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A study of buoyant flow in a horizontal porous layer with adiabatic and impermeable boundaries is per-
formed. The Darcy–Boussinesq model is used and the effect of viscous dissipation is taken into account.
First, it is shown that there exist two stationary and parallel solutions (dual solutions) for each pair of pre-
scribed values of the Gebhart number Ge and of the Péclet number Pe. These dual solutions exist as long
as Ge 6

ffiffiffi
3
p

, and they become coincident when Ge ¼
ffiffiffi
3
p

. Then, a linear stability analysis of the dual solu-
tions is performed referring both to transverse and to longitudinal rolls. This analysis reveals that one of
the branches in the dual solutions space is more stable than the other. Moreover, instabilities to longitu-
dinal rolls generally occur for values of the product GePe smaller than those needed for transverse rolls.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As is well known, the effect of viscous dissipation may be
important especially under conditions of very small boundary heat
fluxes and, in particular, when the flow system is bounded by ther-
mally insulating surfaces [1]. Also the fluid properties, the size of
the channel or duct and the flow regime may contribute to enhance
the effect of viscous dissipation. In fact, this effect becomes impor-
tant when the fluid has a relatively small thermal conductivity or a
high viscosity, or when the mass flow rate is sufficiently high. Vis-
cous dissipation may be considerable when the fluid flow is con-
strained within passages of very small size as the microchannels
[2] or in the case of flows in fluid-saturated porous media [3,4].
As it has been pointed out in several papers [5–9], the effect of vis-
cous dissipation may contribute, under certain conditions, to the
build up of temperature gradients that are capable of inducing
buoyancy effects on the flow. These effects may be rather signifi-
cant so that, in some flow arrangements, the origin of convective
roll instabilities is the vertical thermal gradient induced by viscous
dissipation and not, as usually happens, the temperature differ-
ences due to the boundary conditions. From a mathematical view-
point, the cause of these instabilities is the nonlinear viscous
dissipation term appearing in the local energy balance equation.
Moreover, the nonlinear nature of the viscous dissipation term
may also influence the features of the basic flows upon which
the disturbances are superimposed. In fact, it has been shown that
ll rights reserved.
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the viscous dissipation can lead to dual solutions for stationary
buoyant flows [10,11].

The onset of convective instabilities in fluid-saturated porous
media is a subject widely treated in the literature of the last dec-
ades. Reviews of the main results obtained in this field are avail-
able in Refs. [12–14]. A widely analysed kind of instability is the
well-known Horton–Rogers–Lapwood problem (HRL) [15,16], also
known as the Darcy–Bénard problem. The HRL problem is the por-
ous-medium analogue of the usual Rayleigh–Bénard problem for
clear fluids. One considers an infinite horizontal porous layer such
that its bottom boundary is subject to a uniform temperature high-
er than that prescribed on the top boundary. A sufficiently high
temperature difference between the boundaries, i.e. a sufficiently
high Darcy–Rayleigh number, leads to the onset of rolls instabili-
ties. In particular, it is well known that the critical value of the
Darcy–Rayleigh number for the formation of convective rolls in
an unbounded layer is 4p2 [12–14]. An important variant of the
HRL problem is the Prats problem [17]. In the Prats problem, the
basic solution is a uniform horizontal flow instead of a rest state.
The horizontal flow does not affect either the critical value of the
Darcy–Rayleigh number nor the critical wave number of the rolls
disturbance, as the stability analysis may be referred to an inertial
reference frame comoving with respect to the basic flow. The
effects of the inertial term in the momentum equation have been
analysed by He and Georgiadis [18] and by Rees [19].

A few papers have investigated the effect of viscous dissipation
with respect to the onset of convective instabilities [6,20,21].
Mureithi and Mason [6] develop a study of convective linear insta-
bilities for a boundary layer flow with an accelerating free-stream
profile. They show that viscous dissipation may cause the existence
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Nomenclature

a nondimensional wave number, Eqs. (39) and (55)
An nth series coefficient, Eq. (A1)
c nondimensional speed of the transverse rolls, Eq. (49)
cp specific heat at constant pressure
g modulus of gravitational acceleration
g gravitational acceleration
Ge Gebhart number, Eq. (13)
K permeability
L channel height
n integer number
Pe P�eclet number, Eq. (18)
R nondimensional parameter, Eq. (47)
R real part
t nondimensional time, Eq. (7)
T nondimensional temperature, Eq. (7)
T̂ nondimensional function, Eq. (15)
~TB� nondimensional functions, Eq. (21)
u;v ;w nondimensional velocity components, Eq. (7)
U;V ;W nondimensional velocity disturbances, Eq. (28)
�uBm average horizontal velocity of the base flow
~uB� nondimensional functions, Eq. (21)
x; y; z nondimensional coordinates, Eq. (7)

