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Abstract We consider the flow and heat transfer caused by a strong external flow passing
over a hot surface with uniform surface suction. When the Péclet number based on the external
velocity is sufficiently large, the resulting thermal boundary layer develops in a nonsimilar
manner until it attains an asymptotic state which is independent of the streamwise coordinate,
x , when it is dominated by the surface suction. For sufficiently large, but moderate, values
of the Darcy–Rayleigh number this boundary layer becomes unstable to streamwise vortex
disturbances. We employ a parabolic solver to determine how such disturbances, when placed
very close to the leading edge, evolve with distance downstream. Neutral stability is then
defined to be when a suitable energy functional ceases to decay/grow as x increases. Thus
a neutral curve may be mapped out based upon the behaviour of this functional. Given that
the uniform asymptotic state is well known to admit subcritical instabilities, our linearised
analysis is extended into the nonlinear domain and the effect of different magnitudes of dis-
turbance is ascertained. It is found that a surprisingly rich variety of vortex pattern emerges
which is sometimes sensitively dependent on the values of the governing parameters. These
patterns include wavy vortices and abrupt changes in perceived wavelength.
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Nomenclature
A Amplitude of disturbance
c Constant
E Energy functional
g Acceleration due to gravity
k Vortex wavenumber
K Permeability
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L Length scale
N Number of modes in the nonlinear analysis
p, P Pressure
Pe Péclet number
q Modal surface rate of heat transfer
Q Surface rate of heat transfer defined in Eq. (44)
Ra Darcy–Rayleigh number
T Temperature
Tw Surface temperature
T∞ Ambient temperature
u, v, w Velocities in the x , y and z directions, respectively
U External velocity
W Suction velocity
x Horizontal streamwise coordinate
X Scaled form of x
y Horizontal spanwise coordinate
z Vertical coordinate

Greek letters
α Thermal diffusivity
β Coefficient of thermal expansion
η Similarity variable
θ Nondimensional temperature
� Temperature perturbation for linearised analysis
µ Dynamic viscosity
ξ Scaled horizontal coordinate
ρ Reference density
χ Dummy variable
ψ Streamfunction

Subscripts and superscripts
¯ Dimensional
ˆ Nondimensional
b Referring to basic state
c Critical
i Initiation (referring to location of the disturbance)
n Mode number
0, 1, 2, . . . Mode numbers

1 Introduction

We consider the instability of the forced convection thermal boundary layer which is formed
near a semi-infinite, uniformly hot permeable surface which bounds a semi-infinite domain.
The permeable surface is modelled by imposing a uniform suction velocity at that surface.
We assume that the magnitude of the external stream is much greater than that of the suction
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The Onset and Nonlinear Development of Vortex Instabilities 245

velocity, and therefore the resulting thermal boundary layer is, at least initially, of Graetz
type (i.e. a forced convection flow past a discontinuous change in a temperature boundary
condition). The effect of suction becomes dominant further downstream and the boundary
layer eventually attains a constant thickness. However, we retain the buoyancy term in the
governing equations and although the buoyancy correction to the externally imposed flow
is asymptotically small when the Péclet number is asymptotically large, its presence allows
the possibility of thermoconvective instability. We note that, although our study uses the
language of heat transfer, our analysis could also apply to solutal convection such as the
saline boundary layer which is formed beneath the surface of an evaporating salt lake.

Wooding (1960) was the first person to consider how the effect of a uniform seepage
through a permeable boundary affects the criterion for the onset of convection in the pres-
ence of density inversion. By considering a semi-infinite domain with warmer fluid rising
towards an cold permeable surface, he showed that the thermal field takes a decaying expo-
nential form and he also provided a linearised stability analysis of this state. Termed the
Wooding problem by Pieters and Schuttelaars (2008), it has been extended in a variety of
directions in subsequent years. For example, Sutton (1970) computed the effect of relatively
weak suction within a porous layer of finite height heated from below, while the effect of dif-
ferent types of boundary conditions were considered in detail by Jones and Persichetti (1986)
and Nield (1986). On the other hand, the combined effect of inclination and anisotropy was
considered by Rees and Storesletten (2002) who delineated regions in parameter space where
either longitudinal rolls or transverse rolls may be found as the primary mode of instability.
In other articles, Nield (1998) considered an inclined temperature gradient which generates
an additional horizontal velocity field, Shivakumara (1999) and Khalili and Shivakumara
(2003) considered non-Darcy effects, Khalili and Shivakumara (1998) and Yoon et al. (1998)
included internal heat generation, Khalili et al. (2003) allowed for superposed fluid and porous
layers, Shivakumara and Khalili (2001) introduced a second diffusing component, while Shi-
vakumara and Sureshkumar (2007, 2008) analysed different non-Newtonian fluids. All these
latter articles were confined to linearised theory.

As pointed out by Pieters and Schuttelaars (2008), the Wooding problem differs in its
nature from the Horton–Rogers–Lapwood (or Darcy–Bénard) problem by being non-self-
adjoint. Indeed, the Darcy–Bénard problem always admits supercritical bifurcations to a
strongly convecting state, while the Wooding problem has a significant branch of deeply
subcritical solutions. There have also been numerous studies on the nonlinear aspects of the
Wooding problem. Homsy and Sherwood (1976) performed both a linear stability analysis
and a nonlinear energy analysis in a layer of finite height. A more thorough examination
of various stability theories was carried out by van Duijn et al. (2002) who also considered
the temporal approach of the basic state towards the steady exponentially decaying bound-
ary layer. Both van Duijn et al. (2002) and Alloui et al. (2005) present some time-dependent
numerical simulations, although the latter authors also consider fixed-flux boundary condi-
tions. We also note the detailed analysis of the stability boundaries of hexagonal convection
given by Riahi (1989).

