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a b s t r a c t

A steady two-dimensional forced convective thermal boundary layer flow in a porous medium is studied.
It is assumed that the solid matrix and fluid phase which comprise the porous medium are subject to local
thermal non-equilibrium conditions, and therefore two heat transport equations are adopted, one for each
phase. When the basic flow velocity is sufficiently high, the thermal fields may be described accurately
using the boundary layer approximation, and the resulting parabolic system is analysed both analytically
and numerically. Local thermal non-equilibrium effects are found to be at their strongest near the leading
edge, but these decrease with distance from the leading edge and local thermal equilibrium is attained at
large distances.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer in porous media arises in a very large number of
important applications and it is usually assumed that the temper-
ature fields of the solid and fluid phases are identical locally; such a
situation is generally known as local thermal equilibrium (LTE).
The opposite situation is known as local thermal non-equilibrium
(LTNE), and in these cases the solid matrix may have a different
temperature from that of the saturating fluid, this being meant in
terms of averages over representative elementary volumes. Thus,
hot fluid may flow into a cold, relatively insulating, porous matrix
and there will exist a difference in the average local temperature of
the two phases. This difference will take time to reduce to values
such that the phases are in LTE (see [1], for example), although
there are configurations for which LTNE persists even in the steady
state (e.g. [2,3]). When the phases are not in LTE the usual single
heat transport equation is replaced by a pair of equations, one
for each phase. First introduced by Anzelius [4] and Schumann
[5], these equations use simple linear source/sink terms to model
the local (i.e. microscopic) heat transfer between the phases at
the pore level. These early equations have been used in several
subsequent studies, especially for the modelling of heat exchang-
ers. The standard equations that are now used routinely are those
quoted by Nield and Bejan [6]. The review by Kuznetsov [7] con-
ll rights reserved.
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centrates on forced convection phenomena in the presence of
LTNE, while the slightly more recent review by Rees and Pop [8]
summarises much of the present knowledge of free and mixed con-
vection and stability analyses.

In the present work a steady forced convection thermal bound-
ary layer flow in a porous medium is studied. This configuration
bears a great deal of similarity to the classical Pohlhausen problem
in that a thermal boundary layer is induced by a step change in the
temperature of a semi-infinite flat plate [9]. The only difference is
that here we are dealing with saturated porous media and not with
clear fluids. The study of thermally developing forced convection in
porous media is also treated in recent papers by Nield and
co-workers [10–12]. Here it is assumed that the two phases, solid
and fluid, are not in local thermal equilibrium and therefore two
heat transport equations are adopted. Conditions are determined
within which the boundary layer approximation may be made
and we undertake an analytical and numerical study of the result-
ing temperature fields. After a suitable rescaling, the resulting
equations are found to depend on just one parameter, c, which,
in turn, is defined in terms of the porosity of the medium and
the thermal conductivities of the two phases. The resulting thermal
boundary layer equations are then solved in three different ways:
(i) analytically by means of a small-x asymptotic analysis, (ii) ana-
lytically using a large-x series solution and (iii) numerically by
means of a Keller box code. The small-x analysis requires the use
of two asymptotic regions, one of which is narrow and is such that
the temperature of the fluid phase drops to the ambient value at
leading order, and a second much thicker region within which
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Nomenclature

c specific heat at constant pressure
C1, C2 constants
h inter-phase heat transfer coefficient
H scaled value of h
k thermal conductivity
K permeability
p pressure
T temperature
Tw surface temperature
T1 temperature outside the boundary layer
U1 base flow velocity
u,v velocity components
x,y Cartesian coordinates

Greek symbols
a effective thermal diffusivity
/,U nondimensional solid temperature, Eq. (7)

u porosity
c nondimensional parameter, Eq. (10)
g boundary layer variable, Eq. (17)
K threshold parameter, Eq. (56)
l dynamic viscosity
h,H nondimensional fluid temperature, Eq. (7)
q mass density
n streamwise boundary layer variable, Eq. (17)

Superscript, subscripts
dimensional quantity

~ nondimensional quantity
f fluid phase
s solid phase
1 ambient conditions
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the temperature of the solid phase drops to the ambient. Asymp-
totic matching between these two regions is performed and de-
scribed briefly. This analysis is guided by the earlier study of
Rees and Pop [2] who considered the effect of LTNE on a vertical
free convective boundary layer flow. The two-layer structure is
then modelled numerically by using the results of the asymptotic
analysis to devise a modified outer boundary condition for the so-
lid temperature. The numerical solution is further facilitated by the
use of properly rescaled variables.