Greek symbols
a thermal diffusivity
b volumetric coefficient of thermal expansion
c reduced exponential coefficient, Eq. (47)
e nondimensional perturbation parameter, Eq. (28)
C nondimensional constant, Eq. (15)
C� nondimensional constants, Eqs. (19) and (20)
~C� nondimensional constants, Eq. (21)
h nondimensional temperature disturbance, Eq. (28)
HðyÞ nondimensional function, Eqs. (39) and (55)
k exponential coefficient, Eqs. (39) and (55)
k1; k2 real and imaginary parts of k
m kinematic viscosity
q mass density
r heat capacity ratio
UðyÞ nondimensional function such that WðyÞ ¼ iaGeUðyÞ
w nondimensional streamfunction, Eqs. (35) and (51)
WðyÞ nondimensional function, Eqs. (39) and (55)

Superscripts, subscripts
– dimensional quantity
B base flow
cr critical value
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of three unstable modes, while one single inviscid unstable mode
exists in the limit of negligible viscous dissipation. Rees et al.
[20] investigate the onset of transverse rolls instability in the
asymptotic dissipation profile (ADP), i.e. a parallel external flow
solution for the boundary layer around an inclined cold surface
embedded in a porous medium. These authors show that the
ADP is stable as long as the cold surface is vertical; when the sur-
face is inclined, the critical Darcy–Rayleigh number is a decreasing
function of the inclination angle with respect to the vertical direc-
tion. In a recent paper [21], the onset of convective instabilities in a
horizontal porous layer with adiabatic bottom boundary and per-
fectly or imperfectly isothermal top boundary is investigated. The
basic solution considered in Ref. [21] is the unique stationary, par-
allel, horizontal flow solution: a uniform velocity profile with a
purely vertical, linearly varying temperature gradient. In the basic
solution, the temperature gradient is built up as a consequence of
the viscous heating in the porous medium.

The aim of the present paper is the study of the linear stability
against transverse and longitudinal rolls of the viscous-heating
buoyant flow in a horizontal porous layer. The boundary planes
of the porous layer are assumed to be adiabatic and impermeable,
so that viscous dissipation is the only thermal effect occurring in
the flow system. First, it is shown that the basic steady flow com-
patible with the assumption of parallel velocity field is not un-
iquely defined, as the governing equations admit dual solutions
for assigned mass flow rate, fluid/solid properties and layer thick-
ness. Then, the stability of these basic dual flows is studied with re-
spect to transverse and longitudinal rolls disturbances.
2. Governing equations

Let us consider laminar flow in an infinitely wide and horizontal
fluid-saturated porous layer with height L (see Fig. 1). The Darcy–
Boussinesq model is adopted to include the effect of buoyancy. The
components of seepage velocity along the �x-direction, �y-direction
and �z-direction are denoted by �u, �v and �w, respectively. Tempera-
ture is denoted by �T and time by �t. Both the boundary walls,
�y ¼ 0; L, are assumed to be perfectly insulated and impermeable.
The governing mass, momentum and energy balance equations
can be expressed as

@�u
@�x
þ @

�v
@�y
þ @

�w
@�z
¼ 0; ð1Þ

@ �w
@�y
� @

�v
@�z
¼ � gbK

m
@�T
@�z
; ð2Þ

@�u
@�z
� @

�w
@�x
¼ 0; ð3Þ

@�v
@�x
� @

�u
@�y
¼ gbK

m
@�T
@�x
; ð4Þ

r @
�T
@�t
þ �u

@�T
@�x
þ �v @

�T
@�y
þ �w

@�T
@�z

¼ a
@2�T
@�x2 þ

@2�T
@�y2 þ

@2 �T
@�z2

 !
þ m

Kcp
�u2 þ �v2 þ �w2
� �

; ð5Þ

where r is the ratio between the average volumetric heat capacity
ðqcpÞm of the porous medium and the volumetric heat capacity
ðqcpÞf of the fluid, g is the modulus of the gravitational acceleration
g, b is the volumetric coefficient of thermal expansion, K is the per-
meability, m is the kinematic viscosity, a is the thermal diffusivity
and cp is the specific heat at constant pressure. Eqs. (2)–(4) have
been obtained by applying the curl operator to both sides of the
Darcy momentum balance equation in order to remove the explicit
dependence on the pressure field.

Velocity and temperature boundary conditions are expressed as

�y ¼ 0; L : �v ¼ 0 ¼ @
�T
@�y

: ð6Þ
2.1. Dimensionless equations

Let us introduce dimensionless variables such that

ð�x; �y;�zÞ ¼ ðx; y; zÞL; �t ¼ t
rL2

a
; ð�u; �v ; �wÞ ¼ ðu; v;wÞa

L
;

�T ¼ T
ma
Kcp

: ð7Þ



Fig. 1. Sketch of the porous layer.
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Then, Eqs. (1)–(5) can be rewritten as

@u
@x
þ @v
@y
þ @w
@z
¼ 0; ð8Þ

@w
@y
� @v
@z
¼ �Ge

@T
@z
; ð9Þ

@u
@z
� @w
@x
¼ 0; ð10Þ

@v
@x
� @u
@y
¼ Ge

@T
@x
; ð11Þ

@T
@t
þ u

@T
@x
þ v @T

@y
þw

@T
@z
¼ @

2T
@x2 þ

@2T
@y2 þ

@2T
@z2 þ u2 þ v2 þw2; ð12Þ

where the Gebhart number, given by,

Ge ¼ gbL
cp

; ð13Þ

has been used. The boundary conditions (6) may be expressed in a
dimensionless form as

y ¼ 0;1 : v ¼ 0 ¼ @T
@y

: ð14Þ
2.2. Dual base flows

Under the assumptions of steady parallel flow with a constant
temperature gradient in the �x-direction, i.e.

