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In this Discussion we shall reflect on various aspects of the recently published paper by Elaiw and Ibrahim (2008). Their
paper considers the onset of convective instabilities of a mixed convection boundary layer induced by the combined
presence of a hot horizontal surface in an unbounded porous medium and an externally imposed uniform horizontal
forced convective flow. These authors also adopt a power law variation in the surface temperature and allow for the
effects of nonuniform porosity caused by inefficient packing of the porous medium near the horizontal surface. The
primary aim of the present Discussion is to discuss the theoretical foundations of the analysis of Elaiw and Ibrahim
(2008) in order to clarify them unambiguously.
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1. INTRODUCTION

We discuss various aspects of the paper by Elaiw and
Ibrahim (2008), hereinafter referred to as EI2008. In par-
ticular, we consider (i) variable porosity effects and the
consequences for permeability, thermal conductivity, and
thermal diffusivity; (ii) the boundary layer approximation
and how it applies to the basic state computed in EI2008;
(iii) the numerical solutions; and (iv) the manner in which
vortex instabilities are studied, emphasizing, in particular,
the mathematical validity of the method used. We have
adopted the notation of EI2008 and readers are requested
to refer to that paper.

2. VARIABLE POROSITY

Porosity variations occur naturally when solid particles
pack imperfectly at a solid boundary (Nield and Bejan,

1992). Citing Cheng et al. (1991), Nield and Bejan quote
the following formula for the porosity:

ε = ε∞
[
1 + C exp(−Ny/dp)

]
(1)

where we note that Nield and Bejan use the variable,φ,
for porosity. In this formula the constantsC andN are
roughly1.4 and5, respectively. The value,dp, is the typ-
ical particle diameter and this is generally regarded as a
constant for typical porous media. Nield and Bejan (1992)
also quote Kozeny’s equation, which relates the perme-
ability to the porosity,

K =
d2

pε
3

β(1− ε)2
, (2)

whereβ = 150. These two equations may be combined
easily to obtain an expression for the permeability due to
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nonuniform porosity. On the other hand, EI2008 uses the
independent expressions

ε = ε∞(1+de−y/γ), K = K∞(1+d∗e−y/γ), (3)

where the constants,d and d∗, are given byd = 1.5
and3, respectively. However, the substitution of Eq. (1)
into Eq. (2) yields a form which is completely different
from that of Eq. (3). We also note that EI2008 cite Chan-
drasekhara (1985) and Ibrahim and Hassanien (2000) for
support, but these papers merely use the same formulas,
rather than give experimental or theoretical justification
for them.

Further on in paper EI2008 the valueγ is defined as
follows:

γ = x/Pe1/2
x , (4)

when forced convection dominates, and

γ = x/Pe1/3
x , (5)

when free convection dominates. The value Pex is pro-
portional to the distance from the leading edge, and there-
fore γ, which may be regarded as being equivalent to
dp/N , varies withx. That this is generally unphysical
has not been questioned by many authors, including some
cited in EI2008. Indeed, the above-quoted paper by Chan-
drasekhara (1985) seems to be one of the first papers to
introduce this way of studying variable permeability. It
is stated in EI2008 that this type of variation has been
taken so that the porosity and permeability variations are
functions of only the similarity variable,η. Despite be-
ing unphysical, there might have been some merit in this
approach had the governing equations for the basic state
been reduced to self-similar form, but the boundary layer
equations here remain nonsimilar. In our view, it would
have been better to have takenγ to be a constant (see
Rees and Pop, 2000), although it would have been much
better to have followed the formulation given in Nield and
Bejan (1992).

3. THERMAL CONDUCTIVITY AND DIFFUSIVITY

EI2008 quotes the following relations for the thermal con-
ductivity and diffusivity of the porous medium:

λm = ελf+(1−ε)λs, αm = α∞[ε+σ(1−ε)], (6)

whereλ denotes conductivity,α denotes diffusivity, and
the subscriptsm, f , ands refer to the porous medium,
the fluid phase, and the solid phase, respectively. Here

α∞ = λf/(ρcp)f is the diffusivity far from the heated
surface andσ = λs/λf is a conductivity ratio.