The aim of this article is to extend the Wooding problem to one where there is a strong
horizontal flow present, such as would arise with a suitably large horizontal pressure gradi-
ent imposed. This would cause a thermal boundary layer to form which is identical to the
Wooding problem at sufficiently large distances from the leading edge, apart from the strong
streamwise velocity component, but the region relatively close to the leading edge is one
where suction is subdominant, and therefore the thermal boundary layer is very much like
the porous medium analogue of the Graetz problem. This thermal boundary layer is of forced
convective type since a suitably defined Péclet number is large, but it is nevertheless subject to
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instability should the Darcy–Rayleigh number be sufficiently large. We will consider convec-
tive instabilities of the form of streamwise vortices and will present both a linearised analysis
and some representative nonlinear computations. This flow problem bears some resemblance
to the salt lake problem of Wooding et al. (1997a,b) and Wooding (2007), although the mag-
nitude of the external flow is substantially smaller than in this article, and the present analysis
is three-dimensional.

Near the leading edge, the linearised stability equations, which take the form of parabolic
partial differential equations, are identical to those solved by Selim and Rees (2007a) in their
study of an impulsively heated thermal boundary layer without an imposed horizontal flow.
Indeed, the time variable τ which is used by Selim and Rees (2007a) plays exactly the same
role as the spatial variable, ξ , which is employed here. Although this analogy breaks down
when disturbances enter the nonlinear regime, we nevertheless expected much of the quali-
tative nature of the unsteady problem of Selim and Rees (2007a) to carry over to the present
configuration. The study of the stability of such nonsimilar boundary layers is one where
there remains much interest and activity, some examples of which are the recent articles by
Ennis-King et al. (2005) on anisotropic media, Kim et al. (2008) on the melting of ice within
a porous medium, Riaz et al. (2006) who also present some detailed nonlinear simulations
and Nouri-Borujerdi et al. (2007) on the effects of local thermal non-equilibrium. However,
there remains some differences of opinion in the literature about the best way of defining
instability. A detailed account of these matters may be found in the review articles by Rees
(1998, 2002) and Rees et al. (2008b). In summary, it is argued that the natural evolution of
disturbances (either spatially for a steady basic state, or in time for an unsteady basic state)
should be used for determining stability criteria, rather than by imposing specific criteria,
such as the setting of the time derivative of the whole temperature profile to zero. In general,
the former method yields earlier stability criteria than the latter method, because the latter
method imposes strict contraints on the behaviour of the disturbances that are not there in
practice. In a further argument, Storesletten and Rees (1998) argue that the critical distances
obtained for many boundary layer flows are far too small for the boundary layer approxi-
mation to be valid. It was this observation that motivated the analysis of Rees (2001) who
considered free convection from a nearly vertical heated surface where the critical distance
is asymptotically large, and therefore the analysis remains self-consistent. The implication
of the work of Rees (2001) is that instability analyses of boundary layers at O(1) angles are
inherently inconsistent, and that the only consistent analysis would involve the fully elliptic
system of equations.

Finally, it is necessary to mention that there also exist two articles which consider the com-
bination of a boundary layer flow and surface suction in porous media; these are the works
of Jang et al. (1995) and Hassanien et al. (2004). In the former article, a variable suction is
employed but the disturbances are assumed to have a zero x-derivative at onset. Moreover,
their mixed convection parameter is assumed to be a constant, whereas its definition exhibits
a clear streamwise variation. In the latter article, a power law variation in surface temperature
is employed together with a varying suction velocity. However, the Forchheimer terms are
not written in a frame invariant form, and it is therefore difficult to assess how accurate their
results are.

2 Basic Equations and Flow

A semi-infinite porous region is bounded below by the horizontal surface z̄ = 0 and is un-
bounded above. The surface at z̄ = 0 is permeable and forms a suction surface, where the
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vertical velocity w̄ = −W , is maintained, and where W > 0 is a constant. In addition, a
horizontal flow of magnitude, U (� W ), is induced by a uniform pressure gradient in the
x̄-direction. Gravity acts in the negative z̄-direction. The ambient temperature of the porous
medium is T∞, while that part of the bounding surface which lies in the range x̄ > 0 is held
at the higher temperature Tw.

It is assumed that Darcy’s law is applicable, that the medium is isotropic and homoge-
neous, that the phases are in local thermal equilibrium and that the Boussinesq approximation
is valid. The governing steady-state equations are now given by,

∂ ū

∂ x̄
+ ∂v̄

∂ ȳ
+ ∂w̄

∂ z̄
= 0, (1)

ū = − K

µ

∂ p̄

∂ x̄
, (2)

ū = − K

µ

∂ p̄

∂ ȳ
, (3)

w̄ = − K

µ

[
∂ p̄

∂ z̄
− ρgβ(T − T∞)

]
, (4)

α

[
∂2T

∂ x̄2 + ∂2T

∂ ȳ2 + ∂2T

∂ z̄2

]
= ū

∂T

∂ x̄
+ v̄

∂T

∂ ȳ
+ w̄

∂T

∂ z̄
, (5)

where all terms are defined in the Nomenclature. The boundary conditions are

z̄ = 0 : w̄ = −W, T =
{

T∞(x̄ < 0)
Tw(x̄ > 0)

, z̄ → ∞ : T → T∞. (6)

In addition, when x̄ is large and negative, all quantities should be at their ambient values,
namely ū = U , v̄ = 0, w̄ = −W and T = T∞. The nature of this problem is such that the
boundary layer approximation will be valid and the governing equations become parabolic
in x̄ , and therefore no large-x̄ boundary conditions are required.