v ¼ 0 ¼ w; T ¼ Cxþ T̂ðyÞ; ð15Þ

where C is a constant, Eqs. (8)–(12) are simplified greatly. In fact,
one obtains

@u
@x
¼ 0;

@u
@z
¼ 0;

@u
@y
¼ �CGe;

d2T̂

dy2 � Cuþ u2 ¼ 0: ð16Þ

The base flow solution is easily obtained from Eqs. (15) and (16)
and from the boundary conditions Eq. (14),
uB ¼Pe� CGe
2

2y� 1ð Þ; vB ¼ 0 ¼ wB;

T̂B ¼ �
1

12
Ge2C2y4 þ GeC

6
GeC� Cþ 2Peð Þy3

� 1
8

4Pe2 þ 4GeCPe� 4CPeþ Ge2C2 � 2GeC2
� �

y2; ð17Þ

where

Pe ¼
�uBmL
a

ð18Þ

is the Péclet number based on the average horizontal velocity �uBm.
Moreover, since in Eqs. (8)–(12) and (14) the temperature field is
defined only up to an arbitrary additive constant, in Eq. (17) this
constant has been fixed so that T̂Bð0Þ ¼ 0.

In order to fulfil the boundary conditions Eq. (14), the three
parameters ðGe;C; PeÞ are not independent. If one fixes any pair
among these three parameters, the third parameter admits two dif-
ferent determinations. For instance, if one assumes that Ge and Pe
are assigned, then C can be given either by

C ¼ Cþ ¼
6Pe

Ge2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ge2

3

s0
@

1
A; ð19Þ

or by

C ¼ C� ¼
6Pe

Ge2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ge2

3

s0
@

1
A: ð20Þ

It is easily verified that Eqs. (17), (19) and (20) define dual par-
allel base flows such that

Ge;C�; PeÞ ¼ Pe~uB�ðy; GeÞ;
T̂Bðy; Ge;C�; PeÞ ¼ Pe2 ~TB�ðy; GeÞ; C�ðGe; PeÞ ¼ Pe~C�ðGeÞ; ð21Þ

where functions uB and T̂B are those obtained through Eq. (17).
There are three important features of the dual solutions given in
Eq. (21):

� positive values of Ge and Pe yield real positive values of both C�
and Cþ, provided that Ge 6

ffiffiffi
3
p

;
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� dual solutions are distinct for Ge <
ffiffiffi
3
p

, while they coincide for
Ge ¼

ffiffiffi
3
p

;
� no parallel base flow solutions are allowed if Ge >

ffiffiffi
3
p

.

Note that, for given Pe and Ge, ~uBþ and ~uB� share the same average
value, while they differ merely by the slope of the linear change
along y.

It must be pointed out that, in the limit Ge! 0, functions
~uBþðy; GeÞ, ~TBþðy; GeÞ and ~CþðGeÞ are singular,

~uBþðy; GeÞ ¼ �6 2y� 1ð Þ
Ge

þ 1þ O Geð Þ; ð22Þ

~TBþðy; GeÞ ¼ �12y2 2y� 3ð Þ
Ge3 � 12y2 y� 1ð Þ2

Ge2 þ O Ge�1
� �

; ð23Þ

~CþðGeÞ ¼ 12
Ge2 � 1� Ge2

12
þ O Ge4

� �
; ð24Þ

while ~uB�ðy; GeÞ, ~TB�ðy; GeÞ and ~C�ðGeÞ are regular,

~uB�ðy; GeÞ ¼ 1� 1
2

2y� 1ð ÞGe� 1
24

2y� 1ð ÞGe3 þ O Ge5
� �

; ð25Þ

~TB�ðy; GeÞ ¼ 1
12

y2 2y� 3ð ÞGe� 1
12

y2 y� 1ð Þ2Ge2 þ O Ge4
� �

; ð26Þ

~C�ðGeÞ ¼ 1þ Ge2

12
þ Ge4

72
þ O Ge6

� �
: ð27Þ

The limit Ge! 0, physically, represents the forced convection
regime where buoyancy does not affect fluid flow. In this limit,
only the solution branch f~uB�; ~TB�g is meaningful and, on account
of Eqs. (15), (21), (25)–(27), one has a uniform flow with uB ¼ Pe
and TB ¼ Pex.

Fig. 2 displays the behaviour of the profiles ~TB� and ~TBþ for dif-
ferent values of Ge. An important feature of the plots reported in
Fig. 2 is that both ~TB�ðyÞ and ~TBþðyÞ are monotonic functions for
Ge 6 3=2. In this range, ~TB� is a decreasing function of y, while
~TBþ is an increasing function of y. A physical consequence of this
behaviour is that, for Ge 6 3=2, the solution branch f~uBþ; ~TBþg
would not develop convective instabilities, since the vertical tem-
perature gradient of the base flow is opposed to gravity. With a
similar reasoning, one may infer that the solution branch
f~uB�; ~TB�g may develop convective instabilities for any value of
Ge in the range 0 < Ge 6

ffiffiffi
3
p

.