Local thermal non-equilibrium between the solid matrix and
the fluid phase is found to be at its strongest near the leading edge,
but the maximum difference between the temperatures of the
phases decreases with distance from the leading edge, and local
thermal equilibrium is attained at large distances.
2. Mathematical model

A steady flow in forced convection regime over a horizontal flat
plate is assumed. A sketch of the plate and of the coordinate sys-
tem is shown in Fig. 1. The Darcy model for the porous medium
is assumed to hold, and therefore the externally-generated fluid
motion is both uniform in space and constant in time. The imper-
meable bounding surface, which is placed at �y ¼ 0, is held at the
temperature, Tw, in the range, �x > 0, but is held at the temperature
of the free stream, T1, in the range, �x < 0. The point, ð�x; �yÞ ¼ ð0;0Þ,
at which the boundary condition for the temperature changes, will
be regarded as the leading edge of the surface.

Given that the solid and fluid phases are not in LTE, separate
heat transport equations for the solid and fluid phases are em-
ployed. Thus the governing mass, momentum and thermal energy
balance equations in the steady state may be expressed in the
form,
g

0

y

x

B
u

Fig. 1. A geometrical sketch of the problem.
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ðqcÞf

ðTs � Tf Þ ¼ u
@Tf

@�x
þ v @Tf

@�y
; ð3Þ

ð1�uÞas
@2Ts

@�x2 þ
@2Ts

@�y2

 !
þ h
ðqcÞs

ðTf � TsÞ ¼ 0: ð4Þ

The thermal boundary conditions are given by

�y ¼ 0 ð�x < 0Þ : Ts ¼ Tf ¼ T1;

�y ¼ 0 ð�x > 0Þ : Ts ¼ Tf ¼ Tw;

�y!1 : Ts; Tf ! T1: ð5Þ

The quantity, h, which appears in Eqs. (3) and (4), is a function of
the microscopic geometry of the medium, the conductivities of
the phases and the strength of the flow. Some values of h for stag-
nant two- and three-dimensional media of various types are given
in some very recent papers by Rees [13,14].

2.1. Nondimensionalization

Given that this is a forced convection problem, the velocity field
is given by,

ð�u; �vÞ ¼ ðU1; 0Þ; ð6Þ

and this may be used immediately in Eq. (3).
A semi-infinite domain such as the one described in Fig. 1 im-

plies that there is no natural physical lengthscale on which to base
a Péclet number and to use for nondimensionalization. However,
the quantity, af =U1, has the dimensions of length, and may be used
for this purpose. It turns out to be a little more convenient to use
uaf =U1 as the lengthscale, and therefore let us introduce nondi-
mensional variables using the following scalings,

ð�x; �yÞ ¼ uaf

U1
ð~x; ~yÞ; ðTf ; TsÞ ¼ ðTw � T1Þðh;/Þ þ T1: ð7Þ

On using Eqs. (6) and (7), Eqs. (3) and (4) become,

@2h
@~x2 þ

@2h
@~y2 þ Hð/� hÞ ¼ @h

@~x
; ð8Þ



M. Celli et al. / International Journal of Heat and Mass Transfer 53 (2010) 3533–3539 3535
@2/
@~x2 þ

@2/
@~y2 þ Hcðh� /Þ ¼ 0; ð9Þ

where

H ¼ uhaf

U2
1ðqcÞf

; c ¼ ukf

ð1�uÞks
¼ uaf ðqcÞs
ð1�uÞasðqcÞf

: ð10Þ
2.2. Boundary layer approximation

The system formed by Eqs. (8) and (9) is elliptic, and therefore,
for O(1) values of H, a fully elliptic numerical simulation should be
undertaken to obtain the resulting temperature fields of the two
phases. The forced convection regime assumed implies that a high
velocity basic flow is taken into account so that the limit U1 � 1 is
considered. From the definition of H in Eq. (10), U1 � 1 implies
that H � 1. Assuming now that H� 1, it is necessary to balance
the magnitudes of the last three terms in Eq. (8), and it may be
shown easily that the appropriate orders of magnitude are
~x ¼ OðH�1Þ and ~y ¼ OðH�1=2Þ. Therefore the scalings,