Far from the leading edge (i.e. for x̄ sufficiently large and positive), it is straightforward
to show that

ū = U, w̄ = −W, and T = T∞ + (Tw − T∞) exp(−W z̄/α), (7)

and therefore α/W may be used as a natural lengthscale in order to nondimensionalise the
equations. On setting L = α/W , the following substitutions are introduced:

(x̄, ȳ, z̄) = L(x, y, z) (ū, v̄, w̄) = W (û, v̂, ŵ) p̄=µα
K

p̂, T =T∞+(Tw − T∞)θ, (8)

Hence the governing Eqs. 1– 5, become,

∂ û

∂x
+ ∂v̂

∂y
+ ∂ŵ

∂z
= 0, (9)
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û = −∂ p̂

∂x
, (10)

v̂ = −∂ p̂

∂y
, (11)

ŵ = −∂ p̂

∂z
+ Ra θ, (12)

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 = û
∂θ

∂x
+ v̂

∂θ

∂y
+ ŵ

∂θ

∂z
, (13)

where the Darcy–Rayleigh number is defined as,

Ra = ρgβK L(Tw − T∞)
µα

= ρgβK (Tw − T∞)
µW

. (14)

Given that the dimensional magnitude of the external free stream is U , the equivalent in
nondimensional terms is U/W , which may be written in the form,

U

W
= UL

α
= Pe, (15)

and therefore this velocity ratio also plays the role of a Péclet number.
In this article, we shall assume that Pe � 1 and therefore the development of the tem-

perature profile is described accurately by the boundary layer approximation. Although this
would suggest that the configuration we study is of forced convective type, the Darcy–
Rayleigh number is taken to be of O(1), and therefore the boundary layer will be subject
to thermoconvective instability when Ra is sufficiently large. Therefore we need to consider
the appropriate boundary conditions for positive values of x only:

z = 0 : ŵ = −1, θ = 1, z → ∞ : û → Pe, θ → 0. (16)

In the absence of temperature variations, the velocity and pressure fields are easily shown
to be û = Pe, v̂ = 0, ŵ = −1 and p̂ = −Pe x + z. Therefore we may perturb Eqs. 10–13
according to,

û = Pe + u, v̂ = v, ŵ = −1 + w, p̂ = −Pe x + z + p, (17)

to obtain a new set of equations with homogeneous boundary conditions. Eqs. 10– 12 remain
unchanged, but Eq. 13 becomes,

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 + ∂θ

∂z
− Pe

∂θ

∂x
= u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
. (18)

Finally, we need to rewrite the governing equations in streamfunction/temperature form to
allow the detailed basic state to be determined, and in pressure/temperature form in order to
analyse vortex instabilities. In the former case, we may introduce the substitutions,

u = −∂ψ
∂z
, v = 0, w = ∂ψ

∂x
. (19)

and thus the streamfunction satisfies the equation,

∂2ψ

∂x2 + ∂2ψ

∂z2 = Ra
∂θ

∂x
, (20)
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while Eq. 18 becomes,

∂2θ

∂x2 + ∂2θ

∂z2 + ∂θ

∂z
− Pe

∂θ

∂x
= ∂ψ

∂x

∂θ

∂z
− ∂ψ

∂z

∂θ

∂x
. (21)

In the latter case, the three velocity components may be eliminated using Darcy’s law and
we obtain,

∂2 p

∂x2 + ∂2 p

∂y2 + ∂2 p

∂z2 = Ra
∂θ

∂z
, (22)

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 + ∂θ

∂z
− Pe

∂θ

∂x
= Ra θ

∂θ

∂z
− ∂p

∂x

∂θ

∂x
− ∂p

∂y

∂θ

∂y
− ∂p

∂z

∂θ

∂z
. (23)

The boundary conditions are,

z = 0 : ψ = 0, θ = 1,
∂p

∂z
= Ra, (24)

z → ∞ : ∂ψ

∂z
, θ,

∂p

∂z
→ 0. (25)

3 Boundary Layer Analysis and Basic State

The appropriate boundary layer scalings may be obtained by balancing the magnitudes of
the θzz and Pe θx terms in Eq. 21. This yields the balance,

Pe z2

x
= O(1). (26)

It is typical to assume that x = O(1) in boundary layer theory, because this means that the
distance to the leading edge is a distance of significance to the solution. However, in the pres-
ent context, this means that the suction term in (21), namely the ∂θ/∂z term, is negligible,
whereas it should play an important role. Therefore it is necessary to insist that z = O(1), and
Eq. 26 now implies that x = O(Pe). This motivates the substitution, x = Pe X , and Eqs. 20
and 21 reduce to the forms,

∂2ψ

∂z2 = Ra

Pe

∂θ

∂X
+ O(Pe−2), (27)

∂2θ

∂z2 + ∂θ

∂z
= ∂θ

∂X
+ O(Pe−2). (28)

Equation 28 shows that the evolution of θ is independent ofψ at leading order, which reflects
the fact that this is a forced convection problem, or nearly so. On the other hand, Eq. 27
indicates that buoyancy induces a small, O(Pe−1), correction to the original uniform free
stream.

