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Abstract The onset of convection in a horizontal porous layer is investigated theoretically.
The permeability of the porous medium is a continuous periodic function of the horizontal
x coordinate. Floquet theory has been employed to determine the favoured two-dimensional
mode of convection. For a wide range of periods of the permeability variation, a matrix eigen-
value technique with eighth order accuracy has been employed to find the critical Darcy–
Rayleigh number. This is supplemented by a multiple-scales analysis of the large-period
limit, and a brief consideration of the anisotropic limit for very short periods.

Keywords Free convection · Nonuniform permeability · Linear stability theory ·
Floquet theory · Multiple scales theory

Nomenclature
a Central difference coefficients for a first derivative
b Central difference coefficients for a second derivative
f, g Reduced forms of the perturbations
f , g Vector forms of the perturbations
F Nondimensional permeability variation
H Height of the porous layer
k Wave number of the permeability variations
K Permeability
K0 Mean permeability
M1–M4 Matrices used in the numerical method
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N Number of intervals in the numerical scheme
p Pressure
P Period of the permeability variation
R0, R1, R2 Terms in the small-k expansion for Ra
Ra Darcy–Rayleigh number
T Temperature
Tc, Th Cold and hot boundary temperatures, respectively
x Horizontal coordinate
y Horizontal (spanwise) coordinate
z Vertical coordinate
u Horizontal velocity
v Horizontal (spanwise) velocity
w Vertical velocity

Greek letters
β Coefficient of thermal expansion
ε Relative amplitude of the permeability variation
θ Nondimensional temperature
κm Thermal diffusivity of the porous medium
µ Dynamic viscosity
ν Floquet exponent
ξ Anisotropy parameter
χ̂ Scaled form of χ
ρ0 Reference density
ρ Density
σ Heat capacity ratio of the porous medium to that of the fluid
χ Slow x-variable
ψ Streamfunction
ω Scaled Floquet exponent

Subscripts and superscripts
c Critical conditions
i, j Denoting grid points
0,1,2 Terms in the small-k expansion
χ Partial derivatives with respect to χ
¯ Dimensional variables
ˆ Reduced variables
′ Derivative with respect to x

1 Introduction

The problem of convection instability in a porous medium heated from below was first solved
by Horton and Rogers (1945) and later by Lapwood (1948), Wooding (1957) and Beck
(1972). These pioneering articles assumed a homogeneous and isotropic porous medium.
The first study of convection in an inhomogeneous porous medium was performed by
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Gheorghitza (1961). Rana et al. (1979) investigated convection in multi-layered geother-
mal reservoirs. McKibbin and O’Sullivan (1980, 1981) solved the problems of onset of
convection and weakly nonlinear convection with discrete horizontal sublayers. Rees and
Riley (1990) extended the analysis of McKibbin and O’Sullivan by determining regions in
parameter space where the expected pattern of convection is three-dimensional. McKibbin
and Tyvand (1982), McKibbin and Tyvand (1983), McKibbin and Tyvand (1984) investi-
gated the convergence to homogenous anisotropy for convection cells that penetrate multiple
horizontal porous layers with alternating permeabilities or thermal conductivities. Gjerde
and Tyvand (1984) solved the related problem of onset of convection with the permeability
given as a continuous periodic function of the vertical coordinate.

The onset of convection in anisotropic porous media had earlier been investigated by
Castinel and Combarnous (1974), Epherre (1975) and Wooding (1978). This was extended
to supercritical nonlinear convection by Kvernvold and Tyvand (1979).

The above-mentioned articles on inhomogeneous media concentrated on Darcy–Bénard
(or Horton–Rogers–Lapwood) convection with horizontal layers, which means that varia-
tions in the permeability and/or conductivity occur only in the vertical direction. The onset
of convection and the problem of slightly supercritical convection have been studied, and the
solutions have been compared with an average description in terms of uniform anisotropy.

In the literature, the presence of vertical layers has been considered less often than when
the layers are horizontal. The onset of Rayleigh–Bénard convection in a porous cavity con-
taining vertical layers was investigated by McKibbin (1986). He also carried the analysis into
the nonlinear domain of steady supercritical convection. However, his analysis was restricted
to two-dimensional flow in a finite cavity. It is physically plausible that the preferred mode
of convection will be three-dimensional if the vertically-layered porous medium is of infinite
horizontal extent. Even if convection is restricted to two dimensions, then the periodicity of
the onset mode is unlikely to be the same as that of the property variations. Thus this study
continues the two-dimensional linearised analysis by McKibbin (1986), but with two modifi-
cations. We assume vertical layering in terms of continuous (as opposed to a discrete) periodic
stratification in the x-direction. We also let the porous medium be unbounded in the hori-
zontal x-direction. We will solve numerically the linearised two-dimensional onset problem.
We will give a separate analysis of the long-wavelength limit as well as the short-wavelength
limit of permeability variation. The latter limit is the limit of homogeneous anisotropy.

