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We consider conduction in a two-phase composite solid or, equivalently, a stagnant porous medium saturated with a
single fluid. In particular, we derive and calculate values for the interphase heat transfer coefficient, h, which multiplies
the source/sink terms in the two-energy model for conduction in a porous medium. On allowing a uniform heat gener-
ation to take place within one of the phases, it is possible to determine h from the difference in the average temperatures
of the two phases after the decay of transients. An exact analytical expression is obtained for periodic striped media,
which suggests that a new nondimensional parameter might usefully be defined. Exact numerical solutions are obtained
for randomly striped media. Precise expressions are also found for the two-dimensional checkerboard pattern and its
three-dimensional analogue. We also consider other types of two-dimensional periodic media, and finally, randomly
constituted media are analyzed.
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1. INTRODUCTION of classical convection problems (such as boundary layer
flows and the Darcy-Bnard problem) have been under-
Situations exist where the mean local temperatures of thRen; see the review by Rees and Pop (2005). There has
fluid and solid phases that comprise a porous mediéigo been a strong interest in determining conditions un-
have to be considered separately, rather than as a sir@gewhich LTE may be assumed to prevail; see, for exam-
temperature field. The use of two thermal energy equsle, the papers by Lee and Vafai (1999), Khadrawi et al.
tions is known variously in the published literature eithgp005), and Vadasz (2005).
as local thermal nonequilibrium (LTNE) or lack of local The first papers that used two different temperature
thermal equilibrium (LaLoThEq). When the phases arefiglds are those by Anzelius (1926) and Schumann (1929),
thermal equilibrium, a single energy equation may theimd they were both published about 80 years ago. In mod-
be used, and this situation is known as local thermal eqein notation, their two-temperature models may be writ-
librium (LTE or LoThEQ). Very many papers now exien in the form

ist that have adopted the two—temperature model for heat T,
f

transport in porous media. Applications include the dry- e(pe)i—+ = h(Ts— Tf) (1)
ing of iron ore pellets (Ljung et al., 2008), heat exchang- ot

ers (Luo et al., 2003), and geothermal energy extraction aTs

(Rees et al., 2008). In addition, very many reevaluations (1= e)(pc)s 7, = h(Ty — Ts) (2)
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NOMENCLATURE
Qgr specific surface area v velocity vector
c specific heat T,y Cartesian coordinates
C constant Greek Symbols
d particle diameter (o4 diffusivity ratio
h interphase heat transfer o5 diffusivity of the fluid phase
coefficient o diffusivity of the solid phase
hr modified interphase heat Y porosity-scaled conductivity ratio
transfer coefficient 5 channel width
het reduced form forh ot timestep
H nondimensional form ok oz spatial step
k thermal conductivity € porosity
L length scale 0 microscopic fluid temperature
LTE local thermal equilibrium (€] macroscopic fluid temperature
LTNE local thermal nonequilibrium A constant
N number of cells in the:-direction b1, do functions ofx
Pr Prandtl number p density
q" rate of heat generation/unit volume o standard deviation
r radius of circular pore Subscripts and Superscripts
R radius of cylinder f fluid
Re Reynolds number s solid
S source term D particle/phase
t time u,d,r,l,c up, down, right, left, center
Tt temperature of the fluid phase - modified temperature
Tret reference temperature - mean value
T temperature of the solid phase +, — opposite sides of an interface

where we see that diffusion has been neglected. dhthe present study is to determine how the interphase

Egs. (1) and (2), we have also neglected the advectheat transfer coefficient, varies as a function of the mi-

term (viz. wdT/0z) that was present in the work ofcroscopic geometry of the porous medium, including its

Anzelius (1926). The simplest equations that are ngwerosity and the relative conductivities and diffusivstief

used routinely include thermal diffusion, and they takée phases.

the form Given that Egs. (1) and (2) are linear constant-
coefficient ordinary differential equations, it is stratigh
forward to solve them analytically.

) If we were to takel' « exp(At) in Egs. (1) and (2),
then it is easy to show that

Ty
e(pc)fa—tf + (pe) v. VTt = eV.(kVT})

+ h(Ts — Tf)

(1-)(pc)s 22 = (1 )V.(k,VT) + h(Ty ~ T5) (4 Aoo [ !
o - e o)
see Nield and Bejan (2006). There are more compli-
cated models in existence that allow for cross-diffusiorhe first of these values corresponds to the steady state
terms, but these are neglected in the present article. s&dution of (1) and (2), witHy = T, as the eigensolution
all other quantities are easily measurable, the objects@responding to LTE. The second valueXofndicates