The appropriate similarity variable for small values of X is z/2X1/2, where the ‘2’ has
been introduced for numerical convenience, while the one for large values of X is z itself.
Therefore we shall introduce the following continuous transformation which will model both
extremes well:

η = z(1 + 2X1/2)

2X1/2 , ξ = X1/2. (29)
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Eq. 28 becomes,

(1 + 2ξ)2
∂2θ

∂η2 + [2ξ(1 + 2ξ)+ 2η]
∂θ

∂η
= 2ξ

∂θ

∂ξ
. (30)

From this equation it is clear that the first term in a Taylor series expansion of θ about ξ = 0
is

θ = erfc(η) = 2√
π

∫ ∞

η

e−χ2
dχ, (31)

while the corresponding large-ξ solution is

θ = e−z, (32)

which is the nondimensional counterpart to the expression for T given in Eq. 6.
Equation 27, subject to the boundary conditions that θ = 1 at η = 0 and that θ → 0 as

η → 0, was solved using a modified version of the Keller-box method. The most usual imple-
mentation of this method employs the reduction of the system of equations to first-order form
in η, and then finite difference approximations are applied midway between each η and each
ξ value, i.e. at the centre of the ‘box’ formed by neighbouring grid lines. The resulting finite
difference equations are both nonlinear and implicit, and the solutions are obtained using
a multi-dimensional Newton–Raphson technique. Although the Jacobian matrix is usually
encoded within the program, we employ numerical derivatives to simplify the encoding. The
method, as stated above, is of second order accuracy in both ξ and η, but it shares the same
stability properties as the Crank Nicolson method in that it is A-stable, and can exhibit slowly
decaying pointwise oscillations if the steplength in ξ is too large. The equivalent Backward
Euler stepping is also L-stable, but is only of first-order accuracy. Therefore we have adopted
the second-order BDF method (see, for example, Plato (2003), which has the advantage of
being both L-stable and also retains the second-order accuracy we desired. As far as we
know this is the first time that this method has been used within a Keller-box code. Extensive
tests were undertaken comparing results with those of the standard central differences where
baseline figures for comparison were obtained by successive interval-halving and Richardson
extrapolation. It was confirmed that the method is of second-order accuracy in ξ and the data
obtained often exceeds the absolute accuracy of the central–difference solution.

Figure 1 displays the isotherms of the resulting thermal boundary layer plotted in terms of
X and y. Thus the evolving thickness of the boundary layer is displayed as it would appear
in reality, although the horizontal coordinate has necessarily been compressed by a factor
equal to the Péclet number. It is easily seen that the thickness of the boundary layer grows

0 2 4 6 8 1 0
0

2
z

X

Fig. 1 Temperature field corresponding to the basic forced convection state. Isotherms are plotted at intervals
of 0.1
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rapidly from the state given by Eq. 31 until X ∼ 2, after which it evolves slowly towards its
asymptotic profile given by Eq. 32.

4 Linear Stability Analysis

We now introduce small-amplitude vortex disturbances near the leading edge and follow-
ing their subsequent downstream evolution. The basic state we analyse for stability is now
denoted by θb(ξ, η), and there will be a corresponding pressure profile, pb(ξ, η). However, it
is not necessary to calculate this latter profile as it does not appear in the linearised stability
equations. Therefore we shall introduce vortex disturbances in the following manner:

(p, θ) = (pb, θb) + (P,�)eiky, (33)

where both P and� are functions of ξ and η, and where k is the spanwise wavenumber. The
following system of disturbance equations are obtained:

∂2 P

∂η2 − k2
(

2ξ

1 + 2ξ

)2

P = Ra

(
2ξ

1 + 2ξ

)
∂�

∂η
, (34)

∂2�

∂η2 +
[

2ξ

1 + 2ξ
+ 2η

(1 + 2ξ)2

]
∂�

∂η
− k2

(
2ξ

1 + 2ξ

)2

�

+
[
∂P

∂η
− Ra

(
2ξ

1 + 2ξ

)
θ

]
∂θb

∂η
= 2ξ

(1 + 2ξ)2
∂�

∂ξ
. (35)

At sufficiently large values of ξ , the asymptotic state where the boundary layer has constant
thickness is attained, the last term in Eq. 35 then becomes negligible, and all coefficients
become independent of ξ . Consequently, an ordinary differential system is obtained for the
disturbances which corresponds precisely to the problem studied by Wooding (1960), where
the stability of an identical suction-induced boundary layer was studied in the absence of
an external stream. In the present notation, it is straightfoward to determine that the critical
Darcy–Rayleigh number is 14.3552 with corresponding wavenumber, kc = 0.7589, with all
quoted significant figures being correct. Lower values of Ra will result in a boundary layer
that is thermoconvectively stable to all small-amplitude disturbances.

It is possible to define a local Rayleigh number, Raloc, based upon the local boundary
layer thickness (say the θb = 0.1 isotherm shown in Fig. 1), which is such that Ra = Raloc =
14.3552 when x is large. Such a definition presents a very simple means of predicting where
the boundary layer becomes unstable by determining numerically where Raloc = 14.3552
whenever Ra >14.3552. This yields a value of ξ which we denote by ξloc. This rough local
Rayleigh number method will be compared with full solutions of (34) and (35) later, but it is
clear that the critical value of ξ will decrease as Ra increases.

Equations 34 and 35 were solved using the same Keller-box as described earlier, and both
these equations and those for the basic temperature profile were solved simultaneously. A
steplength of 0.1 was taken in the η-direction with ηmax = 10, while different steplengths
were used in the ξ direction because the critical time varies greatly with the value of the
Rayleigh number. We introduced a localised change in the boundary temperature centred at
a value of ξ denoted by ξi , which we call the initiation distance:

�(ξ, η = 0) = exp
[−((ξ − ξi )/c)

2] , (36)

where the constant, c, which is measure of the spread of the disturbance, was usually taken
to be ξi itself. For each value of Ra, the chosen value of ξi was roughly 10% of the estimated
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critical value of ξ in order that the computed critical value is unaffected by changing ξi to
smaller values (see Selim and Rees (2007a). A comprehensive set of simulations were run
for a variety of values of Ra and the wavenumber, k.