This study gives a theoretical investigation of the onset of Darcy–Bénard convection.
There are a number of other studies on convection in layered porous media. For example,
Reda (1986) published experiments on convection in layered porous media, and Poulikakos
and Bejan (1983) investigated convection in a porous cavity heated from the side, by taking
into account both horizontal and vertical layering. More references can be found in the review
of Rees (2000), the book by Nield and Bejan (2006) and the article in the present issue by
Nield et al. (2009).

2 Problem Formulation

We consider a porous layer of constant thickness H , saturated with viscous fluid with den-
sity ρ and dynamic viscosity µ. The reference density is ρ0 and the coefficient of thermal
expansion is β. We will consider periodic and continuous stratification in the x-direction
where the permeability of the isotropic porous medium is K (x̄), where K0 is the reference
permeability and the spatial period of the variations is P̄ . The gravitational acceleration is g.
The effective thermal diffusivity of the saturated porous medium is κm; we treat this value
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as a constant in this article although it will, in general, also vary with x̄ . We note that the
diffusivity may either increase or decrease with increasing permeability depending on the
relative diffusivities of the solid and fluid phases.

We assume that Darcy’s law and the Boussinesq approximation are valid, and that the
fluid and the solid phases are in local thermal equilibrium. Subject to these constraints, the
governing equations are,

∂ ū

∂ x̄
+ ∂v̄

∂ ȳ
+ ∂w̄

∂ z̄
= 0, (1)

ū = − K

µ

∂ p̄

∂ x̄
, v̄ = − K

µ

∂ p̄

∂ ȳ
, w̄ = − K

µ

[∂ p̄

∂ z̄
− ρgβ(T − T∞)

]
, (2)

κm

[∂2T

∂ x̄2 + ∂2T

∂ ȳ2 + ∂2T

∂ z̄2

]
= ū

∂T

∂ x̄
+ v̄

∂T

∂ ȳ
+ w̄

∂T

∂ z̄
+ σ

∂T

∂ t̄
, (3)

where all the terms are as defined in the Nomenclature. The boundary conditions are

z̄ = 0 : w̄ = 0, T = Th, z̄ = H : w̄ = 0, T = Tc. (4)

These equations may be nondimensionalised upon introduction of the following substitutions,

(x̄, ȳ, z̄) = H(x, y, z), (ū, v̄, w̄) = κm

H
(u, v, w), p̄ = µκm

K0
p, T = Tc + (Th − Tc)θ, t̄ = σH2

κm
t.

(5)

Hence the governing Eqs. 1–3, become,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (6)

u = −F(x)
∂p

∂x
, v = −F(x)

∂p

∂y
, w = −F(x)

[∂p

∂z
− Ra θ

]
, (7)

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 = u
∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
+ ∂θ

∂t
, (8)

where the Darcy–Rayleigh number is defined as,

Ra = ρ0gβK0 H(Th − Tc)

κmµ
, (9)

and where the function, F(x), is a dimensionless permeability given by F = K (x)/K0. We
shall allow K to exhibit sinusoidal variations about its mean value, and therefore we set

F(x) = 1 + ε cos kx, (10)

where ε is the amplitude of the permeability variation which must satisfy 0 ≤ ε < 1. The
wavenumber, k, of the variation is related to its period via P = 2π/k, where P = P̄/H .

In this article, we concentrate solely on two dimensional convection, such as would occur
within a porous layer with a small spanwise dimension, or within an appropriately set up
Hele Shaw cell. It is our intention to extend this analysis to three dimensions elsewhere.
Therefore, we may set v=0 and define a streamfunction, ψ , in the usual way,

u = −∂ψ
∂z
, w = ∂ψ

∂x
, (11)
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Equations 6–8 reduce to the following system,

∂2ψ

∂x2 + ∂2ψ

∂z2 − F ′

F

∂ψ

∂x
= Ra F

∂θ

∂x
, (12)

∂2θ

∂x2 + ∂2θ

∂z2 = ∂ψ

∂x

∂θ

∂z
− ∂ψ

∂z

∂θ

∂x
. (13)