~x ¼ H�1x; ~y ¼ H�1=2y; ð11Þ

are introduced into Eqs. (8) and (9) to obtain,

H
@2h
@x2 þ

@2h
@y2 þ ð/� hÞ ¼ @h

@x
; ð12Þ

H
@2/
@x2 þ

@2/
@y2 þ cðh� /Þ ¼ 0: ð13Þ

Formally allowing H? 0 yields the boundary layer approximation
naturally, and the governing equations are now,

@h
@x
¼ @2h
@y2 þ ð/� hÞ; ð14Þ

@2/
@y2 þ cðh� /Þ ¼ 0: ð15Þ

This system of equations is parabolic, and although it may be shown
that there does not exist a self-similar solution, there is neverthe-
less a nonsimilar formulation which may be found; this analysis fol-
lows below.

2.3. Boundary layer transformation

It is well-known that the equation formed by the first two terms
of Eq. (14) admits the self-similar solution,

h ¼ erfc
y

2
ffiffiffi
x
p

� �
; ð16Þ

The solution shown in Eq. (16) can be found, for instance, in Özis�ik
[15], and it motivates the following coordinate transformations,

g ¼ y
2
ffiffiffi
x
p ; n ¼

ffiffiffi
x
p

; h ¼ Hðn;gÞ; / ¼ Uðn;gÞ; ð17Þ

where the upper case characters, H and U, will henceforth denote
the respective temperatures of the fluid and solid phases in this
new coordinate system, while the lower case characters, h and /,
correspond to the solution written in Cartesian coordinates. Eqs.
(14) and (15) become

@2H
@g2 � 2n

@H
@n
þ 2g

@H
@g
þ 4n2ðU�HÞ ¼ 0; ð18Þ

@2U
@g2 þ 4n2cðH�UÞ ¼ 0; ð19Þ

which are to be solved subject to the boundary conditions,
g ¼ 0 and n > 0 : H ¼ U ¼ 1;
g!1 and n > 0 : H;U! 0: ð20Þ

It is important to note that the coefficient, n2, of the source/sink
terms in Eqs. (18) and (19) plays the same role as H does in Eqs.
(8) and (9). Therefore it is possible to observe immediately that
large values of n will correspond to local thermal equilibrium, while
local thermal non-equilibrium effects will be at their strongest near
the leading edge, n = 0. These equations have only one nondimen-
sional parameter, namely c.

3. Asymptotic analyses

The numerical solution of Eqs. (18) and (19) will be preceded by
asymptotic analyses close to and far from the leading edge at n = 0.
The near-leading-edge analysis is performed first because it pro-
vides the boundary conditions that are essential for the numerical
solution.

3.1. Close to the leading edge

The system formed by Eqs. (18) and (19) may be solved in the
region relatively close to the leading edge by searching for a solu-
tion in the form of a power series in the variable n,

Hðn;gÞ ¼ H0ðgÞ þ nH1ðgÞ þ n2H2ðgÞ þ � � � ;
Uðn;gÞÞ ¼ U0ðgÞ þ nU1ðgÞ þ n2U2ðgÞ þ � � � :

ð21Þ

At leading order in the expansion, the equations for H0 and U0 are,

H000 þ 2gH00 ¼ 0; U000 ¼ 0; ð22Þ

and their solutions are

H0 ¼ erfcðgÞ; U0 ¼ 1: ð23Þ

In writing down the above expression for U0, it is important to
note that it is impossible to solve U000 ¼ 0 subject to both U0(0) = 1
and U0 ? 0 as g ?1. The boundary condition at the heated sur-
face was employed, the implication being that the temperature
of the solid phase near the leading edge must then vary over a
lengthscale which is much greater than that represented by O(1)
values of g. This is consistent with a previous analysis in [2]. It is
also clear that Eq. (15) provides a means of satisfying the far field
boundary condition; in this regime where y = O(1) the leading or-
der temperature of the fluid phase, H0, has already decayed to
zero, leaving a system which admits an exponentially decaying
solution. Therefore it is natural to attempt a corresponding solu-
tion in this ‘outer’ region where y = O(1) (noting that the ‘inner’ re-
gion where g = O(1) corresponds to y = O(x1/2) = O(n)). Thus an
outer solution of the form,

