sinusoidal and confirms th&Fig. 8d shows that one cell transforms to three, then a
above statement that the disturbance is still essentialifferent grouping of three becomes one by destroying the
linear. As ¢ increases, the flow becomes progressivetyiddle cell, and then a final one-to-three transformation
contaminated by the growing superharmonic wave. fgkes place. Thus, whea is relatively small a cell for
a point just downstream of = 288 and upstream of which ¢, > 0 splits into three, but whed is relatively
& = 300 (Figs. 6¢c and 6d, respectively) a loop develarge, this happens to a cell for whigh. < 0.
ops in the phase trajectory and it is this position which Itis clear from Fig. 8 that the position at which the ap-
may be considered to mark the transition point betwepearance of new cells occur depends on the forcing am-
the two regimes. A€ = 500 (Fig. 6i), the second loop plitude, A. Figure 8 also suggests that cell splitting occurs
is almost identical to the first loop and this represents thearer to the leading edge dsincreases, which is intu-
full establishment of the superharmonic response. Agaitive. This has been investigated using many more values
these final loops are roughly circular, which confirms tref A than are represented in Fig. 8 and for the three values,
linearity of the disturbance. A = 0.18,0.2, and0.22; the results are shown in Fig. 9.

We emphasise that the transition from Figs. 6a—6h is The curves shown in Fig. 9 correspond to where cells
not a period doubling, because the curves are drawn osieg either created or destroyed, or in mathematical terms,
only one forcing period. Rather, this represents a perimghere the contourg,. = 0 in Fig. 8 have turning points;
halving and is one that occurs spatially, rather than teme denote these positions by. Figure 9 clearly shows
porally or as a governing parameter changes. the general trend for,. to increase as the forcing am-

In Fig. 7, we have plotted a corresponding set of distyslitude decreases, although the evolutiomgfvith A is
bance isotherms over eight equally spaced intervals overa straightforward. On taking the = 0.18 curve, it is
complete forcing period in time. The maximum and mirseen that there are three valuedogt, A = —3.4 (i.e.,
imum levels shown are-10~2, and therefore, the magni-A ~ 3.8 x 10~%), which correspond to the three turning
tude of the disturbance field is not particularly large. Thmints displayed in Fig. 8d. Given that resonance begins at
black triangles shown in Fig. 7 represent one wavelengktie smallest value af.. for an given value of4, it is clear
corresponding to the thermal forcing frequency and ateat asA decreases the value of increases te- 1960,
used to show the manner in which the period halving takafter which it jumps to nea¥130, which is near where is
place. Ag increases, the leading cell of the two elongatgsiaced in Fig. 8d. Similar jumps occur at the other values
compared to the second, and eventually splits into threfe\. We also see the general trend fQrto increase a&
by the generation of a small cell of the opposite sign; thiscreases (at least over the range of values presented).
is a typical scenario for other values dfandA.

_ Cont_ours corresponding tﬁoc_ = 0 over three forc- 5.2 1:3 Superharmonic Resonance

ing periods have been plotted in Fig. 8 in order to aid

the investigation of the effect of different disturbance-ann this section, we present the nonlinear evolution of
plitudes on the qualitative nature of the resonance. Helfee flow for forcing frequencies which are closeXo=

the forcing frequency remains at= 0.18, but A takes (1/3) x 0.4. In this case, the nonlinear self-interaction
different values. In Fig. 8, thermal cells are delineated the wave train should generate new waves with three
by the contours and the number of cells that exist atimes the wavenumber obtained by linear theory. This de-
chosen value of may be determined by placing a vertivelopment s displayed in Figs. 10-13 in an identical fash-
cal line at that value of and counting the intervals be4on to those for 1:2 superharmonic case.

tween the intersections of the line with the contours. Fig- Figure 10 shows the variation gf,. for the case where
ure 8d shows an example with three vertical lines placdd= 0.13 and the disturbance amplitudeds= 4 x 10~2
near the transition region. At the left hand liriegells @ [i.e., d ~ 6.60 in Eq. (10)]. Figure 10 clearly shows that
pairs) exist, but these undergo a complex transformatidrere are now three different spatial wavelengths present
to 12 cells (6 pairs) at the right hand line. The middle linén three different regions, which are given approximately
shows the manner in which the new cells appear. The fny-& € (70, 190), & € (190, 320), and§ € (320, 520).