2.3. Linearisation

Disturbances ðU;V ;W; hÞ of the base flow given by Eqs. (15),
(17) and (21) are defined as

u ¼Pe~uB� þ eU; v ¼ eV ; w ¼ eW;

T ¼ Pe~C�xþ Pe2~TB� þ eh; ð28Þ

where e is a very small perturbation parameter. On substituting Eq.
(28) in Eqs. (8)–(12) and neglecting nonlinear terms in the pertur-
bations, i.e. terms of order e2, one obtains

@U
@x
þ @V
@y
þ @W

@z
¼ 0; ð29Þ

@W
@y
� @V
@z
¼ �Ge

@h
@z
; ð30Þ

@U
@z
� @W
@x
¼ 0; ð31Þ

@V
@x
� @U
@y
¼ Ge

@h
@x
; ð32Þ
@h
@t
þ Pe~uB�

@h
@x
þ Pe2V

d~TB�

dy
¼ @

2h
@x2 þ

@2h
@y2 þ

@2h
@z2 þ Pe 2~uB� � ~C�

� �
U:

ð33Þ
3. Instability with respect to transverse rolls

Let us consider disturbances for rolls which are parallel to the
�z-direction, namely

U ¼ Uðx; y; tÞ; V ¼ Vðx; y; tÞ; W ¼ 0; h ¼ hðx; y; tÞ: ð34Þ

Then, on introducing a streamfunction w, such that

U ¼ @w
@y

; V ¼ � @w
@x

; ð35Þ

Eqs. (29)–(31) are identically satisfied, while Eqs. (32) and (33) may
be rewritten in the form

@2w
@x2 þ

@2w
@y2 þ Ge

@h
@x
¼ 0; ð36Þ

@h
@t
þ Pe~uB�

@h
@x
� Pe2 @w

@x
d~TB�

dy
¼ @

2h
@x2 þ

@2h
@y2 þ Pe 2~uB� � ~C�

� � @w
@y

:

ð37Þ

The boundary conditions fulfilled by w and h are easily inferred
from Eqs. (14), (28) and (35), namely

y ¼ 0;1 : w ¼ 0 ¼ @h
@y
: ð38Þ

Solutions of Eqs. (36)–(38) are sought in the form of plane
waves,

wðx; y; tÞ ¼ R WðyÞekteiax
� �

; hðx; y; tÞ ¼ R HðyÞekteiax
� �

; ð39Þ

where R denotes the real part, the positive real constant a is the
prescribed wave number, while k ¼ k1 þ ik2 is a complex exponen-
tial growth rate. Its real part k1 influences the growth and decay of
the perturbation, while its imaginary part k2 represents the fre-
quency of the oscillations. Stability corresponds to k1 < 0, neutral
stability corresponds to k1 ¼ 0, while instability corresponds to
k1 > 0.

By substituting Eq. (39) in Eqs. (36) and (37), one obtains

W00 � a2Wþ iaGeH ¼ 0; ð40Þ

H00 � kþ iaPe~uB� þ a2� �
Hþ Pe 2~uB� � ~C�

� �
W0 þ iaPe2~T 0B�W ¼ 0;

ð41Þ

where primes denote differentiation with respect to y. Elimination
of H from Eqs. (40) and (41) yields a fourth order ordinary differen-
tial equation for WðyÞ, namely

W0000� kþ iaPe~uB� þ 2a2� �
W00 � iaGePe 2~uB� � ~C�

� �
W0

þ a2 kþ iaPe~uB� þ a2 þ GePe2~T 0B�
� �

W ¼ 0: ð42Þ

The boundary conditions fulfilled by WðyÞ are easily deduced
from Eqs. (38)–(40),

y ¼ 0;1 : W ¼ 0 ¼ W000 � a2W0: ð43Þ

Homogeneity of Eqs. (42) and (43) implies that WðyÞ is defined
only up to an arbitrary overall scale factor. This feature leaves one
the freedom to fix arbitrarily the value of W0ð0Þ. Then, one can set
this quantity to 1, thus obtaining
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y ¼ 0 : W ¼ 0; W0 ¼ 1; W000 ¼ a2; ð44Þ
y ¼ 1 : W ¼ 0; W000 � a2W0 ¼ 0: ð45Þ

Eq. (42) can be rewritten as

W0000� k1 þ icþ ia
R

Ge
~uB� � 1ð Þ þ 2a2

	 

W00 � iaR 2~uB� � ~C�

� �
W0

þ a2 k1 þ icþ ia
R

Ge
~uB� � 1ð Þ þ a2 þ R2

Ge
~T 0B�

" #
W ¼ 0; ð46Þ

where

c ¼ k2 þ aPe; R ¼ GePe: ð47Þ

Eqs. (44)–(46) represent an eigenvalue problem. One can set k1 ¼ 0
in order to determine the neutral stability curve and fix the value of
Ge. Then, for any wave number a, one can determine the eigenfunc-
tion W and the corresponding eigenvalues ðc;RÞ. By minimizing R
with respect to a over the neutral stability curve, one can determine
the critical values ðacr; ccr;RcrÞ corresponding to a given Ge. This
analysis can be performed either with reference to the branch
C ¼ C� or to the branch C ¼ Cþ of the dual base flow space. The
computation can be performed by solving numerically Eq. (46) sub-
ject to the boundary conditions (44) and (45). Methods suitable for
ODEs, such as the predictor–corrector Adams method and Runge–
Kutta methods, can be easily implemented by using function
NDSolve within the Mathematica (� Wolfram Research, Inc.) envi-
ronment. The strategy to get the pairs ðc;RÞ on the neutral stability
curve consists in a shooting technique based on the following steps:

� solve Eqs. (44) and (46) as an initial value problem, by comple-
menting the conditions at y ¼ 0 with the guessed value of
W00ð0Þ;

� the boundary conditions at y ¼ 1 are used as constraints to
determine c, R as well as to check the guessed value of W00ð0Þ.



Table 1
Critical values for the onset of transverse rolls corresponding to different Ge.

Ge acr Rcr ccr

C ¼ C�
! 0 0 10.9545 0.000
10�8 0 10.9545 0.000
10�6 0 10.9545 0.000
10�5 0 10.9545 0.000
10�4 0 10.9545 0.000
10�3 0 10.9545 0.000
10�2 0 10.9545 0.000
10�1 0 10.9619 0.000
0.5 0 11.1608 0.000
1 0 12.2031 0.000
1.2 0 13.4955 0.000
1.4 0 17.7709 0.000
1.45 2.5777 19.7540 �0.063
1.5 2.6404 20.1040 �1.06
1.6 2.7094 21.0747 �3.65
1.65 2.7231 21.9441 �5.78
1.7 2.7359 23.7905 �10.2
1.72 2.7746 25.6368 �15.0
1.732 2.9774 29.9106 �29.8ffiffiffi

3
p

2.9986 30.2983 �31.4

C ¼ Cþ
1.65 5.5886 89.4901 �517.
1.7 3.9415 49.5949 �138.
1.72 3.4198 39.0036 �72.5
1.732 3.0203 30.7010 �33.0ffiffiffi

3
p

2.9986 30.2983 �31.4
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The procedure is well posed, since the boundary conditions at
y ¼ 1, Eq. (45) are four real equations, being W a complex valued
function. In fact, c, R and W00ð0Þ correspond to four real unknowns.

Table 1 contains critical values ðacr; ccr;RcrÞ corresponding to
Ge 6

ffiffiffi
3
p

, for the branch C ¼ C�, and to 3=2 < Ge 6
ffiffiffi
3
p

, for the
branch C ¼ Cþ. Interestingly enough, for C ¼ C�, one notices that
ðacr;RcrÞ are practically independent of Ge when Ge 6 10�2, while
these values increase for a higher Ge. In particular, for sufficiently
small values of Ge, function RðaÞ on the neutral stability curve is
Fig. 3. Stability diagram for transverse rolls in the plane ða;RÞ
monotonic increasing, so that acr ¼ 0. On the other hand, for large
values of Ge and C ¼ C�, RðaÞ on the neutral stability curve reaches
the absolute minimum for a value acr > 0 that increases with Ge.
The values of ðacr;RcrÞ referring to the branch C ¼ Cþ rapidly in-
crease as Ge decreases from its maximum value Ge ¼

ffiffiffi
3
p

. Fig. 3 dis-
plays the neutral stability curve in the plane ða;RÞ for the branch
C ¼ C� in the small-Ge regime that, according to the above discus-
sion, means approximately Ge 6 10�2. The evolution of the neutral
stability curves for large Ge from a monotonic increasing behaviour
of RðaÞ to a non-monotonic behaviour is displayed in Fig. 4. This
figure, referring to the branch C ¼ C�, justifies the above described
transition from acr ¼ 0 to acr–0, for sufficiently large Ge.

It must be pointed out that it is quite hard to conceive of prac-
tical cases either in the field of geophysics or in engineering appli-
cations not included in the range Ge 6 10�2. Therefore, it appears
as interesting to consider, for a finite R, the limiting case of Eq.
(46) for C ¼ C� and Ge! 0,

W0000� k1 þ icþ ia
R
2

1� 2yð Þ þ 2a2
	 


W00 � iaRW0

þ a2 k1 þ icþ ia
R
2

1� 2yð Þ þ a2 � R2

2
y� y2� �" #

W ¼ 0; ð48Þ

where use has been made of Eqs. (25)–(27).
The solution of Eqs. (44), (45) and (48) can be sought analyti-

cally by a series method as described in Appendix A. This series
has a very rapid convergence. In all the cases considered, evalua-
tion with 6 digits accuracy can be achieved by truncating the
sum to the first 40 terms. In particular, in Table 1, the critical val-
ues ðacr; ccr;RcrÞ for the limiting case Ge! 0 are obtained by the
series solution. A complete agreement of the series solution results
with those for cases with small Ge obtained numerically is evi-
denced in this table.