hðx; yÞ � h0ðyÞ þ
ffiffiffi
x
p

h1ðyÞ þ xh2ðyÞ þ � � � ;
/ðx; yÞ � /0ðyÞ þ

ffiffiffi
x
p

/1ðyÞ þ x/2ðyÞ þ � � �
ð24Þ

is sought.
On taking h0 = 0 because of the superexponential decay of H0 in

the inner region, the leading order equations in the outer region
are,

h2 ¼ /0; /000 � c/0 ¼ 0: ð25Þ

Given that U0 = 1, the appropriate matching condition for /0 is that
/0(0) = 1. Hence /0 and h2 are given by,

h2 ¼ /0 ¼ e�
ffiffi
c
p

y; ð26Þ

which shows that the leading order terms of both temperature
fields decay exponentially; this has important implications later
for the numerical solutions.
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These solutions now provide us with the appropriate match-
ing conditions for the inner solutions at the next order in n.
On expanding the solutions given in Eq. (26) about y = 0 one
obtains,

h � 1� ffiffiffi
c
p

yþ cy2

2
þ � � �

� �
x; ð27Þ

/ � 1� ffiffiffi
c
p

yþ cy2

2
þ � � � ; ð28Þ

and if y is replaced by 2gn then the large-g matching conditions for
small values of n are found to be,

H � n2 � 2
ffiffiffi
c
p

gn3 þ � � � ; U � 1� 2
ffiffiffi
c
p

gnþ 2cg2n2 þ � � � : ð29Þ

Therefore the following conditions as g ?1 may be written,

U1 � �2
ffiffiffi
c
p

g; U2 � 2cg2; H2 � 1: ð30Þ

The next terms in the inner region arise at O(n). From the expansion
at this order one obtains the system

H001 þ 2gH01 � 2H1 ¼ 0; U001 ¼ 0: ð31Þ

which is to be solved subject to the conditions,

g ¼ 0 : H1 ¼ 0; U1 ¼ 0;
g!1 : H1 ! 0; U1 � �2

ffiffiffi
c
p

g: ð32Þ

The solutions are

H1 ¼ 0; U1 ¼ �2
ffiffiffi
c
p

g: ð33Þ

The solution for /1 is clearly passive, and it is caused by the leading
order exponential properties of /0.

At Oð
ffiffiffi
x
p
Þ in the outer region, the governing equations are

h001 þ /1 � h1 � 2h3 ¼ 0; /001 þ cðh1 � /1Þ ¼ 0; ð34Þ

which are to be solved subject to

y ¼ 0 : h1 ¼ /1 ¼ 0; y!1 : h1;/1 ! 0: ð35Þ

Given that these equations are homogeneous, the solutions are

h1 ¼ 0; h3 ¼ 0; /1 ¼ 0: ð36Þ

At O(n2) in the inner region, the governing equations are,

H002 � 4H2 þ 2gH02 þ 4erfðgÞ ¼ 0; U002 � 4cerfðgÞ ¼ 0; ð37Þ
g ¼ 0 : H2 ¼ 0; U2 ¼ 0;

g!1 : H2 ! 1; U2 � 2cg2; ð38Þ

and the solutions are

H2 ¼ erfðgÞ; U2 ¼ g
2e�g2cffiffiffiffi

p
p þ cð1þ 2g2ÞerfðgÞ: ð39Þ

This is a reasonable point at which to stop the expansion for the in-
ner region because three terms have now been obtained for U. At
O(x) for the outer region one has

h002 þ /2 � h2 � 2h4 ¼ 0; /002 þ cðh2 � /2Þ ¼ 0: ð40Þ

which are to be solved using Eq. (26) and subject to

y ¼ 0 : /2 ¼ 0; y!1 : /2 ! 0; ð41Þ

the solution for Eq. (40) is

h4 ¼
e�y

ffiffi
c
p

4
2c� 2þ y

ffiffiffi
c
pð Þ; /2 ¼ e�y

ffiffi
c
p y

ffiffifficp
2

� �
: ð42Þ

To summarise, the solutions found by the power series expansion
for both the inner and the outer regions are:
H � erfcðgÞ þ n2erfðgÞ;