We believe that both of the formulas in Eq. (6) are in
error. Assuming first that the expression forλm is correct,
then the appropriate expression for the thermal diffusivity
of the porous medium should be

αm =
ελf + (1− ε)λs

ε(ρcp)f + (1− ε)(ρcp)s
, (7)

which expresses the relationship that the diffusivity is
given by the ratio of the conductivity and the heat capacity
per unit volume.

However, the expression forλm given in Eq. (6) is
also incorrect in general. When the porous medium is
formed of alternating strips of solid and fluid phase, and
when heat transfer takes place in a direction parallel to
these strips, only then is this expression correct. More-
over, should heat transfer take place in the direction per-
pendicular to these strips, thenλm is given by

1
λm

=
ε

λf
+

1− ε

λs
. (8)

These two formulas forλm were discussed at length by
Nield and Bejan (1992), particularly the aspect that they
represent the extreme limits for the possible effective
conductivity of a randomly constituted porous medium.
There are also many more recent papers which cover the
topic of the stagnant conductivity of a porous medium.
Two examples are the papers by Stagg (2002) and Zhang
et al. (2005). Further comments and references may be
found in the later editions of Nield and Bejan (1998,
2006), and the highly informative article by Cheng and
Hsu (1998).

4. THE BASIC FLOW

The analysis of the basic state in EI2008 is split into
two separate parts which deal, respectively, with those
regimes within which either free or forced convection
dominates. When free convection is induced by a uni-
formly hot horizontal surface, the similarity variable is
proportional toy/x2/3 [see Cheng and Chang (1976) and
Riley and Rees (1985)]. The resulting induced stream-
wise velocity outside the boundary layer is proportional
to x−1/3. Therefore when a uniform free stream is im-
posed upon this configuration, then the free convectively
induced velocity dominates near the leading edge but be-
comes subdominant far from the leading edge. Thus as
the distance from the leading edge increases from zero to
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infinity, free convective effects give way to forced con-
vective effects smoothly — this, we believe, is the correct
interpretation of the basic state. Therefore the basic state
should have been computed using a parabolic solver such
as the Keller box method.

However, the analysis of the basic state in EI2008 is
very confusing to follow. The parametersξf andξn are
used to model the two regimes:

ξf =
Rax

Pe3/2
x

, ξn =
Pex

Ra2/3
x

, (9)

Forced convection dominates whenξf = 0, and free con-
vection dominates whenξn = 0. It is also stated that
0 ≤ ξf ≤ 1 providesone half of the of the total mixed
convection regimeand then, a little later, that0 ≤ ξn ≤ 1
provides the other half of the entire mixed convection
regime. The implication is thatξf = 1 andξn = 1 corre-
spond to exactly the same value ofx. Although Eq. (9)
shows thatξf = ξn = 1 is consistent, the fact that
γ has been defined differently within the two regimes
[see Eqs. (4) and (5)] means that the governing equations
themselves are not the same at this overlap point.

The presence of the power law temperature distribu-
tion also changes the interpretation of theξ values in
terms of where the free and forced convection regimes
are relative to the leading edge. When the power law ex-
ponent satisfiesn < 1/2, then the above interpretation is
correct, namely, that free convection dominates near the
leading edge. When it satisfiesn > 1/2, then free convec-
tion dominates far from the leading edge. This interpreta-
tion cannot be gleaned easily from the paper of EI2008.

5. NUMERICAL SOLUTIONS OF THE BASIC
STATE

The main thrust of EI2008 is the presentation of numeri-
cal solutions for the basic state and the determination of
onset criteria for convection in the form of streamwise
vortices. We note that very little information has been
given on the numerical methods used for these purposes.
The basic flow is described as having been solved using
an implicit method, although the identity of that method
has not been declared. The authors have not mentioned
the value they used forη∞, although it appears to be 3
in Fig. 5, a value which is too small. Figure 5 shows ve-
locity profiles which should tend toward unity asη be-
comes large. If the chosen value ofη∞ had been suffi-
ciently large, then the velocity profiles would have had a
zero slope atη = η∞. Therefore these solutions cannot

be trusted, despite assertions that they compare well with
other authors.