(%)
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that, whatever the value @f, LTE is achieved relatively resulting expressions are independent of the conductivity
rapidly whenever < 1 or (1 — €) < 1, that is, when of the solid phase. Neither of these implications is sat-
one of the phases dominates, but there is clearly a rajsifhctory from a physical point of view, and it was this
evolution whem is sufficently large. It is also clear thatbbservation that first motivated the present work. For a
there is a slow evolution toward thermal equilibrium whestagnant porous medium, which is equivalent to a two-
h is sufficiently small. However, it is important to notgphase conducting composite solid, there is a degree of
that LTE may not be attained in the presence of a flusymmetry that must be retained in an expressionhfor
flow (even in the steady state; see Rees (2003) and Reawely, that if one were to interchange the conductivity
and Pop (2000)) or when one of the phases generates head. volume fractions of the phases, then the expression
Attempts to determine suitable values/ohave gen- for h should be unchanged.
erally relied on averaging methods, and various assump-The present article studies this aspect by considering
tions then need to be made about closure; see the book&ious types of composite media, and it determines both
Whitaker (1999); the chapters by Carbonell and Whitakanalytical and numerical formulae farwhich satisfy the
(1984), Quintard et al. (1997), and Quintard and Whitakexquired symmetries, although it has to be pointed out that
(2000); and the paper by Quintard (1998). Hsu (1998)ese symmetries arise naturally from the analysis, rather
has also performed some closure calculations. Stricthan being imposed on it. This objective is achieved by
speaking, many authors have determined expressionsni@ans of a direct comparison between the solution of the
hst, rather than forh, whereh = hgase, and where macroscopic system given by Egs. (3) and (4) and the so-
agr = 6(1 — €)/d, has been quoted as the specific suutions of detailed microscopic equations with suitable in
face area of the solid phase (Dullien, 1979). These dagfface conditions imposed at the boundaries between the
pressions include the experimental result of Wakao aphases. We present results for both one-dimensional and
Kaguei (1982), two-dimensional media.

ke(2 + 1.1Pr'/3Re"0)

he = y (6) 2. NONDIMENSIONALIZATION
P

_ In this analysis, we shall assume that there is no flow so
the experimental result of Hwang et al. (1995), that the porous medium is stagnant. The porous medium
Lok is also assumed to be periodic in structure, with the pe-

0.004 ( v2f> PrO-33Rel 35 (Re < 75) riod being equal td., which is then taken as the length

hes = dy (7) scale. We shall determinfe by taking a uniform rate of

1.064 (kf> Pr0-33Re0-59 (Re > 350) heat gerjeration Within the fluid phase,_ although_the f_inal

dy expressions fok are independent of which phase is being

] heated internally. The governing macroscopic equations
where they tookss = 20.346(1 — €)e?/d,, and Dixon gre

and Cresswell’s (1979) formula,

" —[ dype L ]1 ®)
7 0.2555Pr PR Pk; | 10k,

0T;
(o) T = e (V) + W(Ts—T) + eqf! (10

0Ts
1—¢€)(pc)s— = (1—€)V.(ksVTs)+h(T3—Ts) (11)
The numerical simulations of Kuwahara et al. (2001) o( )(pe) ot ( SV S +h(Ti—Ts)

flow through a periodic array of square cylinders yieldedihere all the terms in (10) and (11) have their common
meanings. However, to be clearjs the porosity of the
hsf:ﬁ {(1+4(1—€)) +1<1_€>1/2R6046Pr1/3:| ©) medium, and thé ands subscripts refer to the fluid and
dy € 2 solid phases, respectively. We may nondimensionalize

) these equations using the following substitutions:
However, Eqgs. (7) and (8) yield a zero value fiavhen

Re = 0, which implies that there is no transfer of heat L2
between the separate phases when the porous mediuftim = ;tnondimv (#,9)dim = L(Z, Y)nondim  (12)
is stagnant, and so the temperature fields are destined to

evolve independently of one other. Equations (6) and (9) qf'L?

yield nonzero values fok in the absence of flow, but the (Tt, Ts) = Tret + (pe)ros (©r,65)

(13)
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where © denotes the macroscopic temperature field. For the microscopic analysis, we choose to use either

Hence the macroscopic system becomes a unit length in thez-direction or a unit square for the
microscopic domain. These domains represent a periodic
90¢ _ V20 tiling in the z-direction or thec- andy-directions, respec-
— = f+H(Os—0¢) +1 (14) g x Y , resp
ot tively. Therefore the macroscopic solutions are spatially
90, ) uniform and will depend only on time, and so we may ne-
a— = =V'0s+ Hy(Or — 6;) (15) glect the diffusion terms in (14) and (15). It now becomes

where the quantities possible to solve the macroscopic equations analytically.

hL? 3. MACROSCOPIC SOLUTION
H= T (16)
f Given that diffusion is absent, Egs. (14) and (15) become
€kf
- 17
Y=ok (A7) % — H(0.—0) +1 23)
(pc)s ke o
= === (18)
(o) ks o w70 = Hy(6; - 6.) (24)

are the nondimensional interphase heat transfer coeffi- ) . »

cient, the porosity-scaled conductivity ratio, and the di?anI these are solved SUbJ.eCt FO the initial conditiéhs=

fusivity ratio. Of these three quantitieg,and & will be ©s = 0 att = 0. The solution'is

known, butH is not. v o2
Fourier's equation applies to both phases on the mi©f = t+ % 5

croscopic level. When the same nondimensionalization is Yt (v +a)

1 em(emi/a] - (2s)

applied to the microscopic equations, then we obtain - Y o, xy i [1 B e‘WW)Hﬁ/“} (26)
Y+ o H(y+ o)
B _ G20, 41 19
ot V70s + (19)  After transients have died out, the temperature of each
phase grows at the same constant rate, with the fluid phase
(xaes — V2o, (20) being the hotter as it is being heated internally. However,
ot the difference between the temperatures tends to the con-

where 0 denotes the detailed microscopic temperatuseant value
fields. These equations should be solved subject to the

followi tinuity conditions at all interfaces: 0 -0, — — % ast-—oo  (27)
ollowing continuity conditions at all interfaces: f s Hiy + o)
O = 0 (21) We may now compare the detailed microscopic solutions
00; 00, with this formula by averaging the microscopic solutions
kf% = ks on (22) over each phase and then finding the difference. As men-

wheren denotes the direction that is normal to the intetr'—oned previouslyy and« are known, and therefore this

face. Solutions will also be subject to periodicity condEroce_‘SS weldsH. We shall split our anglyses Into two
. . . . parts: one-dimensional and two-dimensional.
tions atz = 0, 1 (and, in two dimensions, at= 0, 1).