U � 1� 2
ffiffiffi
c
p

ngþ g
2ce�g2ffiffiffiffi

p
p þ cð1þ 2g2ÞerfðgÞ

" #
n2; ð43Þ

h � xe�y
ffiffi
c
p
; / � e�y

ffiffi
c
p
þ x

y
ffiffifficp

2

� �
e�y

ffiffi
c
p
:

3.2. Far from the leading edge

The solutions of Eqs. (18) and (19) at large distances from the
leading edge are considered now. When n� 1 there are two possi-
ble order-of-magnitude balances that may be obtained from Eq.
(19). The first suggests that there is an inner layer of width
g = O(n�1) within the main boundary layer, for which we assume
that g = O(1). The second, and more reasonable one on physical
grounds, is that h � / = O(n�2), and that there is only one asymp-
totic region. This second balance corresponds to the approach to
LTE. Therefore one may investigate the region far from the leading
edge by searching for a solution expressed as a power series expan-
sion of the form

Hðn;gÞ � H0ðgÞ þ n�1H1ðgÞ þ n�2H2ðgÞ þ � � � ;
Uðn;gÞ � U0ðgÞ þ n�1U1ðgÞ þ n�2U2ðgÞ þ � � � :

ð44Þ

The leading order, i.e. O(1), equations are

H000 þ 2gH00 þ 4ðU2 �H2Þ ¼ 0; ð45Þ
U000 þ 4cðH2 �U2Þ ¼ 0; ð46Þ

while the boundary conditions are

g ¼ 0 : H ¼ U ¼ 1;
g!1 : H;U! 0: ð47Þ

Given the above argument, one may reasonably assume that
U0 = H0. On multiplying Eq. (45) by c and adding it to Eq. (46),
one obtains

ð1þ cÞH000 þ 2gcH00 ¼ 0; ð48Þ

the solution for which is,

U0 ¼ H0 ¼ erfc g
ffiffiffiffiffiffiffiffiffiffiffiffi

c
1þ c

r� �
: ð49Þ

At O(n�1) of the expansion the governing equations are,

H001 þ 2H1 þ 2gH01 þ 4ðU3 �H3Þ ¼ 0; ð50Þ
U001 þ 4cðH3 �U3Þ ¼ 0: ð51Þ

The terms in H3 and U3 may be eliminated by means of the same
process of combination of the equations, and this results in the fol-
lowing equation,

ð1þ cÞH001 þ 2gcH01 þ 2cH1 ¼ 0: ð52Þ

Given the above scaling argument that H �U = O(n�2), it has been
assumed that H1 = U1. Eq. (52) has the general solution,

U1 ¼ H1 ¼ C1e�
c

1þcg
2
erfi g

ffiffiffiffiffiffiffiffiffiffiffiffi
c

1þ c

r� �
þ C2e�

c
1þcg

2
; ð53Þ

where C1 and C2 are constants. This solution should satisfy zero
boundary conditions for H1 at both g = 0 and as g ?1. This implies
that C2 = 0, but C1 remains indeterminate. Clearly, then, the function
multiplying C1 in Eq. (53) is an eigensolution of the equation.
Although further terms in this expansion will only be expressed
in terms of C1 and any further eigensolutions which might arise, it
is possible, nevertheless, to determine precisely the leading order
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departure from LTNE. If Eq. (49) is substituted into Eqs. (45) and
(46), then it is straightforward to show that

H2 �U2 ¼
U000
4c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

pð1þ cÞ3

s
ge�

c
1þcg

2
: ð54Þ

Eq. (54) corresponds to an O(n�2) difference between the tempera-
tures of the phases. It is also worthy of note that the magnitude of
this difference decreases as c increases; the mathematical reason
lies in the fact that a large value of c forces the difference between
the temperatures to be small, as seen in Eq. (19).
4. Numerical solutions