6. STABILITY ANALYSIS

The authors of EI2008 introduce a system of longitudinal
roll disturbances in the classic manner. However, they as-
sume that these rolls have no appreciable streamwise vari-
ation, something which is assumed to be consistent with
the boundary layer approximation. This, too, is incorrect.
Most boundary layers are nonsimilar, which means thatx
variations in their profiles take place. The boundary layer
approximation allows for streamwise diffusion to be ne-
glected, but thex variations that could arise due to the
presence of singlex derivatives in the advection terms are
generally not negligible.

Rees (2001) carried out a stability analysis for the on-
set of longitudinal vortices for a nearly vertical surface
which is maintained at a uniform temperature. The rea-
son that a nearly vertical surface was considered is that it
is only within this regime that the disturbance equations
may be rigorously and correctly written down within the
boundary layer approximation. Within this regime the dis-
turbance equations themselves form a parabolic system,
and thereforex variations remain significant in that they
allow for disturbances to change their profile and ampli-
tude as they evolve downstream, although streamwise dif-
fusion remains negligible. Thus the disturbance equations
form a nonsimilar system.

The analysis of Rees (2001) was motivated by the pub-
lication of an earlier review chapter by Rees (1998) in
which he described in detail the mathematical difficulties
associated with analyzing the stability of boundary lay-
ers in porous media. Various conclusions were made by
Rees (1998) that are relevant for the present discussion.
The main one is that the boundary layer approximation is
applied inconsistently in very many papers on vortex in-
stability and that this fact is hidden by the use of parame-
ters such as the local Rayleigh number, Rax. Indeed, Rees
(1998) uses the example of an inclined, constant temper-
ature hot surface to show in fine detail that one of the ad-
vection terms is asymptotically larger than all of the other
terms in the disturbance equations. But given that a finite
(typically small) value of Rax is obtained as the critical
distance, the presence of this anomalous term passes un-
noticed.

The obvious next question is whether the analysis of
the authors of EI2008 is consistent. The general conclu-
sion of Rees (1998) is that it must be mathematically in-
consistent, but this may be tested easily by examining
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some of the data presented as it is important to under-
score the fact that approximations, when made, must be
verifieda posteriori. If we take the lowest curve in Fig. 7
of EI2008, then whenn = 0.5, we have a critical value
Pex ' 30 when ξf = 0.6. Given that the similarity
variable,η, is defined asη = Pe1/2

x y/x in Eq. (9) of
EI2008, and if we define the edge of the boundary layer
as corresponding toη = 3, then we obtain the relation
y ' 0.548x. (We note thatξf = 0.6 ⇒ Rax ' 98.6,
from whichx may be found.) In other words, given thatx
must be the critical distance, the boundary layer thickness
at that point is then just over half of the critical distance.
Therefore the critical distance is well within a range of
values where the equations are fully elliptic. It is clear,
therefore, that the boundary layer approximation is inap-
plicable at such distances.

7. CONCLUSION

The manner in which the stability analysis was been car-
ried out in EI2008 is one which continues to be used
widely and it is possible to show that these are mathemat-
ically inconsistent. One example of such a demonstration
is described in the above–quoted chapter by Rees (1998).
However EI2008 has also adopted what we regard as an
unphysical variation of the permeability near the solid
surface, a feature which has also been used widely. In ad-
dition, there are some inaccuracies associated with the ex-
pressions for the thermal conductivity and diffusivity, the
basic flow, and the numerical computations themselves.

The general message given by the reviews of Rees
(1998, 2002a), and many of the papers cited therein, is
that instability generally arises much too close to the lead-
ing edge for the boundary layer approximation to be valid.
Therefore the approximate methods which were intro-
duced into porous medium flows by Hsu et al. (1978),
and which were novel and groundbreaking at the time, are
now ones which should be discarded in favour of more
accurate methods. There are situations where the distur-
bance equations may be written down consistently within
the boundary layer approximation [see the studies of Rees
(2001, 2002b, 2003 and 2009) and Rees et al. (2008)],
but these are special cases which involve either asymptot-
ically small or asymptotically large parameters. For other
cases it is necessary to solve the fully elliptic govern-
ing equations, as in Rees and Bassom (1993) and Rees
(1993), and this brings with it an entirely new set of chal-
lenges for the porous medium community. Work on this
is currently being undertaken.

REFERENCES

Chandrasekhara, B. C., Convection in the presence of hori-
zontal impermeable surfaces in saturated porous media with
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