In this article, we use the lowercase notatién,for
the detailed temperature fields on the microscopic scate, ONE-DIMENSIONAL MEDIA
while the uppercase notatio®, corresponds to the tem-4_1 Analytical Solutions for Striped Media
perature fields on the macroscopic scale.

The aim is to compare the solutions of the macroscofionsider the one-dimensional configuration shown in
equations, (14) and (15), with the solutions of the micréig. 1, a periodic striped domain, where the fluid phase
scopic equations, (19) and (20), subject to the conditioo@rresponds to the black region and the solid phase to the
(21) and (22), to find howH depends on the values ofwhite region, and where the porosityds Equations (19)

«, v, and the porositye. Expressions foh may then be and (20) apply ie < +e/2 ande/2 < |z| < 1/2,
deduced from this comparison. respectively, while the interface conditions (21) and (22)
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Solid Fluid Solid For comparison with the macroscopic solution, we
need to find the intrinsic temperature of each phase by
averaging the two temperatures over their respective re-
gions:

€/2
- 2
bor = . / bor dx (34)
0
1/2
b= s [ dnds (35)
2s — (1 — C) . 2s
€/2
and to find the difference:
1 € € 1
=75 ) 2 2 - - 1 o e 1l-—e
bt — Pos = Eﬂekf [k‘ + L ] (36)
FIG. 1. Showing one period of a one-dimensional striped Y f °
medium with porositye This may be equated with the value given in (27), and
hence
12
are applied atr = +e¢/2 and periodicity is imposed at H = T 1_< (37)
x = £1/2. Onignoring decaying transients, we find that ek [k: + 3 ]
f s

the linearly growing solution takes the form
The corresponding value af obtained from (16), is

Or=tdif(x)+bas(x), Os5=tdis(x)+das(r) (28) - 12 )
- —
for each phase. We find that L2 L: +— e]
f S
b1t = d1s = C4 (29)

For this very simple configuration, we have obtained

while an analytical form fok, and it does indeed satisfy the ap-
C, 9 _ propriate symmetry: if the conductivities and the volume
bar = 9 @+ Cox + C3 (30) fractions of the phases are swapped, then the expression
) remains the same.
bos = aCy (l‘| B 1) 4y (31) This analysis illustrates our general approach to find-
® 2 2 ing h: we first calculate using
The constant€’; andC, are easily shown to be o B B
T = ot — b (39)
ek 8% (Y + (X)
e 1—e)ks v+ (32)
ek o s YT X wheredo; — ¢os is found either analytically or numeri-
1 e l1—¢ cally, thenh is obtained using (16), and finally, we deter-
Gy = ge(l—¢) [kf +— ] ks (33) mine the value of the quantity
and Cj5 is arbitrary (or rather, it depends on any initial ho—n?|E 1—¢ 40
conditions that are imposed in an unsteady simulation). It R ke T ks (40)

is important to note that the value of the coeffici€nt
given in Eq. (32) is precisely the growth rate of the tenThe present striped medium is therefore characterized by

perature rise in both phases (see Egs. (28) and (29)), hading the constant val = 12. This value is inde-
this matches exactly with the macroscopic analysis (geendent of the porosity, conductivities, and diffusistie
Egs. (25) and (26)). of the porous medium.
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4.2 Solutions for Random Media both the mean value 051% (denoted a& ) and its standard

. . ! _deviation,a(h_). However, whernV > 30, the number of
n thls_sut_)sectlo_n, we shall replace the ponf'gqrat'%mbinationsf%becomes too great to compute, and there-
shown n F'g_' 1 with one where_there awevertical strips ¢o6 \ve have approximated the required statistics using
of l-m.n‘orm width, where the assignment ofa pha}se toe random configurations for each porosity. In general,
strip is random. Therefore we consider a one-dimensiogal ¢4 that this number is sufficient to give accuracy to

periodic medium where the composition of the r":'F)‘a""tirr"gughly three or four significant figures. Therefore we

uni_}_ihs ranld(z_m; see Fig. 2 f?r at:])_/pical example.l bl were able to consider cases whévrds as large a$000.
© SOILTON Procecuire for tis MOTe general probiem , in section 4.1, we find that,, is independent of

is facilitated by first subtracting out the linearly growingi;he conductivities and diffusivities of the phases, which

component of the solution, simplifies the presentation of our results. As we shall see
later, there are configurations in Whidl} does depend

on the conductivity ratio, but there is indeed a general

result that applies to all configurations in one, two, and

to obtain the equations three dimensions. We note first that both the right-hand-
. . side terms in (42) are proportional 69 (y + «). Second,

d?6; _ o d?0 _xy (42) the interface and periodicity conditions are homogeneous.
Therefore we may deduce that béthand®, are propor-

e~ y+o dz? v+«
. . . tiopal tooe/(y + o), and so Eqg. (39) leads to the fact that
and these are also subject to the interface conditions (%}Szand hence: ) is independent of/(y + «). Given