Selim and Rees (2007a) investigated different ways in which the magnitude of the evolving
disturbance might be measured: the surface rate of heat transfer, the maximum temperature
and an energy functional. It was found that the energy functional yields the earliest onset
criterion, possibly because it is a global measure of the strength of the disturbance. This
conclusion was also found to be true in the plume stability analysis of Rees et al. (2008a).
Therefore, for the present paper, we monitored the variation with ξ of E , defined by

E(ξ) =
∫ ∞

0
� dy = 2ξ

2ξ + 1

∫ ∞

0
� dη. (37)

Given that the disturbance is caused by a localised change in the surface boundary condition
for �, the value of E will grow initially as the surface disturbance diffuses into the porous
medium, but will soon begin to decay due to the fact that the boundary layer is stable. But
once the layer becomes thermoconvectively unstable, E will begin to grow again. We deter-
mine the value of ξ at which E has a minimum, and this value is recorded as the position of
incipient instability for the chosen values of Ra and k. In some cases E decays once more
after an interval of growth, and this corresponds to restabilisation of the layer. So for a chosen
Darcy–Rayleigh number, the Keller-box code is used for a large range of values of the wave-
number, and a neutral curve is constructed by determining where E attains its maxima and
minima for each wavenumber. Representations of these curves are shown in Figs. 2 and 3.

Figure 2 depicts the neutral curves for the following values of the Darcy–Rayleigh number:
15, 16, 20, 30, 40, 50, 60 and 100. The minimum value of ξ (denoted by ξc) for each curve is
denoted by a bullet, and the numerical values are given in Table 1. The region corresponding
to linear instability for each curve lies above the depicted minima. When Ra is just above the
smallest value (14.3552) which admits instability, then the critical distance is relatively large,
as the basic boundary layer has to grow to almost its asymptotic thickness before instability
can occur. For these cases instability occurs only within a small band of wavenumbers about
the critical value.

As the Darcy–Rayleigh number increases, so the onset of convection takes place at loca-
tions which are closer to the leading edge. Moreover, the critical wavenumber also increases.
This latter fact may be explained by appealing to the fairly general (though not entirely
universal) observation that the critical modes of instability tend to have an aspect ratio that
is close to unity. As instability arises closer to the leading edge where the boundary layer is
thinner, so the critical wavelength will be correspondingly shorter. Hence the wavenumber
tends to increase. Once Ra achieves the value of 100, the lower part of the neutral curve
has adopted the standard ‘tear drop’ shape which is typical of developing boundary layers
(see, for example, Selim and Rees (2007a) and Rees (2001), although, for larger values of ξ ,
where the boundary layer assumes constant thickness, the two branches of the curve become
vertical, and these now delimit the unstable band of wavenumbers.

Table 1 also shows the variation of kc/Ra and ξcRa with Ra. These are, respectively,
the critical wavenumber and distance corresponding to a nondimensionalisation where the
Darcy–Rayleigh number is set to unity (thereby yielding a different natural lengthscale, L)
and the suction velocity is allowed to vary. Thus large values of Ra within the present nondi-
mensionalisation correspond to small suction velocities in this alternative one. Therefore the
limit of large values of Ra here is equivalent to having no suction in the alternative scenario,
and the values of kc/Ra and ξcRa should then tend to a finite non-zero limit as Ra → ∞.
These limiting values should also be exactly the values as were obtained by Selim and Rees
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0 2 4 6 8 1 0
0
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6
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••

••
•• •• •• •

ξ

k

Ra = 100

Ra = 60

Ra = 50

Ra = 40

Fig. 2 Neutral curves determined by monitoring the behaviour of the energy functional, E . For Ra = 15
(uppermost curve), 16, 20, 30, 40, 50, 60 and 100 (lowest curve). Bullets mark the location of the respective
minimum of each curve

(2007a) as their unsteady system is precisely equivalent to the unbounded Graetz problem
in porous media without surface suction; it is these values that are quoted on the last line of
Table 1. Figure 3 shows how the neutral curves of Fig. 2 are transformed when making the
same shift in perspective; here the tendency towards a limiting curve as Ra → ∞ may be
seen easily.

Finally, we compare the critical values of the numerical simulations with the local Ray-
leigh number method described earlier. In Table 1 we list the appropriate values of ξloc and
the ratio of these with the corresponding values of ξc. It shows that the critical value of ξ is
always overestimated compared with the results of the numerical simulation. However, as
Ra decreases towards 14.3552, the relative error in ξloc decreases although the absolute error
increases. The improvement in the relative error arises because of the definition of the local
Darcy–Rayleigh in terms of the shape of the large-ξ basic temperature profile.