Given that the basic state whose stability we are addressing is given by ψ = 0 and θ = 1 − z,
the linearised stability equations for perturbations to the basic state are given by (12) and

∂2θ

∂x2 + ∂2θ

∂z2 = −∂ψ
∂x

+ ∂θ

∂t
, (14)

where ψ and θ represent small-amplitude perturbations in the remainder of this article. The
boundary conditions required to complete the statement of the linearised system are that,

ψ = θ = 0 on z = 0, 1. (15)

3 Floquet Analysis

The boundary conditions presented in Eq. 15 and the form of the perturbations equations,
Eqs. 12 and 14, suggest that it is valid to factor out the function sin π z from ψ and θ . Such a
technique has been used in previous articles by Rees and Lage (1997) and Rees and Tyvand
(2004a,b) to great advantage. Therefore, we shall introduce the substitution:

(ψ, θ) = (
ψ̂(x), θ̂ (x)

)
eλt sin π z, (16)

where λ is the complex exponential growth rate for disturbances. The resulting equations are
now,

ψ̂ ′′ − π2ψ̂ − F ′

F
ψ̂ ′ = Ra F θ̂ ′, (17)

θ̂ ′′ − π2θ̂ + ψ̂ ′ = λθ̂, (18)

where primes denote ordinary derivatives with respect to x .
It is now quite straightforward to prove that this system is subject to the principle of

exchange of instabilities, i.e. that Real(λ)= 0 also corresponds to Imag(λ)= 0. If we treat
all the variables in Eqs. 17 and 18 as being complex, then we may multiply Eq. 17 by the
complex conjugate of ψ̂/F , multiply Eq. 18 by the complex conjugate of Ra θ̂ , integrate both
with respect to z in the range 0 ≤ z ≤ 1, and subtract to obtain the expression,

λ

1∫

0

|θ̂ |2 dz =
1∫

0

[
1

Ra F

(
|ψ̂ ′|2 + π2|ψ̂ |2

)
−

(
|θ̂ ′|2 + π2|θ̂ |2

) ]
dz. (19)

It is clear that all of the integrals are real quantities, and therefore λ is always real. In the
remainder of this article λ= 0 is taken to be the condition for the onset of convection.

This configuration forms a mathematical problem with competing frequencies. The func-
tion, F , has frequency, k, and period, P , while the critical mode of convection in the absence
of permeability variations has frequency (wavenumber), π , and a period equal to 2. As our
intention is to examine the effect of permeability variation over a wide range of periodicities,
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it is natural to adopt a Floquet analysis of the linearised equations. Therefore we may seek
solutions of the form,

(ψ̂, θ̂ ) = eiνkx/2
(

f (x), g(x)
)

+ c.c., (20)

where both f (x) and g(x) have period, P , and where c.c. denotes complex conjugate. How-
ever, the presentation of the equations is simplified if ν is replaced by ω, where ω = νk/2.
The functions f and g satisfy the complex equations,

f ′′ + 2iω f ′ − (ω2 + π2) f − F ′

F
( f ′ + iω f ) = Ra F(g′ + iωg), (21)

g′′ + 2iωg′ − (ω2 + π2)g + ( f ′ + iω f ) = 0, (22)

where the solutions need to be periodic with period, P . These equations form an eigenvalue
problem for Ra as a function of P and ω. While it is quite possible to effect their solution
using a simple shooting method code with a high accuracy solver, such as a fourth order
Runge Kutta scheme, we have chosen to adopt a matrix eigenvalue approach. Details of this
method are given in Appendix A, but it is sufficient to say that we have taken an eighth-order
accurate method, and our results are correct to at least six significant figures.

4 Numerical Results

4.1 Cellular Patterns

We begin our discussion of the numerical results by illustrating some of the flow patterns
and how they vary with the value of the Floquet exponent, ν, the permeability amplitude, ε,
and the period, P .

Figure 1 depicts the case P = 2 (which corresponds to the critical wavelength for Darcy–
Bénard convection in a uniform layer) with ε= 0.3. A greyscale indication is also given in
the figure to help illustrate clearly how the flow pattern is affected by the locations of regions
of relatively high or low permeability. The case ν= 0 simply allows the onset mode to have
the same periodicity as the background permeability variation. In this case, the flow is quite
naturally stronger in those regions where the permeability is the highest, as evidenced by the
concentration of streamlines there. It is also interesting to see that the stronger cells are slightly
narrower than the weaker cells. The cells also display a perfect left/right symmetry about the
position of permeability maximum. On the other hand, the cells due to the second mode for
ν= 0 are perfectly out of phase with the mode 1 cells, and do not have this left/right symmetry.