?”d (.22) and guitable periqdicity conditions_. The Manngfat solutions do generally dependpnitis clear that,
in which solutions for' strips may be pbtamed fOIIOW,Smust be independent of. This argument also applies in
roughly the methodology used in Section 4.1, but as 'ttlﬁo and three dimensions where the second derivatives in

quite lengthy to present, we omit it for the sake of brevit¥42) are replaced by Laplacians. This general result was
However, it is a straightforward direct method with an ORyiso confirmed numerically.

eration count that is proportional 6 and is simple to en-

code. Once a solution is found for a given sef\ostrips, ) 7 -
the mean temperatures of each phase are found. 250 that may be obtained fa¥ = 10 and.V = 15. Also

Given that the number of strips 1§, the total number shoyvn are both the mean valu%, and one standard de-
of possible two-phase configurations that exigts— 2; viation from the mean/{, + o(h,,)) for N' = 10, 15, 20,
the two that are missing correspond to a pure fluid ad@d30. We note that both the exact analysis and the
to a pure solid. We note that all those configurations tHandom cases are drawn faf = 20 and30, and the dif-
are equivalent to any chosen one by virtue of translatiégfences are negligible.
and/or reflection (such as SSSSFFSF, FSSSSFFS, and FRn all these cases, and indeed, for all valuesvofthe
SSSSFS) are all counted within this total, that is, all posmallest value that may be takenhyis 12, and this cor-
sible combinations of phases are taken. Wher< 30, responds to those cases where the fluid phase strips are
we are able to determiﬂ% for every single possible con-all grouped together. In other words, this situation cor-
figuration; for N = 30, this is a set ofl, 073,741,822 responds precisely to that described in Section 4.1. On
different cases whose computation took roughly 80 mithe other hand, whenevéY is even, the largest possi-
utes, and therefore it is possible to analyze these caseslénvalue forh_ is 3N2 whene = 0.5. This configura-
as much detail as is needed. In particular, for each podgin corresponds to alternating phases, and therefore
ble porosity (viz. multiples of /N), we have determinedstrips corresponds t&//2 pairs, for which the appropri-

FIG. 2: Showing one period of a one-dimensional, randomly stripediom with porosity0.5 and N = 256 strips

y ~
Opg = —t 4 0¢¢ 41
£, y+cx+f’ (41)

Figure 3 shows all the possib/I% values lying below
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250 , , , , 250 :
A N =10 A N =15
R R

200} 1 200}

150 ‘ ‘ 1 150

100

50}
b9 Lo
250 : 250 ,
N =20 N =30
h h
R R o
200f 1 200 f e S

.0

FIG. 3: Showingh,—values (bullets) forV = 10 and N = 15, and the variation O)ER (solid lines) and one standard
deviation from the mean (dashed lines) fér= 10, 15, 20, and30. Also shown are the curves corresponding @
random cases (dotted lines).

ate length scale for the purposes of nondimensionalizatmmple, whenV = 10, the configuration SFSFSFSFSFSF
should have bee?/V, rather tharl.. Therefore the heathash,, = 300, but this is reduced ta, = 102.7397 on
transfer coefficient from the “point of view” of the presenswapping the members of any neigﬁboring pair, such as
nondimensionalization i, = 12/[2/N|* = 3N?. SFFSSFSFSF. Thus the valueshgftend to be concen-

Generally, the larger the number of interfaces betwel@ted much closer t@2 than to3N? for general values
the phases, the larger is the valuetof However, the Of IV, as seenin the upper frames of Fig. 3.
value ofh,, is very highly sensitive to the number of in- For all values of NV, the shape of thé,, curve is
terfaces when the number of interfaces is large. For egughly parabolic, as are the curves fq{i cr(hR). In
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all cases one standard deviation is quite large compasédwn in Table 1 suggest that > 100 is a good lower
with the magnitude oﬁR itself. In addition, the maxi- bound) and when neithernor1 — € is close tol /N.
mum value ofh_, which occurs a& = 0.5 when N is

even, also grows witlv. The largeN behavior of these

has been considered; the variation of bathand o(hy,)
are tabulated in Table 1 for increasing valueg\biip to
10, 000, and for bothe = 0.5 ande = 0.2. It seems clear
from Table 1, that the ratio of(h,,) and BR is roughly
constant, and approximately equabté. This is not only
true for both the porosities chosen for inclusion in the t
ble, but also for other porosities that are not closéy

5. TWO-DIMENSIONAL MEDIA
' 5.1 Numerical Method

We now deal with the solution of the microscopic equa-

flons in two-dimensional domains by using finite differ-
R . ences. We consider a square region divided intt/anV

or 1 — 1/N (for which b, is close to12 and o(%,,) is q d

| Thus the'sh £ th ) _%Fay of subsquares, each of which corresponds to one
close to zero). Thus the shape o the curve Is essentigitfne two phases, and therefore each has its own rate of
independent ofV whenN is large.