sitions marked by “a” in Fig. 8 correspond to the appear- The first region, € (70,190), is where the waves
ance or disappearance of cells. In Figs. 8a, 8b, 8e, astillate with the forcing frequency = 0.13 and these

8f, a new cell simply appears in the middle of an alreadsire again generated directly by the thermal forcing. At the
established but distended cell. In the other images, the resd of the first region, there is a transition to a regime that
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382.5

320.0

132.5F

70.0
12

t/10
FIG. 10: Variation witht of the normalised values @f,.

t =1487.9

t =1481.9

t =1475.8

t = 1469.8

t = 1463.7

t = 1457.7

t = 1451.6

t = 1445.6

A
(| sﬁ

t = 1439.6

B)

‘ 33
z =37 z = 3600

FIG. 12: Contours of disturbance temperatug 4t eight
equally spaced intervals in a forcing period for= 0.13
andA = 4 x 10~2. The contour levels aré = + (10—,
1072,1073,107%,1075,1075). The black triangles mark
the start and end of a complete cell pairtat 1439.6,

for the 1:3 superharmonic resonance in the case wh@jifich becomes three pairsiat 1487.9.

A=0.13andA =4 x 1072,

(2) (b) (©)

-
-

™
~— )\

©)

TR (1 ([

o\ U
FIG. 11: Limit cycles of the phase trajectories @f. at
various positions along the surface for= 0.13, andA =

4x1072: ()& = 75, (b) & = 225, (c) & = 275, (d) & =

313, (e)& = 338, (f) £ = 363, (g) & = 400, and (h)§ =

450. The horizontal coordinate ig.., while the vertical
coordinate i9gio./Ot.

ShR

seen in Fig. 5 for the 1:2 superharmonic resonance case.
At the end of the second region, there is a second transi-
tion to a state where the waves oscillate with three times
the original frequency. Within this third region, the tem-
poral frequency i$).39, which is very close to the most
strongly amplified disturbance frequency. We note that a
similar sequence of transitions involving the spatial evo-
lution of vortices in a free convective boundary layer in
porous media is given in Rees (2003). In that work, a
spatially evolving steady vortex system first doubles the
number of vortices per unit spanwise length and then af-
fects a second smooth transition to three times the original
number of vortices.

Figure 11 shows the limit cycles of the phase trajec-
tories ofg,. at various distances from the leading edge.
Figure 11a is close to being an ellipse, indicating again
that the waves are essentially linear. &éncreases, the

oscillates with double the original frequency. The tengisturbance becomes progressively contaminated by the

poral frequency within this second region, i.e.,&te

growing superharmonic waves. The first transition occurs

(190, 320) is 0.26; this transition is quite similar to thatbetween Figs. 11a and 11b. Two well-established loops
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FIG. 13: Zero contours ofy,. over the last few periods in time far = 0.13, where ()4 = 1.4 x 1072, (b) A =
1.6 x1072, () A=4x10"2,(d)A=52x10"2,(e)A=5.6 x 1072, and (A = 6 x 10~2.

appear at, = 313 (Fig. 11d), but these are of very dif-is highly dependent on the forcing amplitude. For small
ferent amplitudes. This may be seen clearly riear320 values ofA (e.g.,A = 1.4 x 10~2 and Fig. 13a), re-

in Fig. 10, where the wave train has alternating maximgions within whichgq,,. < 0 each spawn two internal
The second transition occurs just upstreant,of 338 regions with positive rates of heat transfer; whereas for
(Fig. 11e). At§ = 450 (Fig. 11h), the three loops arethe 1:2 superharmonic case, it was only one region that
almost identical and roughly elliptical. was spawned. Thus, one cell splits into five. On the other