When ν= 1, the overall pattern now has period equal to four, again with strong cells
appearing whenever the permeability is at its largest. In this case, the fluid motion within
each neighbouring pair of strong cells is in the opposite direction, unlike for ν= 0. The
situation is more extreme when ν= 0.5 as strongly circulating cells occur at every other per-
meability maximum, and now the periodicity of the overall pattern is 8. It is highly unlikely
that patterns for nonzero values of ν are stable when entering the nonlinear regime, espe-
cially as they have a higher critical value of Ra. However, if P takes values other than 2, then
patterns at nonzero values of ν do become significant and will often form the primary mode
of instability.

The values of ν considered in Fig. 1 are a simple set of values, and some care must be taken
when interpreting what different values of ν mean when considering the overall periodicity
of the pattern. When ν takes rational fractional numbers such as m/n, where the fraction
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Fig. 1 Streamlines corresponding to different onset modes with P=2 and ε=0.3. The greyscale frame shows
the permeability distribution with lighter shades indicating higher permeability

lies between 0 and 1 and where m and n are relatively prime, then the overall pattern has
periodicity equal to n P/m when m is even and n is odd and to 2n P/m otherwise. When ν
is irrational the pattern is quasiperiodic.

Before leaving our consideration of Fig. 1 it is also worth noting that the isotherms for
mode 1 for ν= 0 are almost identical to the shape of the streamlines of mode 2, and vice
versa, and therefore we have not presented these separately. Similarly, isotherms are always
exactly out of phase with the streamline pattern and follow the same variations in amplitude.

Figure 2 shows how the streamlines change when the permeability amplitude, ε, increases.
At small values, such as ε= 0.1, there is little discernable difference between the cell centred
at the permeability maximum and its neighbour at the minimum. However, as ε increases the
cell at the maximum grows in relative strength until values near ε= 0.9, the flow strength
corresponding to the weaker cell achieves a magnitude which is <10% of the that of the
stronger cell. The pattern now appears to consist of a train of co-rotating cells with little fluid
motion in between. Again, the depicted flow pattern for mode 2 when ε= 0.9 is roughly the
isotherm pattern corresponding to mode 1.

Figure 3 displays how a period-2 onset mode changes its appearance as the period of the
permeability variations decreases. In this figure, we repeatedly halve the period from frame
to frame in order to fit a whole number of periods of the permeability variation into a whole
convection period. We have also attempted to depict the different permeability variations
within each frame to aid the understanding of how the pattern changes as P changes.

We also note that the requirement of a having period-2 onset mode means that ν needs to
change as P changes. Having taken the value ε = 0.8, this means that there is a very strong
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Fig. 2 Streamlines corresponding to different permeability amplitudes, ε, for P=2 and ν= 0. Four periods
are shown

change in permeability along the layer. Therefore when P = 2, we see that the roll centred
at the permeability maximum dominates with a very weak counter-circulation in-between.
When P = 1 we have a counter-rotating train of identical roll shapes, each with left/right
symmetry, and each cell is centred at the permeability maximum. Upon further reduction of
the period to P = 0.5 and P = 0.25, the patterns still retain this symmetry, but the streamlines
now adopt a more complicated wavy pattern. It appears that there is a tendency for the flow
try to pass horizontally through the regions of high permeability in order to minimise the
length of the path through these regions. Upon emergence into a high permeability region,
the vertical velocity component increases quite markedly, and relatively rapid vertical jets of
fluid are found there; this is seen most clearly for the P = 0.25 case.

Figure 4 shows how the primary onset mode changes as ε increases when a large period,
P = 10, is taken and ν has been set to zero. We now see that the permeability variation now
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Fig. 3 Streamlines corresponding to different onset modes with ε= 0.8. The selected values of ν yield patterns
with periodicity equal to 2

Fig. 4 Streamlines corresponding to different onset modes with P=10 and ν= 0. The greyscale frame shows
the permeability distribution with lighter shades indicating higher permeability
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has a strong effect even when ε takes values as low as 0.02. Thus, there is a very clear reduc-
tion in the strength of the flow near to the permeability minimum compared with that at the
maximum. Therefore, it is no surprise to see that convection soon becomes very localised as
ε increases, and more than half of the length of the cavity is in a near-quiescent state when
ε= 0.3. In fact, once the period of the permeability variation is sufficiently large (i.e. that
the corresponding wavenumber, k, is sufficiently small) it is possible to show that the onset
pattern is confined to a region of length of O(k−1/2)—see Appendix B—and that this is true
for all nonzero values of ε.