5 Nonlinear Evolution

5.1 Preamble

In this section we consider the effect of introducing disturbances of O(1)magnitude to deter-
mine whether the presence of the nonlinear terms alters any of the conclusions given above
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Fig. 3 Neutral curves determined by monitoring the behaviour of the energy functional, E . For Ra = 15
(uppermost curve), 16, 20, 30, 40, 50, 60 and 100 (lowest curve). Bullets mark the location of the respective
minimum of each curve. Isolated bullets denote Ra = 200 and 400

Table 1 Critical values as a function of Ra and comparisons with a local Rayleigh number analysis

Ra kc ξc kc/Ra ξcRa ξcloc ξloc/ξc

14.3552 0.7589

14.5 0.76976 9.4406 10.2533 1.086

15 0.81169 4.2260 0.05411 63.390 4.7714 1.129

16 0.89631 2.5430 0.05602 40.641 2.9765 1.170

20 1.2214 1.2136 0.06107 24.272 1.5150 1.248

30 1.9998 0.56380 0.06666 16.914 0.74824 1.327

40 2.7762 0.36498 0.06941 14.599 0.49906 1.367

50 3.5638 0.26939 0.07128 13.369 0.37339 1.386

60 4.3521 0.21288 0.07253 12.773 0.29786 1.399

100 7.5217 0.11544 0.07517 11.544 0.16346 1.416

∞ ∞ 0 0.07807 8.9018

with regard to the onset of convection. There are various studies which have already presented
different aspects of the nonlinear properties of related boundary layers. For example, Selim
and Rees (2007b) considered an unsteady boundary layer which is completely equivalent to
the present boundary layer when the Darcy–Rayleigh number is large. In that work it was
found that such large disturbances did not cause subcritical growth (i.e. growth at a value

123



The Onset and Nonlinear Development of Vortex Instabilities 255

0.00 0.50 1.00 1.50 2.00
0

5

10

15

20

25

30

35

40

•
••

•

Ra

k

(a)
(b)

(c)

Fig. 4 Neutral curves for the Wooding (1960) problem. The continuous line denotes the linear stability curve.
The dashed line denotes the limit of nonlinear solutions. Bullets denote the specific points: a the minimum
of the linear curve; b the quartic point (i.e. where the nonlinear curve branches off the linear curve); c the
nonlinear curve

of ξ which is smaller than that given by parabolic simulations of the linearised equations.
However, nonlinear saturation and premature decay were found.

On the other hand, studies such as those of Homsy and Sherwood (1976) and Jones and
Persichetti (1986), consider Darcy–Benard convection in layers with vertical throughflow,
and these are exactly equivalent to vortex convection in the present large–ξ regime. Both
these articles stress the presence of subcritical convection, by which is meant that strong
convection can occur for values of the Darcy–Rayleigh number which are below that given
by linearised theory, namely 14.3552. For the sake of illustrating the results of our computa-
tions, we have recalculated the linear and nonlinear neutral curves for this situation, and these
are given in Fig. 4. The linearised (continuous) curve was found using a standard shooting
technique with a fourth-order Runge–Kutta basic solver, and the minimum value is labelled
(a). For each wavenumber the second (dashed) curve corresponds to the smallest value
of Ra for which nonlinear convection exists. Thus, for any chosen wavenumber, the zero
solution loses stability at the linear stability curve, whereupon is suffers either a supercritical
bifurcation (for wavenumbers larger than that given by the point labelled, (b), in Fig. 4)
or a subcritical bifurcation for smaller wavenumbers. This point, which we term a quartic
point, was obtained using a straightforward weakly nonlinear analysis to third order, where
zero curvature was imposed in order to identify the transition from supercritical to subcritical
bifurcations. When the bifurcation is subcritical, the solution curve eventually passes through
a turning point which marks the limit of nonlinear solutions; the dashed curve in Fig. 4 shows

123



256 D.A.S. Rees

Table 2 Values of Ra and k corresponding to the labelled points in Fig. 4

Ra k

(a) 14.3552 0.7589

(b) 15.6308 1.1320

(c) 11.6132 0.2867

how this turning point varies with wavenumber. The minimum of this nonlinear stability curve
is denoted by (c). The values of Ra and k corresponding to these three points are given in
Table 2, where it is noted that the location of (c) is different from that given in Homsy and
Sherwood (1976) and Pieters and Schuttelaars (2008) because the curve corresponds only to
two-dimensional patterns.

In the light of the above observations our a priori expectation was that the nonlinear results
of Selim and Rees (2007b) would be recovered when Ra is large, and that it should be pos-
sible to obtain nonlinear solutions when Ra < 14.3552 provided that the initial disturbance
is sufficiently large.

5.2 Governing Equations

The governing equations for the fully nonlinear simulations were obtained by successive
transformations of Eqs. (22) and (23) using the substitution, x = Pe X , formally letting Pe →
∞ to obtain the boundary layer approximation, and then employing the continuous transfor-
mation given in (29). We obtain,

∂2 p

∂η2 +
(

2ξ

1 + 2ξ

)2
∂2 p

∂y2 = Ra

(
2ξ

1 + 2ξ

)
∂θ

∂η
, (38)

∂2θ

∂η2 +
[

2ξ

1 + 2ξ
+ 2η

(1 + 2ξ)2

]
∂θ

∂η
+

(
2ξ

1 + 2ξ

)2
∂2θ

∂y2 +
[
∂p

∂η
− Ra

(
2ξ

1 + 2ξ

)
θ

]
∂θ

∂η

+
(

2ξ

1 + 2ξ

)2
∂p

∂y

∂θ

∂y
= 2ξ

(1 + 2ξ)2
∂θ

∂ξ
. (39)

These equations were solved by first performing a spectral decomposition in the spanwise
direction,

(p, θ) = 1
2 (p0, θ0)+

N∑
n=1

(pn, θn) cos nky, (40)

and then by employing a suitably extended version of the previously described Keller-box
code, although we left the equations in the second-order form in η in order to make efficient
use of CPU time. The coefficient functions, pn and θn , remain functions of η and ξ . The
number of modes used in all our calculations was N = 12, which yields a system of 26 sec-
ond-order PDEs. The manner in which the nonlinear terms were dealt with are as described
in Selim and Rees (2007b). The boundary conditions at η = 0 were taken to be

θ0 = 2, θ1 = A exp
[−((ξ − ξi )/c)