Figure 12 shows the corresponding set of disturbarfeand, in Figs. 13b-13f, all cells that exist near to the lead-
isotherms over eight equal intervals during one forcingg edge split once; in all cases, the first cell to split has
period. The successive contours in Fig. 12 correspondjte. < 0. In Fig. 13, the positions marked by “a” and “b”
negative integer powers @6 multiplied by the maximum correspond to the appearance of new cells. Once more, as
absolute value of the isotherm field, whichdsl0—L. The A increases, the cell-splitting positions move closer to the
pairs of black triangles included in Fig. 12 again represdaading edge.
one wavelength corresponding to the thermal forcing fre- In Fig. 13e, vertical lines are again drawn to count eas-
guency. Ag increases, the trailing cell between the triarly the number of cells. The left vertical line has eight
gles at first elongates, compared to the second, and thelts, while it becomes6 at the third line an@4 at the
splits into three with the generation of a new small cefburth line. Although the third line from left haks inter-

In a similar manner, when > 1463.7, the leading cell vals, they are unequal in size, which corresponds to the
of the original pair elongates, splits, and generates a nemequal loops of Figs. 11d-11e.
cell, finally becoming three.

Contours ofy,. over the last few periods are shown i%
Fig. 13. A variety of forcing amplitudes are represented
for A = 0.13. Once more, it is shown clearly that thén this section, we present the nonlinear evolution of the
manner in which the superharmonic resonance takes plioe on taking the value of forcing frequency to be close

3 1:4 Superharmonic Resonance

Computational Thermal Sciences



Thermal Receptivity of Free Convective Flow 11

to A = 0.1, a quarter of the favoured frequency. These ) © @

results are shown in Figs. 14-18. — —
Figure 14 shows the waveform development when

0.09 and A = 2 x 10~'. Figure 14 shows clearly that

: . ' e ® ® o)
there are now four different regions present. The first re- =
gion is where¢, € (70,132), wherein the waves oscil- Y —
late with the forcing frequency = 0.09. At the end of =
this region, there is the first transition and two unequal @ ®

D

waves appear within each forcing period. Thus, the sec-/h //N\ ﬁ
&%

ond region i<, € (132,257). Here the waves constituting % &% &

each pair are close to one another with a relatively undis-
turbed region between each pair. It is within these quies-
cent regions that a new wave develops to give three wa¥é&. 15: Limit cycles of the phase trajectories @f,. for
per period in& € (257,300), and subsequently, a secA = 0.09 andA = 2 x 1071: (a) § = 50, (b) & = 125,
ond wave is generated to give four waves per period f@) & = 175, (d) § = 200, (e) & = 225, (f) § = 238,
& > 300. At & = 500, each wave appears to be identicdl) & = 250, (h) & = 263, (i) & = 288, (j) & = 313,
to all other waves and are very similar to those generafgdl & = 338, and (I) § = 450. The horizontal coordinate
by aA = 0.36 thermal forcing. iS qioc, While the vertical coordinate i8qio./0t.

Figure 15 shows the limit cycles of the phase trajecto-
ries of the surface rate of heat transfer at various differen

W

AR <
SSSS t=1491.3
507.5 S A S
-
N
¢ NS t=1482.6
N
445.0 A
, t=1473.8
N
N _
382.5F A t = 1465.1
320.0
t = 1447.6
257.5
t=1438.9
t=1430.2
195.0
; t=1421.4
; i
132.5 2237 & = 3600

FIG. 16: Contours ofd at eight equally spaced intervals
in a forcing period foA = 0.09 andA = 2 x 10~ . Cor-
100 110 120 130 140 150 responding contour levels are plotted for= + 5(1071,

t/10 1072,1073,107%,107°,1075). The black triangles mark
FIG. 14: Waveforms showing the 1:4 superharmonic rea-complete cell pair at = 1421.4, which becomes four
onance in the case whén= 0.09 andA4 = 2 x 10—, pairs at time = 1491.3.
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positions along the surface. Like the previous superhar-
monic cases, Fig. 15a shows an almost elliptic shape, in-
dicating that waves are of small amplitude near the lead-
ing edge. Generally, the development of the superhar-
monic resonance sequence is such that extra single loops
are added in turn to the phase trajectories. We note that
Fig. 15I, which represents the completion of the super-
harmonic resonance, is just within the nonlinear regime,
as may be seen by the non elliptical shape of the trajecto-
ries.