Fig. 5 displays the streamlines w ¼ constant and the isotherms
h ¼ constant corresponding to Ge ¼

ffiffiffi
3
p

and to critical conditions
a ¼ acr ¼ 2:9986, R ¼ Rcr ¼ 30:2983 and c ¼ ccr ¼ �31:4. As a con-
sequence of Eqs. (39) and (47), the transverse rolls travel along
the x-axis with a speed
(base flow branch C ¼ C� , in the limit of very small Ge).
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Fig. 4. Transverse rolls: neutral stability curves for very large values of Ge (base
flow branch C ¼ C�).
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Fig. 5. Transverse rolls: streamlines w ¼ constant (solid lines) and isotherms h ¼ con
c ¼ ccr ¼ �31:4.
c ¼ � k2

a
¼ Pe� c

a
¼ R

Ge
� c

a
: ð49Þ

In the case illustrated in Fig. 5, one has c ¼ 27:949.
4. Instability with respect to longitudinal rolls

Let us now consider disturbances for rolls which are parallel to
the �x-direction, namely

U ¼ 0; V ¼ Vðy; z; tÞ; W ¼Wðy; z; tÞ; h ¼ hðy; z; tÞ: ð50Þ

If one defines a streamfunction w, such that

V ¼ � @w
@z

; W ¼ @w
@y

; ð51Þ

Eqs. (29), (31) and (32) are identically satisfied, while Eqs. (30) and
(33) may be rewritten in the form

@2w
@y2 þ

@2w
@z2 þ Ge

@h
@z
¼ 0; ð52Þ

@h
@t
� Pe2 @w

@z
d~TB�

dy
¼ @2h
@y2 þ

@2h
@z2 : ð53Þ

Moreover, w and h fulfil the boundary conditions

y ¼ 0;1 : w ¼ 0 ¼ @h
@y
: ð54Þ

As in the case of transverse rolls, solutions of Eqs. (52)–(54) are
expressed as plane waves,

wðy; z; tÞ ¼ R WðyÞekteiaz
� �

; hðy; z; tÞ ¼ R HðyÞekteiaz
� �

; ð55Þ

where the positive wave number a is prescribed, while k ¼ k1 þ ik2

is the complex exponential growth rate. By substituting Eq. (55) in
Eqs. (52) and (53), one obtains

W00 � a2Wþ iaGeH ¼ 0; ð56Þ
H00 � kþ a2� �

Hþ iaPe2~T 0B�W ¼ 0: ð57Þ

Eqs. (56) and (57) lead to a fourth order ordinary differential
equation for WðyÞ, namely

W0000 � kþ 2a2� �
W00 þ a2 kþ a2 þ GePe2~T 0B�

� �
W ¼ 0: ð58Þ
x

stant (dashed lines) for k1 ¼ 0, Ge ¼
ffiffiffi
3
p

, a ¼ acr ¼ 2:9986, R ¼ Rcr ¼ 30:2983 and
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When looking for the neutral stability condition, one can set
k1 ¼ 0. Unlike in the case of transverse rolls, by setting also
k2 ¼ 0, one may obtain WðyÞ as a real valued function for any pair
ðGe; PeÞ. This feature implies that the propagation speed, c ¼ �k2=a,
is zero for longitudinal rolls. In fact, one has

W0000 � 2a2W00 þ a2 a2 þ R2

Ge
~T 0B�

 !
W ¼ 0: ð59Þ

The boundary conditions fulfilled by WðyÞ are easily deduced
from Eqs. (54)–(56), as well as from the freedom to fix arbitrarily
the value of W0ð0Þ,

y ¼ 0 : W ¼ 0; W0 ¼ 1; W000 ¼ a2; ð60Þ
y ¼ 1 : W ¼ 0; W000 � a2W0 ¼ 0: ð61Þ

The procedure to solve Eqs. (59)–(61) as an eigenvalue problem
is the same as adopted in the case of transverse rolls, even if one
has in this case a simpler real ODE to deal with.

Table 2 contains critical values ðacr; ccr;RcrÞ corresponding to
Ge 6

ffiffiffi
3
p

, for the branch C ¼ C�, and to 3=2 < Ge <
ffiffiffi
3
p

, for the
branch C ¼ Cþ. Similarly to the case of transverse rolls (Table 1),
for C ¼ C�, one notices that ðacr;RcrÞ are practically independent
of Ge when Ge 6 10�1, while ðacr;RcrÞ increase for larger values of
Ge. A comparison between Tables 1 and 2 reveals that the critical
values of a and R are exactly the same for transverse rolls and for
longitudinal rolls as far as Ge is sufficiently small, i.e. Ge 6 10�2.
Another important result one can draw from Tables 1 and 2 is that
longitudinal rolls instabilities occur for values of R equal or smaller
than those needed for transverse rolls instabilities. In Tables 1 and
2, there is just one exception to this rule: the rather extreme case
Ge ¼ 1:65 for the branch C ¼ Cþ.

As in the analysis of transverse rolls, the limit Ge! 0 for a finite
R appears to be very significant also in the present case. In this lim-
it, the fourth order ODE Eq. (59) is simplified to

W0000 � 2a2W00 þ a2 a2 � R2

2
y� y2� �" #

W ¼ 0: ð62Þ
Table 2
Critical values for the onset of longitudinal rolls corresponding to different Ge.