2] , θn = 0 (n ≥ 2), (41)

where A is the amplitude of the disturbance, while the pressure condition was that
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∂ pn

∂η
= Ra

(
2ξ

2ξ + 1

)
θn ∀ n. (42)

The results of our numerical simulations are presented in two forms: (i) the rate of heat
transfer due to each mode defined as

qn(ξ) = ∂θn

∂z
|z=0, (43)

and, (ii) as a ‘heat transfer footprint’, which we will define as the contours of the rate of heat
transfer at the surface as a function of ξ and y:

Q(ξ, y) =
N∑

n=1

∂θn

∂z
|z=0 cos nky. (44)

When values of qn are plotted, we show both the computed value of q0, which is the mean
rate of heat transfer for the vortices, and the corresponding value (denoted as qb) when dis-
turbances are absent: the comparison of these two curves shows by how much the instability
has changed the mean rate of heat transfer. The above definition of Q may be seen not to
involve the mean rate of heat transfer due to mode 0—this is because the chief aim is to
visualise easily the induced pattern of convection.

5.3 Results for Ra = 20 and k = 1

The variations of qn and Q for a fairly standard case are given in Figs. 5 and 6. Here we have
chosen to use Ra = 20, k = 1 and ξi = 1 with the two disturbance amplitudes, A = 0.001
and A = 0.5. With regard to Fig. 4, this value of k corresponds to a very weakly subcritical
bifurcation, but Ra = 20 is well above the linear critical value which is approximately 15.
It is therefore no surprise that the resulting evolution with ξ yields a convection pattern with
the same dominant wavenumber as the initial disturbance. In Fig. 5 we see that the values
of qn decrease in magnitude fairly rapidly as n increases, suggesting that this is a solution
with only a moderate nonlinearity. We also see that the value of ξ at which vortices begin to
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Fig. 5 Values of the modal surface rate of heat transfer, qn , for n = 0, . . . 4. The parameters are: Ra = 20,
k = 1 and ξ = 1. In the lower part of each frame the continuous line denotes q0, while the dotted line corre-
sponds to the basic state, for comparison. In the upper part, the continuous line denotes q1, long dashes are
q2, intermediate dashes are q3 and short dashes are q4; this convention applies to all figures of this type
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y = 0

y = 2π/ k

ξ = 0 ξ = 10

A = 0.001

A = 0.5

Fig. 6 Surface heat transfer profiles. Contours of Q are in increments of 0.1. The parameters are Ra = 20,
k = 1.0 with A = 0.001 and 0.5

have an O(1) effect depends strongly on the amplitude of the disturbance. Small values of A
delay the overt appearance of instability, while sufficiently large amplitudes bring it forward
to values of ξ that are close to the neutral curves shown in Fig. 2. These observations are also
consistent with the view presented by Fig. 6 where one disturbance wavelength is shown.

No doubt there are many almost identical cases that could be presented when the wavenum-
ber is close to or above the linear critical value (marked (a) in Fig. 4), but more interesting
phenomena may be obtained when the wavenumber is closer to the nonlinear minimum
(marked (c) in Fig. 4) where there is the possibility of deep subcriticality.

5.4 Results for Ra = 20 and k = 0.3

Figure 7 displays the case, Ra = 20, k = 0.3 and ξi = 1 for six different disturbance ampli-
tudes. When A = 0.001, mode 3 eventually dominates, even though the initial disturbance
is, by definition, of the form of mode 1. However, nonlinear interactions of mode 1 with
itself soon yields a cascade of higher modes each with a very small amplitude. Given that
they have the respective wavenumbers of 0.6 and 0.9, Fig. 4 suggests that both modes 2 and
3 might also be linearly unstable, although mode 3 has a lower critical Rayleigh number.
Therefore, in the present scenario, it appears that mode 3 has the faster growth rate, and
therefore it eventually dominates. The appropriate frame in Fig. 8 shows quite clearly how
the modal pattern changes as ξ increases, and how rapidly the strongly nonlinear mode 3
appears.

When A rises to the value 0.1 a more intricate modal competition happens with mode 3
dominating eventually. However, the decaying q1 and q2 curves also oscillate about zero,
and Fig. 8 shows that this is equivalent to decaying oscillations in the location of the axes
of the vortices. While this might seem to be a somewhat strange phenomenon, it must be
remembered that periodic convection patterns which are bounded either above or below by
a solid surface may be destabilised by disturbances which change the position of a single
cell. In such a case, the two cells which are now closer together than they were previously
may attract one another by an entrainment mechanism which is similar to the Coandă effect
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Fig. 7 Values of the modal surface rate of heat transfer, qn , for n = 0, . . . 4. The parameters are: Ra = 20,
k = 0.3 and ξi = 1

in aerodynamics; see Banu et al. (1998) and Brambles and Rees (2007) for examples in the
porous media context. Clearly, when A = 0.1, this entrainment process is not strong enough
for cell merging and the ultimate fate is a mode 3 pattern again.

However, when A rises to the value 0.1956, the amplitude of the ‘bounce’ is too large, and
we see a sudden change from a mode 3 final state when A = 0.1955 to a mode 2 final state
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Fig. 8 Surface heat transfer profiles. Contours of Q are in increments of 0.1. The parameters are Ra = 15,
k = 0.3 and ξi = 1

when A = 0.1956. At slightly higher disturbance amplitudes, a further transition occurs to
a situation where the values of q1 through to q4 are of roughly equal magnitudes for quite a
range of values of ξ before a mode 2 solution eventually dominates. This new intermediate
state, which is clearly only just unstable, consists of an isolated region of high heat transfer,
and which would technically be classed as mode 1. The associated flow pattern would then
take the form of rather squat vortices which are approximately π/0.3 � 10 wide in the
y-direction but are only − ln(0.1) � 2.3 high. It is interesting to note the behaviour of the
mean heat transfer curve, q0, as one regime yields to the next, for while |q0| is clearly larger
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Fig. 9 Values of the modal surface rate of heat transfer, qn , for n = 0, . . . 4. The parameters are: Ra = 25,
k = 0.3 and ξi = 1

than its equivalent for the basic state, it becomes larger again once the isolated vortex pattern
destabilises to the mode 2 state.