Figure 16 shows the corresponding set of disturbance
isotherms over eight equally spaced intervals in one forc-
ing period. Ast increases, the leading cell elongates com-
pared to the trailing cell and, finally, it splits into seven b
a complicated sequence of cell generation.

Contours ofg,,. = 0 shown in Fig. 17 also represent
the splitting of cells. The positions at which new cells ap-
pear are marked by “a”, “b”, and “c”. In Fig. 17, we see a

FIG. 18: Variation with A of the location of the turning complicated variation in the way the superharmonic reso-
points of the heat transfer for = 0.09. Three different nance takes place asincreases. In Fig. 17a a region of
curves are marked by “a”, “b”, and “c”denote the pospositive heat transfer, denoted by the plus sign, generates

tions of the three different turning points in Fig. 17.

two negative regions, “a”and “b”(so that one cell is trans-
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formed into five), while a negative region, denoted by the the magnitude of the most negative surface rate of heat
minus sign, generates one positive region “c”(so one theansfer over time. We note that these quantities have been
cell becomes three). Because the positions marked by “eigximized or minimized after the decay of transients as
“b”, and “c"are at roughly the same value©fthis means done in Paul et al. (2008).
that we have a very sudden change at 2200 from, say, The valueM;(z) is the logarithm of the maximum
one pair of cells to four pairs. temperature gradient at the surface over time once the
Similar comments may be made about Fig. 17b, whidisturbance has settled into a time-periodic state and is a
corresponds to a larger forcing amplitude. However, theeasure of how strong the waves are. The quantify)
cell marked a now appears before that marked “b”. Aseasures this strength relative to thatat x,,;,. Thus,
A increases further, cell splitting occurs much closer the computed curves fa¥f (x) should be identical when
the leading edge and the manner in which the 1:4 resbAds sufficiently small and nonlinear effects are negligi-
nance takes place alters markedly. Whkrs as large as ble. Indeed, within this regime the values &f(z) and
1.34 x 10~ (Fig. 17d), the first cell splitting creates aV(x) are also identical. However, onckis sufficiently
central “positive” cell, which subsequently splits to crdarge that the flow becomes nonlinear, then not only does
ate a central “negative” cell. At larger amplitudes, thre®/ (z) depend on the value of, but M (z) and N (z) are
positive cells appear within a negative cell, as displayad longer equal.
in Fig. 16. A detailed indication of how the turning points In Fig. 19, each solid curve corresponds to values of
displayed in Fig. 17 vary withl is shown in Fig. 18. This M (x) while the dashed curve corresponds to values of
sequence is also affected by changes in the forcing peridt(«). We have plotted four pairs of curves each for differ-
ent values ofA that are marked by a, b, ¢, and d. Fig. 19a,
6. SUBHARMONIC RESONANCES (A > 0.4) which corresponds th = 0.55, shows that there is no dif-
ference between the values &f(z) and N (z), and they
In Section 5, we presented a selection of cases displagye also independent of. Thus, the development of the
ing superharmonic resonances by considering the forciggves follows the linearized theory of Paul et al. (2008).
frequency to be< 0.4. In this section, we present some For A = 0.6 and 0.65, the situation is almost ex-
cases for which the forcing frequencys 0.4 for var- actly the same, although the curves for the largest ampli-
ious values of the forcing amplitude. We find that, for fyde, A = 102, are beginning to deviate from those of
wide range of the forcing frequenci [€ (0.55,1.0)], smaller amplitudes. Whenis as large a8.8 and1.0, the
the developing nonlinear flow causes cell merging, whiglyrves for the different amplitudes are very distinct and
means that the wave train loses half of its cells and thaé shapes of the curves could be interpreted in a variety
the local wavenumber halves. Specific examples are giv§fiays, including the possibility of mean flow saturation
for the frequency\ = 0.8. This is termed a subharmonicffects. However, linear theory leads us to expect that all
resonance and results are displayed in Figs. 19 and 2Qthe curves foi = 0.8 and1.0 should decay, but for each
However, in Fig. 19 we provide an overview of our recase three of them do not. Therefore, we have investigated
sults for different values of both the forcing amplitude anglis more closely in Fig. 20, which displays isotherms
the forcing frequency. The results are presented in tergir two forcing periods foh = 0.8 and A = 102
of the relative maximum local respons¥,(z), which is |t is essential to note that nonlinear effects are suffityent