4.2 Neutral Curves

Having seen how the mode shapes vary with changes in the governing parameters, it now
necessary to undertake a comprehensive set of computations to determine how the neutral
curves themselves evolve with changes in the same parameters. Eight different values of P
have been chosen as representative of this evolution. Figures 5 and 6 show the neutral curves
for the first few modes for each of these periods and Ra is given as a function of ν for the
amplitudes ε= 0, 0.2, 0.4 and 0.6. We note that these diagrams cover a whole period of ν;

Fig. 5 Neutral curves showing the variation of Ra with ν for ε = 0 (continuous line), 0.2 (long dashes), 0.4
(short dashes), and 0.6 (dotted line). The different frames correspond to the shown values of P, the period of
the permeability variation
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Fig. 6 Neutral curves showing the variation of Ra with ν for ε = 0 (continuous line), 0.2 (long dashes), 0.4
(short dashes), and 0.6 (dotted line). The different frames correspond to the shown values of P, the period of
the permeability variation

further increases in ν serve only to reproduce the same diagram, although individual curves
do not have the same periodicity.

When P takes small values such as 0.25 and 0.5 a cursory glance at Fig. 5 suggests that the
smallest value of Ra occurs when ν= P (or, equivalently, ν= 2 − P , which corresponds to
the same convection pattern, i.e. those shown in Fig. 3). However, a closer inspection shows
that the critical value of Ra corresponds to slowly increasing values of ν as ε increases.
However, when the period becomes equal to unity, then all the amplitudes have their lowest
critical value of Ra at ν= 1, and the overall convection pattern looks like that shown in Fig. 3
for P = 1.

As P rises further, the critical value of ν decreases again back towards zero, although the
critical value for ε= 0.6 remains fixed at ν= 1 when P has increased to 1.25, suggesting that
the amplitude of the permeability variation has a strong effect on the pattern of the primary
mode of convection.

At still larger values of P , as shown in Fig. 6, this back-and-forth transition process,
wherein the critical value of ν varies between zero and unity, appears to continue. At these
larger values of P we also see a further large-ε effect beginning to appear. Firstly, the critical
value of Ra now decreases quite substantially from 4π2—this is in accord numerically with

123



198 D. A. S. Rees, P. A. Tyvand

the large-P analysis contained in Appendix B. Secondly, there is a decreasing difference
between the critical values of Ra for the first two modes. In addition, the ν-dependence is
also decreasing markedly. Here, the large-P effect is such that convection cells appear in
regions close to the permeability maxima with almost no flow in between these regions, as
displayed in Fig. 4. Given the form of the convective amplitude function, A(χ), which is
derived in Appendix B, and which exhibits super-exponential decay, it is very evident that
the convection cells which arise near one permeability maximum are hardly coupled at all to
those at neighbouring maxima. Thus, any ν-dependence must be weak. Further, the analysis
of Appendix B may be repeated for any phase of the basic roll state with no change in the
value of the critical value of Ra, which explains why the neutral curves for large values of ε
when P = 3 (and, more generally, for all non-zero values of ε when P is large) are essentially
independent of ν.

4.3 Critical Curves: The Summary

Finally we are in a position to find the absolute minimum values of Ra for a suitably wide
range of values of P and ε by minimisation over ν. Given how the minimising value of ν
varies, this has had to be done by a brute-strength numerical approach over a three-dimen-
sional array of values of P , ε and ν. The results of this process are shown in Figs. 7 and 8
where the former displays the critical Darcy–Rayleigh number, now denoted by Rac, and the
latter the corresponding Floquet exponent, νc.

Fig. 7 The variation of the critical value of Ra with P, the period of the permeability variation. The dashed
line corresponds to ε = 0, for which Rac = 4π2. The dotted line corresponds to ε = 0.994. Continuous lines
correspond to ε = 0.1, 0.2, . . . 0.9
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Fig. 8 The variation with P of the value of ν corresponding to the critical values of Ra shown in Fig. 7. The
dashed line corresponds to ε = 0, the dotted line to ε = 0.99, while continuous lines correspond to ε = 0.1,
0.2, . . . 0.9

With regard to the critical value of Ra, the value P � 1.1 marks the transition between
distinctively short period behaviour and distinctively large period behaviour and we discuss
these limits in turn.