5.5 Results for Ra = 25 and k = 0.3

Figures 9 and 10 correspond to the case, Ra = 25 and k = 0.3. The value of the Darcy–
Rayleigh number is higher than in the case presented in Figs. 7 and 8, and therefore the
most obvious consequence is that the ultimate value of q0 is larger in magnitude, reflecting
the fact that convection is stronger. Indeed, a comparison of corresponding frames in Figs. 7
and 9 shows that strong convection is attained earlier for the larger value of Ra, which is not
surprising. Although this larger value of Ra also has a transition from mode 3 to mode 2 as the
disturbance amplitude, A, becomes larger, there are various significant differences between
when Ra = 20 and when Ra = 25. The increased magnitude of the buoyancy force due to
the larger value of the Darcy–Rayleigh number causes a stronger modal interaction when
A = 0.1 than for the corresponding when Ra = 20. The flow eventually settles down to a
mode 3 state, as it does when A = 0.001, but with the opposite sign. This may be seen in
Fig. 10 as a change in the phase of of the convection pattern. The modal interaction process
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Fig. 10 Surface heat transfer profiles. Contours of Q are in increments of 0.1. The parameters are Ra = 25,
k = 0.3 and ξi = 1

is still very sensitive to changes in the value of A, and we cannot guarantee that there is a
sudden transition from a positive value of q3 to a negative one at some critical value of A. At
larger values of A a mode 2 solution appears to dominate when ξ is large, but it is preceded
by a very complicated modal exchange. This complexity is depicted in Fig. 10 where some
fairly rapid cell merging may be seen. The detailed evolution of the heat transfer footprint
near to ξ = 3 is changed greatly when A increases from 0.3 to 1.0.

5.6 Results for Ra = 11.8 and k = 0.2867

Finally, we have also attempted to obtain some solutions at Darcy–Rayleigh numbers below
14.3552, and one such case is shown in Fig. 11. This corresponds to the following parameters:
Ra = 11.8, k = 0.2867, ξi = 1 and A = 2. The chosen values of Ra and k lie just above
the minimum of the nonlinear marginal curve in Fig. 4, while the chosen amplitude had to be
sufficiently large in order to obtain a vortex solution. Indeed, smaller values of A gave solu-
tions where the basic state was recovered once the disturbance had decayed. At such a low
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Fig. 11 Values of the modal surface rate of heat transfer, qn , for n = 0, . . . 4. The parameters are: Ra = 11.8,
k = 0.2867, ξi = 1 and A = 2
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Fig. 12 Surface heat transfer profiles. Contours of Q are in increments of 0.1. The parameters are Ra = 11.8,
k = 0.2867, ξi = 1 and A = 2

value of Ra the modal interactions are not strong, but nevertheless Fig. 11 shows that they
produce a state where the first four modes have roughly comparable values of qn , and there-
fore it is difficult to guess what the convection pattern looks like. The heat transfer footprint
is shown in Fig. 12, and the large-ξ pattern consists of regions of low rates of heat transfer
separated by relatively wide regions of high heat transfer; this situation is very similar to that
depicted in Fig. 9 of Alloui et al. (2005). Further computations to very large values of ξ sug-
gests that this pattern is quite stable, unlike the similar pattern found when Ra = 20, k = 1,
ξi = 1 and A = 0.3, shown in Figs. 7 and 8, and which occurs between ξ = 6 and ξ = 7.

Space precludes the presentation of other solutions, such as flows at higher values of Ra
or disturbances with different wavenumbers. But it is clear, even from this brief survey, that
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the ultimate pattern of convection, as well as the manner of its evolution, depends quite
strongly and sometimes quite sensitively on the values of governing parameters. Whereas
the waviness of the cells shown in Fig. 8 might suggest a mechanism akin to the Ekhaus
instability (noting that distance along the boundary layer here plays roughly the same role as
time would in a traditional Ekhaus analysis), a full study of this would require a much larger
number of modes with a smaller fundamental wavenumber in order to determine the effect of
disturbances of the form of sideband modes, i.e. those with slightly different wavenumbers
from that of the fundamental mode. It is highly likely that a more efficient numerical study
would therefore require a full finite difference discretisation.

6 Conclusions

In this article, we have considered the thermoconvective instability with respect to vortex
disturbances of the developing forced convection boundary layer flow over a horizontal
surface with small-amplitude surface suction. A detailed linearised stability analysis was
presented where the full parabolic partial differential equations for the disturbances were
solved numerically. Neutral curves were obtained by monitoring the variation with ξ of an
energy functional. The neutral curves were compared favorably with known limiting cases.
This study was extended into the nonlinear regime using a spanwise spectral decomposition
of the now large amplitude disturbances. The detailed evolution of vortices is surprisingly rich
and provides many different phenomena: wavy vortices, sudden transitions between different
convecting states, subcritical convection, sensitivity to initial conditions in some parameter
regimes. Therefore our presentation of nonlinear convection can only be regarded as indic-
ative of the complicated nature of modal selection mechanisms in a developing boundary
layer.
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