The numerical scheme which was used to solve numerically the
system of Eqs. (18) and (19) is a standard Keller box method, which
is a generic method for time or space marching problems, [16].
Most often, the system is reduced to first order form in g, the
resulting equations discretised half way between the grid points
in both the g and n directions, and it is therefore of second order
accuracy. An initial profile is not required, because the system of
parabolic partial differential equations reduces to an ordinary dif-
ferential system at n = 0, and a suitably written code will be able to
solve this system easily. Although the present system of equations
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Fig. 2. Isotherms for both the solid and fluid phases for c = 0.01 (upper), c = 0.1
(middle), c = 1 (lower). Dashed lines refer to the solid phase and solid lines refer to
fluid phase.
is linear, the general methodology uses a multidimensional New-
ton–Raphson iteration scheme to solve the discretised equations.
In our case the corresponding iteration matrix is computed numer-
ically, and a standard block-Thomas algorithm is used to solve the
iteration equations. The n variable is treated here as a time-like
variable, and the solution is marched downstream.

In the present implementation we have adopted a backward
difference method in n in order to maximise numerical stability,
and good accuracy is ensured by employing the small steplength,
dn = 10�2. In the g-direction, the steplength, dg = 10�2, is taken
with gmax = 20. However, in the above small-n analysis we deter-
mined that the leading order temperature fields in the outer region
decay as expð�y

ffiffifficp Þ, i.e. as expð�2gn
ffiffifficp Þ from the point of view of

the boundary layer. Therefore it is clear that this rate of decay can-
not be contained within a finite computational domain when n is
sufficiently small. However, it is possible to model this rate of de-
cay by adopting a different set of boundary conditions from those
given earlier in Eq. (20). We used the following,

H0 þ 2n
ffiffiffi
c
p

H ¼ 0; U0 þ 2n
ffiffiffi
c
p

U ¼ 0; at g ¼ gmax: ð55Þ

These conditions were used from n = 0 until the first value of n at
which both H and U are less than 10�6, and thereafter the condi-
tions given in Eq. (20) were adopted. In this way the full presence
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Fig. 3. Isotherms for both the solid and fluid phases for c = 0.01 (upper), c = 0.1
(middle), c = 1 (lower). Dashed lines refer to the solid phase and solid lines refer to
fluid phase. This figure has a different vertical resolution to that shown in Fig. 2.
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Fig. 6. Behaviour of the parameter K as a function of x for different values of c.
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of the outer layer is modelled by means of a modified boundary
condition.

Figs. 2–4 show the temperature profiles obtained by the
numerical simulations, and are plotted in the (x,y)-coordinates,
as defined in Eq. (11). The three frames in Fig. 2 are drawn using
the same range of values of x and y, but for different values of c:
the upper frame refers to c = 0.01, the central frame to c = 0.1
and the lower refers to c = 1. Dashed lines refer to the solid
phase and solid lines refer to fluid phase. In this figure it is clear
that the thickness of the thermal boundary layer at all values of x
is strongly dependent on the magnitude of c. This is consistent
with Eq. (49) which shows clearly that the large-x thickness of
the boundary layer increases as c decreases. Likewise, near the
leading edge, the thickness of the thermal boundary layer corre-
sponding to the solid phase increases as c decreases; see Eq. (25).
That this should be so is understood by referring to the physical
implications of different values of c. When c is small, heat is con-
ducted easily away from the heated surface, and only a small
amount is imparted to the fluid. On the other hand, when c is
large, heat is transferred easily to the fluid and is therefore ad-
vected downstream, which decreases the thickness of the bound-
ary layers. The ease of heat transfer between the phases may also
be seen in Fig. 7; local thermal equilibrium is attained at much
smaller values of x when c = 1 than when c = 0.01. Figs. 3 and
4 show the same information as Fig. 2, but for a progressively
smaller range of values of y and x. The variation with c of the
boundary layer thickness of the solid phase near the leading edge
may be seen clearly, but it is also possible to see that the bound-
ary layer thickness of the fluid phase is independent of c there.
This independence is consistent with Eq. (23). At slightly in-
creased distances from the leading edge the boundary layer
thickness of the fluid phase increases rapidly at a rate which is
dependent on c.