When P < 1 convection cells pass through at least one, if not many, region of high perme-
ability and therefore the porous medium may be regarded as being equivalent to an anisotropic
homogeneous medium. The anisotropy is such that it causes the critical Darcy–Rayleigh num-
ber to rise above the classical value of 4π2. The easiest way to understand physically the
effective anisotropy is by taking an analogy with electric conductors in parallel coupling
(vertical) and series coupling (horizontal). The principle of parallel coupling implies that the
effective permeability in the vertical z-direction is the average permeability K0. The principle
of series coupling implies that the effective permeability in the x-direction is K0

√
1 − ε2.

Physically this means that the average has been taken of the inverse permeability. If we extend
the description of homogeneous anisotropy to the y-direction, the average permeability in
that direction will also be K0. Thus the average permeability in the y-direction is the same
as the average permeability in the z-direction.

The anisotropic limit for the onset of two-dimensional convection in the (x, z)-plane is
given by the critical Darcy–Rayleigh number

Ra = π2(ξ−1/2 + 1)2, (23)

where the effective anisotropy parameter, ξ , is defined by

ξ =
√

1 − ε2. (24)
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This model of homogeneous anisotropy is asymptotically valid for small values of P . These
results were derived by Castinel and Combarnous (1974), but also see Kvernvold and Tyvand
(1979).

This anisotropic limit is valid asymptotically as P → 0, and is included in Fig. 7 as dots
along the axis. These limiting values are in full agreement with our numerical results. More-
over, we observe graphically that the deviation from the anisotropic limit for P�1 is pro-
portional to the square of P . The same result was found by Gjerde and Tyvand (1984) for the
similar problem with continuous periodically stratified horizontal layers. This squared type of
deviation is justified mathematically by observing that the onset problem is mathematically
unchanged if we change the sign of P .

At the ‘transition’ point, P � 1.1, the critical value of Ra is almost independent of ε.
However, when P > 1 the convective process begins to be dominated by conditions near the
permeability maxima. Given that Ra is based upon the mean permeability, this means that
the critical values fall below 4π2. The manner in which this happens has been presented in
Appendix B.

When P lies in the range 1.1 < P < 2.5 the critical curves for Ra exhibit a wavy behav-
iour which may be traced to a very strong change in the corresponding value of the Floquet
exponent shown in Fig. 8. In this figure, we see that νc is piecewise continuous when ε= 0;
this is due to the fact that the Floquet exponent must take such values to maintain a convective
wavelength of 2. As ε rises the transition of νc from zero to unity becomes faster and the
range of values of P over which νc takes the values 0 or 1 increases in size. For example,
when ε= 0.99, νc = 1 for the whole of the range 0.6 < P < 2.25.

At still larger values of P (not shown), the critical values of Ra decay in the manner detailed
in Appendix B. However, the critical values of ν become increasingly difficult to obtain due
to decreasing variation of the neutral curves with changes in ν. In fact, the detailed values
of ν become increasingly irrelevant as P increases due to the localisation of the convection
pattern.

5 Discussion

In this article, we have used a Floquet analysis to determine the primary modes of instability
for convection in a horizontal porous layer with horizontal periodic variations in the per-
meability. The governing equations were solved numerically using a highly accurate matrix
eigenvalue method and these results supplemented by a multi-scales analysis when the period
of the permeability variations is large. Some detailed flow patterns were given, which allowed
for a detailed physical explanation of the large and small-P behaviour of the system as a
whole.

It is now quite natural to ask whether three-dimensional effects are likely to be more
important. It is certainly well known that one-dimensional imperfections of the classical
Darcy–Bénard problem often yield a three-dimensional flow field at onset. The articles by
Rees and Riley (1986, 1989a), which consider resonant and nearly resonant boundary imper-
fections, respectively, find that longitudinal rolls are often favoured, and in this context, we
would expect cells of unit aspect ratio to form the primary mode since the layer is isotropic in
the y-, z-plane. However, Rees and Riley (1989a) also found that wavy rolls are sometimes
obtained and which are initiated by the action of the zigzag instability. On the other hand,
when the boundary imperfections take non-resonant wavenumbers then quite a variety of pat-
terns may form the primary mode, including rectangular cells (see Rees and Riley (1989b).
It is quite likely that the present configuration may retain some of the qualitative features
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of these articles. However, as previously mentioned, these results apply for layers that are
sufficiently confined in the y-direction, or for experimental models using the Hele–Shaw
cell.