. - . heat generation (eithéror 0), its own thermal conductiv-
A quick glance at the values df, and o(h;,) given 9 ( )

. . ity (k¢ or ks), and its own thermal diffusivityd; or «.)
in Table 1 suggesits that they are both proportionaVto Given the length of time that is required to solve the one-

'_I'his is confirmed in Table 1, which tabulates values mmensional problem wheneve¥ > 30, it is clear that
hy/N. The numerical data for these and other valugg .\, chensive and accurate solutions in two dimensions

%f e]\;nqthshown here) also sugggs}. tf}at th_e variation |f nnot be obtained easily unle¥ss less than or equal to
R/ with € approximates a parabolic function very we , or possibly6. Therefore we have to adopt the strategy

indeed. On taking the maximum value bf /N t0 be of running a fixed number of random cases for all values
roughly 4.2 whene = 0.5, it is straightforward to obtain of 5.

the correlation We used two different methods of solution: (1) a sim-

}_LR ~ 42N x 4e(1 —¢) (43) ple Eulgr method for timestepping and (2) a_method Fhat
determines only the steady part of the evolving solution.
and therefore we may obtain the formula, Method (1) was used for the checkerboard and box do-
mains that are described later, but method (2) was found
;. 168Ne(1—¢) (44) toYield solutions more quickly for the randomly assigned
12 {k% + 1};5} domains.

The governing microscopic equations may be written
for the mean value of where the standard deviation isn the form
roughly0.6 of this value. We note that this formula is very
accurate wherV is sufficiently large (where the results o = V0 + 5, (45)

TABLE 1: Values Oﬁ_LR, o(h,,) and their ratio for increasing values df, e = 0.5, ande = 0.2

e=0.5 €e=0.2
N hR G(hR) hR/O'(hR) hR/N hR O'(hR) hR/O'(hR) hR/N
30 131.07 80.78 0.616 4.369 82.25 48.28 0.586  2.745
100 426.40 258.16 0.605 4.264 272.04 163.08 0.599 2.720
200 848.34 513.28 0.605 4.242 542.22 324.57 0.599 2.711
500 2110.55 1263.55 0.599 4.221 1350.72 811.07 0.600 2.701
1000 4213.93 2527.97 0.600 4.214 2691.72 1615.81 0.600 2.692
2000 8542.79 5101.51 0.597 4.227 5389.08 3219.30 0.597 2.694
5000 21132.85 12647.55 0.598 4.227 13484.32 8097.97 0.600 2.697
10000 42544.11 25304.30 0.595 4.254 27082.48 16184.22 0.598  2.708
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Conduction in Heterogeneous Media 133

subject to the interface conditions, wheredt is the timestepdx is the spatial step in both the
z- andy-directions, and the constants in the finite differ-
0 =0t k- A 007" (46) €nce molecule are
an on

Co=4kT™ + kT~ +k T +k )
where (i) n denotes the normal derivative, the phase,

(i) p, may be either fluid or solid, an(ii) the symbols Cp=2(ktt + k1)

— and+ correspond to the limiting values from each side

of an interface. Finite difference nodes were placed at the Cr=20k"tT+k ) (48)
corners of the subsquares, as shown in Fig. 4, whanel

j denote grid points in the- and y-directions, respec- Cy =2kt + k1)

tively. We take second order central differences at each

(i,7) location. For each node, these are taken from ‘the Cy=2(kT—+k™7)

point of view' of each of the four neighboring regions.

This introduces eight fictitious points. There are also folihis timestepping method works well for structured me-
interface conditions for the heat flux, each of which madia in which large clusters of single-phase material exist,
be applied from the point of view of each side of the irput transients die out slowly for random media. There-
terface, thereby using the same eight fictitious points.fare, for random media, the method was modified by
turns out that the four different finite difference approagain subtracting out the linearly growing part of the solu-
imations may be added together and the eight fictitiotign to obtain a pair of Poisson equations for the remain-
points eliminated using the interface conditions. As a r#g steady part of the solution. Therefore we made the
sult of this process, we obtain the finite difference approsubstitutions v

imation Ore = ——1t + 05 (49)
Y+ &«

(KTtat kT ot T+ T TR T

X e’lrij-l _ (k++oc+++k+*(x+*+k*+cx7+

The equations foé; andé, are now

~ 04 ~ Xy
V20 + —— =0, V20, — =0 (50
st [0 Cu O Yt « Y+ (50)
’ dx 0 C; 0 ’ and these are subject to the same interface and periodicity

conditions. Equations (50) were solved using a pointwise
+ 6t(k++5+++k+ STTkTTSTT multigrid metﬂod. Soltﬁtio%s were checked ggai%st those
+l<:”S”) obtained using the unsteady method described earlier and
were found to be identical to within convergence toler-
ances.

We attempted to employ the compact finite differences
methodology to these equations to obtain fourth-order ac-

L=+ g—+ pHt g+ curate solutions, but too few equations were obtained to
’ ’ eliminate the extra number of fictitious points that were
generated.
J
5.2 Checkerboard Patterns
k==, 8~ k+—7 St- The checkerboard pattern simply consists of alternating

squares of fluid and solid, as indicated in Fig. 5.
Numerical simulations were run for the following

number of gridpoints in each directioly = 10, 20,

40 and80, and for a variety of values of the conductivi-

ties, and the diffusivities. It was found once more that the

FIG. 4. Depicting a random set of four subsquares awdlue forh_ is a constant, that is, it is independent of both

the notation used for the finite difference approximatiorthe conductivity ratiok;/k¢, and the diffusivity ratiog.