Although c is the sole parameter of the system being studied,
Figs. 2–4 already indicate substantial variations of the resulting
temperature fields as the parameter varies. The surface rate of heat
transfer is an important quantity, and the manner in which its evo-
lution with n varies with c is shown in Fig. 5. All of our previous
observations are seen clearly in this figure, particularly the magni-
tude of the rate of heat transfer far from the leading edge. Given
that we have plotted the g-derivative of the temperatures, the solid
phase now has a zero rate of heat transfer at the leading edge, but
this varies rapidly as n increases, and does so at a c-dependent rate.
However, of most interest is the distance at which one might say
that local thermal equilibrium has been attained. Such a criterion
is necessarily arbitrary; we can define xLTE to be the distance be-
yond which the relative difference of the surface rates of heat
transfer, K, is less than 1%, namely, that

K ¼ 2
@h
@y

����
y¼0
� @/
@y

����
y¼0

 !
@h
@y

����
y¼0
þ @/
@y

����
y¼0

 !
6 0:01:

,
ð56Þ

The behaviour of the parameter K as a function of x is shown in
Fig. 6. This figure confirms the results previously obtained in
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Fig. 7. Variation with c of the distance, xLTE, at which local thermal equilibrium is
attained.

Table 1
Variation with c of the distance, xLTE, at which local thermal equilibrium is attained.
Threshold for the achieving of LTE is chosen to be when the parameter K 6 0.01.

c xLTE

0.01 10.011
0.02 9.8345
0.05 9.4618
0.1 9.0000
0.2 8.2484
0.5 6.7808
1 5.4289
2 4.0280
5 2.5027
10 1.6770
20 1.0858
50 0.6053
100 0.3856
200 0.2450
500 0.1332
1000 0.0841
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Fig. 5 for which as c increases the heat transfer between the two
phases decreases more quickly. Thus also the distance from the
leading edge xLTE defined by Eq. (56) decreases as c increases. This
behaviour is displayed in Fig. 7 and the relative Table 1. The value
of xLTE, in fact, decreases monotonically as c increases.

5. Conclusion

A steady two-dimensional forced convection thermal boundary
layer in a porous medium has been studied both analytically and
numerically. The main focus has been on the effect of local thermal
non-equilibrium between the solid and fluid phases. Separate
asymptotic analyses which are valid at small distances and at large
distances from the leading edge have been obtained. In particular,
we have determined that the boundary layer in the near-leading-
edge region splits into two well-defined asymptotic regions, one
in which y is the natural variable, and the other in which g is the
natural variable. This analysis was used to obtain an effective outer
boundary condition for the numerical study which would take into
account accurately the presence of the outer region. The large-n
asymptotic analysis shows that local thermal equilibrium is at-
tained in this limit, with local thermal non-equilibrium effects
being of O(x�1) in magnitude. A full numerical solution was also
obtained and solutions presented.

We found that:

� the thickness of the boundary layers of each phase depends
strongly on the value of c;
� the thickness of fluid boundary layer near the leading edge is
independent of c;
� the boundary layer corresponding to the solid phase is always

thicker than that of the fluid phase;
� local thermal equilibrium is attained at decreasing distances

from the leading edge as c increases; this is related to the
increasing ease of heat transfer between the phases.

Finally, it is important to note that the flows we have consid-
ered may be subject to thermoconvective instability. Papers by
Rees and Bassom [17] and Rees [18–20] are concerned with various
aspects of the instability of free convection boundary layers, while
Rees [21] is concerned with linear instability and the nonlinear
vortex development in a mixed convection flow where forced con-
vection effects are strong compared with buoyancy. The situation
described in [21] could be applied to the flow considered here if
weak buoyancy forces are allowed to exist. As the flow develops
downstream, the local Rayleigh number, which is proportional to
the boundary layer thickness, also increases and eventually be-
comes sufficiently large that thermoconvective instability will oc-
cur. It is intended to report on this aspect elsewhere.
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