This article has not considered the effect of periodic variations in the thermal diffusivity
of the porous layer. The presence of such variations would not affect the basic state, which
would again consist of a linear temperature profile and no flow. As regard two-dimensional
convection, we doubt that it would cause any new qualitative effects to those presented here.
On the other hand, if we were to relax the insistence that permeability and diffusivity vari-
ations are in one direction, such as in the blocked configuration considered by Nield et al.
(2009), then the basic state consists of a more complicated temperature field and a non-zero
basic flow. In an horizontally unbounded but periodic domain, a similar Floquet analysis
could be undertaken, but the equations that would replace Eqs. 21 and 22 would be two-
dimensional for two-dimensional convection and three-dimensional for three-dimensional
convection. Such analyses are tractable, but would take much longer to complete than those
presented here.

Acknowledgements The authors would like to thank the reviewers for their perceptive comments.

Appendix A: The Numerical Method

Equations 21 and 22 were discretised using various central difference formulae. The code
was written with an option to use either second, fourth, sixth or eighth order formulae. We
will use the notation, fi , to denote the numerical approximation to f (x) at xi , i.e. at the i th

grid point of a uniform grid. If we define the coefficients, a j and b j , as the coefficients for
the finite difference approximations,

f ′(xi ) ∼ h−1
∑

j

a j fi+ j , f ′′(xi ) ∼ h−2
∑

j

b j fi+ j , (25)

where h is the uniform steplength, then these coefficients are given by the entries in Tables 1
and 2 below.

Table 1 Coefficients of the
central difference approximations
to f ′. Note that a− j = −a j

Order a0 a1 a2 a3 a4

Second 0 1
2 0 0 0

Fourth 0 2
3 − 1

12 0 0

Sixth 0 3
4 − 3

20
1

60 0

Eighth 0 4
5 − 1

5
4

105 − 1
280

Table 2 Coefficients of the
central difference approximations
to f ′′. Note that b− j = b j

Order b0 b1 b2 b3 b4

Second −2 1 0 0 0

Fourth − 5
2

4
3 − 1

12 0 0

Sixth − 49
18

3
2 − 3

20
1

90 0

Eighth − 205
72

8
5 − 1

5
8

315 − 1
560
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If we also define f and g to be the vectors of the unknown values of fi and gi , respectively,
then Eqs. 21 and 22 may be written in the matrix/vector forms,

M1 f = Ra M2 g, M3 f = M4 g, (26)

where Mk , k = 1,4, are complex matrices of dimension N × N when N intervals are used in
the range, 0 ≤ x ≤ P . For the eighth order method, these matrices have the periodic banded
structure,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

and we note that the band is narrower for the lower order methods. The vector g may now
be eliminated from Eq. 26 to yield the following generalised eigenvalue problem for Ra,

M1 f = Ra [M2 M4
−1 M3] f . (28)

Equation 28 was solved using the NAG library routine F02GJFwhich employs the QZ algo-
rithm to obtain the eigenvalues and their corresponding eigenvectors. The lowest value of
Ra forms the primary mode of instability for given values of P and ν.

The absolute accuracy of the computed values of Ra is of paramount importance and forms
the main reason why we have used an eighth order method. Table 3 contains the computed
values of Ra corresponding to the primary mode for the case, P = 2 and ν= 0.3, together
with the relative accuracy of the same data in Table 3.
As may be seen in Table 3, the error in the computed data decreases at a rate which is appro-
priate for the order of accuracy of the discretisation. So for the second order scheme the

Table 3 Critical values of Ra for P = 2 and ν = 0.3

N Values of Ra Values of Ra/Raexact

Order: Second Fourth Sixth Eighth Second Fourth Sixth Eighth

10 41.453028 37.952028 37.344271 37.172816 1.118601 1.024127 1.007727 1.003100

20 38.369158 37.134304 37.064836 37.058752 1.035384 1.002061 1.000187 1.000023

40 37.409174 37.062969 37.058043 37.057929 1.009479 1.000136 1.000003 1

80 37.147232 37.058243 37.057927 37.057925 1.002410 1.000009 1 1

160 37.080344 37.057940 37.057920 37.057920 1.000605 1.000001 1 1
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errors decrease by a factor of roughly 22 when N doubles, and by factors of 24 and 26 for
the fourth and sixth order methods, and so on. It is clear that the accuracy of the eighth order
method can exceed 6 significant figures even for as few as N = 40 intervals. As the accuracy
of higher modes tends to decrease as the mode number increases, we have generally adopted
100 intervals for our calculations.