Ge acr Rcr

C ¼ C�
! 0 0 10.9545
10�8 0 10.9545
10�6 0 10.9545
10�5 0 10.9545
10�4 0 10.9545
10�3 0 10.9545
10�2 0 10.9545
10�1 0 10.9545
0.5 0 10.9570
1 0 11.0108
1.2 0 11.1012
1.4 0 11.3409
1.45 0 11.4568
1.5 0 11.6190
1.6 0 12.2403
1.65 0 12.9524
1.7 0 14.9136
1.72 0 17.8408
1.732 2.7118 25.7346ffiffiffi

3
p

2.8064 26.2711

C ¼ Cþ
1.65 7.3087 90.1559
1.7 4.8147 48.0495
1.72 3.9353 36.6194
1.732 2.8957 26.8143ffiffiffi

3
p

2.8064 26.2711
The solution of Eq. (62) can be determined by a power series
method as described in Appendix A.

The evolution of the neutral stability curves for large Ge from a
monotonic increasing behaviour of RðaÞ to a non-monotonic
behaviour is shown in Fig. 6. This figure, referring to the branch
C ¼ C�, justifies the transition from acr ¼ 0 to acr–0 displayed in
Table 2, for Ge larger than 1:7.

Fig. 7 displays the streamlines w ¼ constant and the isotherms
h ¼ constant corresponding to Ge ¼

ffiffiffi
3
p

, i.e. the maximum allowed
value of Ge, and to critical conditions a ¼ acr ¼ 2:8064 and
R ¼ Rcr ¼ 26:2711.

With reference to the branch C ¼ C�, a comparison between the
neutral stability curves in the limit Ge! 0 for transverse rolls and
for longitudinal rolls is given in Fig. 8. These curves have been
determined by adopting the power series solutions found for very
small Ge. As expected, this figure shows that instabilities to longi-
tudinal rolls arise for smaller values of R than those needed for the
onset of transverse rolls.

In Appendix B, we present a straightforward analytical proce-
dure to show that the critical value of R for the branch C ¼ C� in
the small-Ge limit is in fact Rcr ¼

ffiffiffiffiffiffiffiffiffi
120
p

ffi 10:954451, in agreement
with the numerical results given in Tables 1 and 2, and Figs. 3 and 8.
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Fig. 6. Longitudinal rolls: neutral stability curves for very large values of Ge (base
flow branch C ¼ C�).
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Fig. 8. Neutral stability curves for longitudinal rolls and for transverse rolls in the plane ða;RÞ (base flow branch C ¼ C� , in the limit Ge! 0).
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5. Concluding remarks

A linear stability analysis of buoyant flows with viscous dissi-
pation in a horizontal porous layer has been performed. The walls
have been considered as adiabatic and impermeable, so that the
viscous heating of the system is the only cause of horizontal
and vertical thermal gradients. The local balance equations have
been written according to the Darcy–Boussinesq model. The non-
dimensional formulation of the equations revealed that the sys-
tem is governed by two parameters: the Gebhart number, Ge,
and the Péclet number, Pe, associated to the basic mass flow rate
in the layer.

It has been shown that, for every given pair of values fGe; Peg
such that Ge 6

ffiffiffi
3
p

, there exist two stationary parallel flow solu-
tions (dual flows): the C�-solution and the Cþ-solution. Both
these solutions are characterised by a linear velocity profile
and by a temperature distribution expressed as a fourth-order
polynomial function of the vertical coordinate and as a linear
function of the streamwise horizontal coordinate. The C�-solu-
tion can develop convective instabilities for every Ge 6

ffiffiffi
3
p

, while
the Cþ-solution can develop convective instabilities only for
3=2 < Ge 6

ffiffiffi
3
p

.
The development of convective instabilities depends on the va-

lue of Pe: the larger is the value of Pe the greater is the effect of vis-
cous dissipation and, as a consequence, the larger is the vertical
temperature gradient inside the layer. The product R ¼ GePe has
been defined as the order parameter for the transition from the sta-
ble to the unstable regime. The reason is that, in the physically
important cases of very small Ge, the critical value of the parameter
R becomes independent of Ge. Stated differently, for Ge� 1, the
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critical value of Pe for the onset of convective instabilities is inver-
sely proportional to Ge. Wavelike disturbances propagating in the
basic flow direction (transverse rolls) become unstable for
Pe > Pecr ¼ 10:9545=Ge, when Ge 6 0:01. The same expression of
Pecr holds also for wavelike disturbances developing in the direc-
tion orthogonal to the basic flow (longitudinal rolls), as long as
Ge 6 0:1. Most practical cases hardly fall out of the domain
Ge 6 0:01, so that one may say that the onset of transverse and lon-
gitudinal rolls is associated with the same Rcr. Within this paramet-
ric domain, the neutral stability curves in the plane ða;RÞ, referring
either to transverse or to longitudinal rolls, are monotonic increas-
ing so that the critical wavenumber acr is zero.