defined as strong that the mean disturbance temperature field over
one forcing period is no longer zero, and therefore, we
M(z) =M — M (% min 12 P A
(z) 1(@) 1(@min) (12) plot contours ofd — 0,,c., rather thar® only. We note
where that 50, 000 time steps are taken to obtain time periodic
M (x) = log;, max Gioc(x, )|, (13) solutions shown in Fig. 20. The immediate response in

the region near to the leading edge consists of traveling

and that forms the mos.t positive surface rgte of hgat Uafi¥ves of the type that is consistent with linearized theory
fer over time as a function of, and the relative minimumy .\ _ g namely fairly rapid decay. However, much

local responseN (x) as further downstream the cells are more consistent with the

N(z) = Ny (2) — N1 (Zmin) (14) A = 0.4 case and clearly have a longer wavelength.
Black triangles are used in Fig. 20 to clearly show the
where resonance between these two statest At 4984.3, the
Ni(z) = logy ‘mtin Qoc| » (15) left and middle triangles delimit four cells over two com-
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FIG. 19: Curves representing the growth of instabilities for frengies of > 0.4. Solid lines correspond td/(z),
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plete forcing periods. As time increasestto= 5000, for other disturbance amplitudes, but they take place in-
these four cells transform into what is effectively two sellcreasingly far from the leading edge as the amplitude de-
by a process of cell merging, the mechanism for whichneases.

may be seen by the evolution of the shaded regions withFinally, it is worth contemplating the mechanism
time. Therefore, we what we have is called a subharmobiehind the subharmonic resonance, for it is not as
resonance, where the local spatial wavenumber becorsieaightforward as the superharmonic resonance, where
half of its original value. Similar resonances take plaeestraightforward self-interaction mechanism may be in-
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voked. Subharmonic resonances have also been obtaeethose considered in Paul et al. (2008), and that are el-
in vortex convection in porous media [see the revieliptic, may be treated as a partial differential eigenvalue
by Rees (2003)], where a nonlinear vortex system pfoblem whose eigenvalues are complex growth rates and
one spanwise wavenumber undergoes a smooth transfdrese eigensolutions are mode shapes. In the present
mation to a system with half the wavenumber. In tharoblem, nonlinearities are present even if they are small
convecting system, which is parabolic in space, rathend the nonlinear interactions between the evolving so-
than time, the subharmonic has to be seeded as a sntallon and itself are very likely to contain nonzero com-
amplitude disturbance, one that is very much smaller thaonents of all the eigensolutions of the linearized form
that which induces the primary vortex system (fundaf Eqs. (1)—(3), including one corresponding or closely
mental). The usual scenario is that the primary vortesrresponding to a subharmonic. Nonlinear interactions
system at first grows in strength with distance from theill then guarantee that the solution with the same fre-
leading edge while the subharmonic disturbance decaysency as the disturbance frequency will dominate near
The primary vortex eventually saturates and begins to die leading edge, but a subharmonic that is close to the
cay, but the subharmonic then begins to grow. The traoverall favored frequency will dominate further down-
sition between the primary vortex system being domstream.

nant and the subharmonic being dominant is smooth, but

quite rapid. All these factors are present for the boundaf'y CONCLUSIONS

layer considered here except for the fact that the subhar-

monic has not been introduced artificially. In an earlié&/e have studied some aspects of the behaviour of non-
review, Rees (1998), argued that linearized systems slinkar waves within the free convective flow from a verti-
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