Volume 13, Number 2, 2010

Begell House Digital Library, http://dl.begellhouse.com Downloaded 2010-3-2 from IP 138.38.72.242 by University of Bath



134 Rees

1P = 0, on all four boundaries, and then integrating that
solution fory over the unit square. That this should be so
may be understood by first appealing to the symmetries of
the checkerboard pattern. The numerical solution for this
pattern consists precisely of the same solutions of Pois-
son’s equation within each subsquare (albeit in regions of
side0.5), where the amplitude of the solutions in neigh-
boring regions are in the precise ratioyy. Given that
e = 0.5, v is exactly the conductivity ratio, and there-
fore the correct interface conditions are satisfied by such
a patchwork of individual solutions of Poisson’s equation.
The averaging process required to find the intrinsic tem-
peratures of each phase is then analogous to the integral
of . As a consequence of this, the temperature is also
uniform along the interfaces.

The analogous three-dimensional configuration con-
sisting of alternating cubes was considered by employing
FIG. 5: Depicting a checkerboard pattern of fluid (blackd simple extension to the numerical scheme. We omit the

and solid (white) details, which are straightforward, but we find that
49. 1
h= €9 58?1)3_ 1 12 [7;0_1 6fi-1] (52)
As the spatial discretization is of second-order accuracy, L? [k +— ] f ®
f s

the raw data obtained were improved by the application of

Richardson’s extrapolation, and the extrapolates, Nowgf ree_dimensional checkerboards. Again, these nu-
fourth-order accuracy, were themselves extrapolated Opg&rica| values bear the same relation to the integral of

more. Our computations are summarized in Table 2. ¢ solution of a three-dimensional Poisson’s equation, as
Therefore we may state that detailed earlier.

28.4542 56.9084
_ 2 -1 —1
L2 [I: e - e] L2 [k 4 k] 5.3 Box Configurations
f S

for two-dimensional checkerboard patterns, simce= We now pongider box patterns, as illustrated in _Fig. 6.
0.5. Itis of interest to note that the reciprocal2sf.4542 These arise in two types, namely, those for which the
is 0.035144, which is precisely the value obtained bBI{wegt-generatujg_ phase is either percolating or nonperco-
solving the two-dimensional Poisson’s equatigiy = 1atng, where it is important to recall that the square do-

—1, on the unit square with the boundary condition§1ains shown in Fig. 6 form the repeating units in a peri-
odic porous medium.

Computations were undertaken on&nhx 80 grid of
subsquares, with the central heat-generating square form-
TABLE 2: Giving values ofi, and successive Richarding ann x n set of subsquares with = 10, 20, ---,
son extrapolates as a function of the number of gridpoint8; Therefore the porosity is = n*/N?. Solutions were
N obtained for a wide range of conductivity ratios, and the
N - RE RE? variation oth with conductivity ratio for the chosen val-
R e = ues ofn are shown in Fig. 7. It is clear from this figure
that there is a variation in the valuelqg with conductiv-
ity ratio, but that constant values are obtained in both the
small and large limits of the conductivity ratio.
Whenk, > k¢, a detailed examination of the numer-
ical values forh,, shows clearly thahR/n2 ~ 0.00445.

10 32.32759
20 29.38612 28.40563
40 28.68561 28.45211
80 28.51197 28.45409 28.45422

Journal of Porous Media

Begell House Digital Library, http://dl.begellhouse.com Downloaded 2010-3-2 from IP 138.38.72.242 by University of Bath



Conduction in Heterogeneous Media 135

FIG. 6. Depicting two box patterns of fluid (black) and solid (whitepn the left, the heat-generating phase is
nonpercolating. On the right, it is percolating.

FIG. 7: Variation oth with log,, ks/kr on an80 x 80 grid for heat-generating boxes of sizex n, wheren =
10,20, - - - 70. The dotted line corresponds td@ x 10 box of non-heat-generating material.

When expressed in terms of porosity, this becomes  the boundary conditions are essentially uniform and set
b~ 98 5¢ (53) .to zero. This argument is confirmed in Fig. 8, where
R~ 7 isotherms are shown for4d x 40 heat-generating square
where ¢ (n/N)2 The numerical value given |nWIthIn an80 x 80 square. In the left-hand frames in that
Eq. (53) is approximately the same as that given figure, we see that isotherms tend to become more con-
Eq. (51), and this suggests that they may be related. gntrated within the fluid phase &s/k; — oo, eventu-
deed, as the conductivity of the solid phase is extremdljy reaching a state that is equivalent to the solution of
large, the temperature field of the solid phase is essgntidlPisson’s equation in a square since the temperature in
uniform, and given that Egs. (50) have unique solutioffse solid phase is uniform. Therefore we obtajn =
up to an arbitrary constant, we may set that constantZ®4542e.
be such thaB, = 0. Therefore we obtain a Poisson’s It is possible to determine a similar formula for shapes
equation for the solution within the fluid phase, whemther than squares. Perhaps of most interest is where the
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fluid phase occupies a periodic array of circles. This tise value forh , for each of them. We note that solutions
equivalent to the left-hand schematic in Fig. 6, where tiemain independent of the diffusivity ratia, because of
central black square has been replaced by a circle. Eree analysis described in Section 4.2, and therefore our
tails of the analysis may be found in the appendix, and wemputations have used= 1.