Appendix B: The Large-P Analysis

In this Appendix, we outline the large-P (equivalently, small-k) analysis of the onset of con-
vection. For simplicity, we shall set ν = 0 (equivalently, ω = 0). Subject to this, Eqs. 21 and
22 reduce to the form,

f ′′ − π2 f + kε sin kx

1 + ε cos kx
f ′ = Ra (1 + ε cos kx)g′, (29)

g′′ − π2g + f ′ = 0, (30)

Recall that F(x) = 1+ε cos(kx), where k is now taken to be small, but ε remains of O(1) in
magnitude. The numerical evidence of Fig. 4 suggests that cells only occupy a region close
to where the permeability takes its maximum value, and therefore we shall concentrate on
the region near x = 0. It will be necessary to adopt a multiple-scales approach similar to that
of Rees (1990) to determine the onset of convection since we expect cells to have an O(1)
wavelength, but the onset pattern extends over many cells. It turns out that the appropriate
lengthscale to use is one which is of O(k−1/2), which is asymptotically large compared with
that of the cell wavelength, but asymptotically small compared with O(k−1), the wavelength
of the permeability variations. Therefore we define the slow spatial scale, χ , according to,

χ = k1/2x, (31)

and expand the solutions of Eqs. 21b and 30 in powers of k1/2:

( f, g,Ra) =
∑
i=0

ki/2
(

fi (x, χ), gi (x, χ), Ri

)
, (32)

where the summation is over positive integers. Given the presence of two spatial scales, this
means that the second x-derivative must be modified and replaced, as follows:

d2

dx2 −→ ∂2

∂x2 + 2
∂2

∂x∂χ
+ ∂2

∂χ2 . (33)

At leading order, we obtain the system,

f ′′
0 − π2 f0 − R0(1 + ε)g′

0 = 0, (34)

g′′
0 − π2g0 + f ′

0 = 0. (35)

This system is almost exactly the one which corresponds to the classical Darcy–Bénard
problem. The solution is,

f0 = 2π A(χ) sin πx, g0 = A(χ) cosπx, R0 = 4π2

1 + ε
, (36)
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where A(χ) is a slowly varying amplitude of the convective wave packet. At O(k1/2) the
equations are

f ′′
1 − π2 f1 − R0(1 + ε)g′

1 = R1(1 + ε)g′
0, (37)

g′′
1 − π2g1 + f ′

1 = 0. (38)

It is essential to set R1 = 0 otherwise these equations cannot be solved. Although this leaves
the same autonomous system as the leading order system, we set f1 = g1 = 0, as it is always
possible to adjust the definition of the solution for f0 and g0 to yield zero solutions for f1

and g1.
At O(k) we obtain,

f ′′
2 − π2 f2 − R0(1 + ε)g′

2 = R2(1 + ε)g′
0 − 1

2 R0εχ
2g′

0 − f0,χχ , (39)

g′′
2 − π2g2 + f ′

2 = −g0,χχ , (40)

where the χ-subscripts indicate partial derivatives with respect to χ . A simple solvability
condition may be applied in order obtain an equation relating A(χ) and R2; we find that

1
4 R2(1 + ε)A − 1

8εR0χ
2 A + Aχχ = 0. (41)

This equation has the form of a parabolic cylinder function, and the simple scaling,

χ =
( 32

εR0

)1/4
χ̂ , (42)

reduces it to the form,

( 2

εR0

)1/2
R2(1 + ε)A − 4χ̂2 A + Aχ̂ χ̂ = 0. (43)

The simplest solution of this equations (and indeed its first mode) is given by A = exp(−χ̂2),
provided that the leading coefficient in Eq. 43 is precisely two. Therefore we eventually obtain,

R2 = (2εR0)
1/2

1 + ε
= 2π

√
2ε

(1 + ε)3/2
. (44)

We may now state that the critical value of Ra in the large-P or small-k limit is,

Rac ∼ 4π2

1 + ε
+ 2π

√
2ε

(1 + ε)3/2
k. (45)

The following Table gives some comparisons between our computed values of Rac and those
given by Eq. 45. Table 4

Table 4 comparison between the
numerical and the asymptotic
solutions for Rac when P = 10
(i.e. k = π/5)

ε Rac (Num) Rac (Asymp)

0.1 36.6502 36.6546

0.5 27.4244 27.3934

0.9 21.8288 21.7893
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