For the sake of completeness in the mathematical analysis of
the present problem, also higher values of Ge have been investi-
gated. It has been pointed out that, for values of Ge next to the
maximum allowed threshold

ffiffiffi
3
p

, both the C�-solution and the
Cþ-solution develop instabilities of the form of longitudinal and
transverse rolls, corresponding to a nonvanishing acr. In almost
all the cases examined, longitudinal rolls are the most unstable
as they correspond to the smallest value of Rcr. In the case of the
Cþ-solution, the values of Rcr increase as Ge decreases from the
maximum value

ffiffiffi
3
p

and are likely to tend to infinity as
Ge! 3=2. As stated above, no convective instabilities are devel-
oped by the Cþ-solution for Ge 6 3=2.

Adiabatic flows, i.e. flows in regions with adiabatic boundaries,
are the kind of flows where viscous dissipation arises as the only
cause of the non-uniform temperature distribution. As a conse-
quence, the onset of convective instabilities can be immediately as-
cribed to the effect of viscous dissipation. The present analysis is
mainly aimed to highlight this reasoning by an explicit analysis
of a porous flow case. Physically, due to the very narrow size of
the passages permitted to the fluid motion, porous flows and
microchannel flows are conditions where viscous heating phenom-
ena can be very important. An interesting opportunity for future
research can be the extension of the present stability analysis to
cases involving clear fluids.
Appendix A

A.1. Transverse rolls

Eqs. (44) and (48) can be solved by a power series method. Let
us set k1 ¼ 0 in order to study neutral stability. One can express
WðyÞ as

WðyÞ ¼
X1
n¼0

An

n!
yn: ðA1Þ

On account of Eq. (44), one easily obtains

A0 ¼ 0; A1 ¼ 1; A2 ¼ gþ in; A3 ¼ a2; ðA2Þ

where gþ in is the guessed value of W00ð0Þ. Higher order coefficients
An can be determined by substituting Eq. (A1) into Eq. (48) and col-
lecting like powers of y. Then, one has

A4 ¼ 2a2 þ i cþ a
R
2

� �	 

gþ inð Þ þ iaR; A5 ¼ a4; ðA3Þ

and the recursive relation

Anþ4 ¼ 2a2 þ i cþ a
R
2

� �	 

Anþ2 � iaR n� 1ð ÞAnþ1

� a2 a2 þ i cþ a
R
2

� �	 

An þ a2 R2

2
þ iaR

 !
nAn�1

� 1
2

a2R2n n� 1ð ÞAn�2; 8n P 2: ðA4Þ
A.2. Longitudinal rolls

Eqs. (60) and (62) can be solved by a similar series method. Let
us set k1 ¼ 0 in order to study neutral stability, then one can ex-
press WðyÞ as in Eq. (A1). On account of Eq. (60), one obtains

A0 ¼ 0; A1 ¼ 1; A2 ¼ g; A3 ¼ a2; ðA5Þ

where g is the guessed value of W00ð0Þ. Coefficients An, for n > 3, can
be determined by substituting Eq. (A1) into Eq. (62) and collecting
like powers of y. Then, one has

A4 ¼ 2a2g; A5 ¼ a4; ðA6Þ

and the recursive relation

Anþ4 ¼2a2Anþ2 � a4An þ
1
2

a2R2nAn�1 �
1
2

a2R2n n� 1ð ÞAn�2; 8n P 2

ðA7Þ
Appendix B

Upon setting k ¼ 0, Eqs. (56) and (57) are

W00 � a2Wþ iaGeH ¼ 0; ðB1Þ
H00 � a2Hþ iaPe2~T 0B�W ¼ 0: ðB2Þ

The system may be simplified by setting W ¼ iaGeU, and we get,

U00 � a2UþH ¼ 0; ðB3Þ
H00 � a2H� a2Pe2Ge~T 0B�U ¼ 0; ðB4Þ

which is real. We are interested in determining the onset of convec-
tion in the small-a limit, and therefore we may expand solutions in
a power series in a2. Let

ðU;HÞ ¼ ðU0;H0Þ þ a2ðU2;H2Þ þ � � � ðB5Þ

At leading order the equations are

H000 ¼ 0; U000 þH0 ¼ 0; ðB6Þ

for which the solutions are,

H0 ¼ 1; U0 ¼ ðy� y2Þ=2: ðB7Þ

Here we have set H0 to an arbitrary nonzero constant, which is
permissible since this is a linear stability analysis. At Oða2Þ, the
equation for H2 is,

H002 ¼ H0 þ Pe2Ge~T 0B�U0: ðB8Þ

Given thatZ 1

0
H002dy ¼ 0; ðB9Þ

it follows that the similar integral of the right hand side of Eq. (B8)
must also be zero. Hence we have the solvability condition,

1
2

Pe2Ge
Z 1

0
ðy� y2Þ~T 0B�ðyÞdy ¼ �1: ðB10Þ

We are interested in the branch C ¼ C� of the dual solutions,
and in the small-Ge limit. Therefore we may use the solution for
~TB�ðyÞ which is given in Eq. (26), namely that ~TB�ðyÞ �
y2ð2y� 3ÞGe=12 at leading order. Therefore Eq. (B10) yields,

Pe2Ge2

120
¼ 1) R ¼ GePe ¼

ffiffiffiffiffiffiffiffiffi
120
p

ffi 10:954451; ðB11Þ

which confirms the numerical results given in Tables 1 and 2, and
Figs. 3 and 8.
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