obtain the expression Figure 10 gives some indicative results fog,,(h,,)
for the following ranges of valuesV = 10, 20, 40, and
h, = 8me ~ 25.1417e (54) 80, 10™* < ky/kr < 104, ande = 0.1, 0.2, ---0.9. Al-

. L though we used only00 random cases for each parame-
This f‘?r”?“'a holds for all chosen porosities in the largg, set, the total number of configurations corresponding
ks/ ke limit. to all the possible arrangements of subcells far exceeds

Whenk, < &y, the value offy, does not obey a Sim-yiq n\ymber for all but the very smallest number of sub-
ple law like Eq. (54). This is because the main Va”at'cghuares. For example, with — 10 ande — 0.1, there

in the temperature field now lies within the solid phasﬁrelOO!/90! 10! = 1.731 x 103 different configurations.

as shown in Fig. 8, and the detailed solution dependgavise for N — 10 ande = 0.5. there arel.0 x 1029

strong_ly on the porpsity since the ShaF’e of the do_mEEHmbinations, and for the worst case we consider, namely,
occupied by the solid phase changes wettHowever, it ¢ — 80 ande = 0.5. there are3.9 x 101924 combi-

is possible to obtain an analytical form fbg in the limit 500 1n all cases, our earlier striped and box config-
ase — 1 because then the solution is dominated by theations also represent possible configurations. We also

thermal fields in the four narrow channels along the Pote that the symmetry relation given by Eq. (55) is still

riphery of the square. This analysis is rendered easier(pfyeyed for random configurations, and this means that
appealing to the symmetry

curves fore = 0.9 are the mirror image abodt /k; = 1
of those fore = 0.1 on average. Observations may now
be made based on the detailed behaviour of the curves.

where “left” and “right” refer to the two box configura- First, it is clear that the finer the detail of the porous
tions shown in Fig. 6. In practice, this means that tiructure (i.e., the larger the value 9, the larger is the
right-hand column of Fig. 8 may be viewed either a@lue oth. This is true for all p0r05|t|e§ and refl.ects the
ks > ks, where the fluid occupies the central square rfact that conduction spreads more rapidly to neighboring
gion, or ask, > k¢, where the solid occupies the centrdtells when the cells are small, thereby enhancing LTE. It
square region. We shall adopt the latter viewpoint, aiyjalso true that there is a decregsing amount <_)f spread in
therefore we are considering the lingit— 0. The analy- the computed values df, asN increases. This result

theft(ks/kﬁ €) = thight(kf/ks’ 1—¢) (55)

sis contained in the appendix yields the value is of interest because the standard deviation of the one-
dimensional random configurations behaves differently as
hy, = 96 (56) IV becomes large; we presume that this is due to the dif-

ferent connectivities between one and two dimensions.
for this configuration, which is equivalent to having very At low porosities, as represented by= 0.1, the solid
narrow fluid channels within a regular grid of squarghase dominates. In these cases, Fig. 9 shows that there is
blocks. almost no spread in the distribution bf when the solid
phase is highly conducting. Thus any temperature rise in
the fluid is transmitted rapidly to the solid phase. Given
5.4 Random Media such a low porosity, the great majority of the fluid cells
are in isolation, and the heat is lost via all four boundaries
Most porous media, however, comprise either randavfithe cell. The clumping of cells is extremely rare at
networks of pores or random packings of particles. Whigich porosities, but whenever clumping occurs, the trans-
all of the above configurations are of interest because tley of heat is affected strongly, aﬂ% is reduced. This
provide examples of precise results against which mdras already been seen for the striped configuration where
realistic configurations may be compared, it is neverthlg% = 12 and for the boxed configuration where Eq. (53),
less essential to find out how random packings alter aumth ¢ = 0.1, yieldsh_ = 4.45. These latter two val-
idealized results. In the present section, we shall cares are substantially lower than those represented in the
sider randomly assigned square grids with predeterminee- 0.1 frames in Fig. 10 and represent the strong effect
porosities, such as those shown in Fig. 9, and determafestructure, particularly contiguity of the heat-genargt
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FIG. 8 Showing isotherms for the box configuration far/ks = 3, 10, and100 in the upper, middle, and lower
rows, respectively. The left-hand column corresponds &fthid (heat-generating) phase occupying the central
square, while the right column has the solid phase occuphmgentral square. The dotted line denotes the interface.
Note that the right column also applies to the cdsgé: = 1/3, 0.1, and0.01 in the upper, middle, and lower rows,
respectively, where the fluid phase occupies the centrarsqu
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FIG. 9: Examples of two-dimensional boxes with random structudacBindicates the heat-generating fluid cells,

while white denotes the solid cells.
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FIG. 10: The variation oth with conductivity ratio for 100 randon¥V x N configurations withV = 10, 20, 40,
and80, and with the porosities = 0.1, 0.3, and0.5
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phase, on the value @f . One example of this may be
seen in theV = 20 case in Fig. 10.

Conversely, when the solid phase is a poor conduc- ' T ‘6 7 0 1
tor relative to the fluid phase, there is a strong spread in 4o o
the values of. . The highest values correspond to thosdog; , hR s sl
configurations where the fluid cells are isolated. When-
ever two or more neighbor one another, then a relatively

large temperature rise occurs in the fluid, which further wsp . T
enhances LTNE and reduces the valué, of S e
As the porosity rises from.1 to 0.5, the value oth

rises. WhenV = 80, this rise is a factor of approximately LN =10 @ —
10 whenever the conductivity ratio is very high or very Lop 1
low. Atintermediate values of the conductivity ratio, that 0 st

is, when the ratio is close to unity, then the rise is much

less. Wiy 7t v 1 1 3

One aspect of the data displayed in Fig. 10 is shown
in Fig. 11, where the variation of the mean valuehgf

is presented. Wheth = 0.1, the variation ofBR with e=10.3

the conductivity ratio is not large, even when the logarith- 40 v
mic scale is taken into account, and especially so for large 3.5¢ ]
numbers of cells. Indeed, whe¥i = 80, we may take H\/f
hy, ~ 103! to a fairly high degree of accuracy. However, 2 sv

the situation reverses as the porosity increases tovard
when the total amount of variation Vi]% becomes larger z.o\//d—
asN increases. Lsl ]
The necessary use of only 100 data sets for each com-
bination of N, ¢, and conductivity ratio means that the
estimates of the standard deviation }qg‘ are likely to 0.5}
be highly inaccurate; this is certainly true for the one- 00
dimensional cases presented earlier. However, Fig. 10 ’
does give some indication of how the spread in the data
changes with variations in each of the parameters. 45

ool e=0.5 1
5.5 Sierpinski Carpet 3.5v

Finally, we consider an alternative, highly structured, bu 3.0

finely detailed configuration, the Sierpinski carpet. For ) 5v
the present purposes, we consider the fourth iteration, ' \/K
which may be represented using&inx 81 grid of cells. 2.0¢ ]
The numerical codes described earlier may also be used 5]
for this case since they were written in a very general
form, requiring only a data file containing the pattern of

conductivities to be input on execution. 0.5¢
The porosity of the Sierpinski carpet, as displayed in B S S T m—
Fig. 12, is
4 log,q ks/ ks
d=1- (S) = 0.3757 (57) 8io ks /

FIG. 11: The variation of the mean value with
and our results may be compared with those for stripgsnductivity ratio fore = 0.1, 0.3, and0.5, for N = 10,
with precisely the same porosity, and with both th#0, 40, and80
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49\?
€= (80> = 0.3752 (58)
The detailed curve foh_ is shown in Fig. 13, together
with those for all the other configurations mentioned. The
overall magnitude of , lies between that for the box con-
figuration, which is highly structured but is essentially
one large cluster of the heat-generating phase, and that
for the random configuration, which is highly unstruc-
tured and, given the porosity, is likely to contain many
small clusters. The Sierpinski carpet contains both large
clusters and isolated elements, and therefore it is not sur-
prising that its value ohR lies between these two cases.

6. CONCLUSIONS

FIG. 12: Displaying the fourth iteration of the Sierpinskin this article, we have resorted to solving the micro-

carpet

scopic equations for unsteady conduction in a composite
medium where one of the two phases generates heat at a
uniform rate. The overall aim has been to gain some qual-

box and random configurations with precisdl? heat- itative and quantitative understanding of how the value of
generating cells in &0 x 80 square, since the porosity forh, the inter phase heat transfer coefficient, depends on the

this case is almost the same:

log,, hR

geometry of the porous medium and on its thermal prop-

- Random

—
oL
[EN
o

3 4

FIG. 13: Comparing the variation dﬁR with conductivity ratio for stripes, boxes, random confafions, and the

Sierpinski carpet. The porosity is
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APPENDIX: SOME ASYMPTOTIC SOLUTIONS The second configuration is an example of this process.
Here the fluid is contained within narrow channels, which
In this appendix, we shall provide outline proofs of theeparate equally spaced solid blocks, such as is illugtrate
expressions fof,, given in Eqgs. (54) and (56), corredn the right-hand part of Fig. 5(b). We shall choose to
sponding to the largess/k; limit for circular pores and use$ as the width of the fluid regions, as shown in that
for small-e channels, respectively. figure, which, due to the periodic nature of the domain,
For fixed values o€, whenk,/ks; becomes asymptoti- means that the channels are of width and therefore the
cally large, the value of becomes asymptotically smallboundaries of the domain require a zero derivative bound-
Therefore Eq. (50) reduces to the form ary condition. Wherb is very small, we may neglect the
. . corner regions, and therefore the temperature within the
V20; +1=0, V20, =0 (A1) lower channelis given by

The interface conditions given in Eq. (22) also imply that 0 = u

the derivative 0B is zero on the interface, which means, 2

in turn, that the solid phase has a uniform temperaturéhe mean temperature within this channel is easily found

which we may set to be zero. Therefore the fluid phage he 6; = 52/3, which is the same as for the other

has the boundary conditidh = 0 on the interface. three channels. The value 6fis related to the poros-
For the first of the two configurations, we shall assum§ by e = 45 to leading order, and therefore we find that

that the fluid phase is contained within a circle of radiug = €2 /48. On using Eq. (A5) we obtain the previously

R. Clearly6; will be axisymmetric, and therefore it satquoted resuilt,

isfies the equation

(A7)

hy, =48 (A8)

Finally, for this configuration, it is important to note that
V\é/_hile the separate limité;/ks — oo ande — 0 both
contribute toy — 0, the two limiting processes must be
such thate/k¢ remains much greater thdth — €)/ks in
6 = (R? —r2)/4 (A3) the definition oth in Eq. (40).

0y +0; = —r (A2)

wherer is the radial coordinate and primes denote deri
tives with respect te. The solution is
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