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The effect of viscous dissipation on parallel Darcy flow in a horizontal porous layer with an adiabatic
lower boundary and an isothermal upper boundary is discussed. The presence of viscous dissipation
serves to cause a nonlinear temperature profile within the layer. The linear stability of this nonisothermal
base flow is then investigated with respect to the onset of convective rolls. The solution of the linear
equations for the perturbation waves is determined analytically by a power series method, and the
results are confirmed using a direct numerical approach using a fourth order Runge Kutta method. The
neutral stability curve and the critical value of the governing parameter R ¼ GePe2 are obtained, where
Ge is the Gebhart number and Pe is the Péclet number. The effect of an imperfect isothermal boundary
condition at the upper boundary is investigated by considering finite values of the Biot number.
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1. Introduction

The onset of convection in a horizontal fluid-saturated porous
layer heated from below has been widely studied in the last few
decades. The interest in this subject is related both to geophysical
research and to engineering design. Possible applications include
the analysis of water currents in a porous rock, the underground
spread of pollutants, the enhancement of the performance in build-
ing insulation, solar energy collectors and solar ponds. Wide and
detailed discussions of the literature on this subject can be found
in the book by Nield and Bejan [1] and the reviews of Rees [2]
and Tyvand [3].

The early papers of Horton and Rogers [4] and Lapwood [5] pre-
sented the first linearised stability analyses of what has become
known widely as either the Horton–Rogers–Lapwood (HRL) prob-
lem or the Darcy–Bénard (DB) problem. The former links us to
the pioneers of stability theory in porous media, while the latter
emphasizes the strong link with the Rayleigh-Bénard problem.
The classical DB problem consists of a basic motionless state with
a uniform temperature drop across the layer with warmer fluid ly-
ing below cooler fluid.
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Very many authors have developed variants of this basic stabil-
ity problem either by employing porous models that are more
complicated than Darcy’s law, or by altering the external condi-
tions, such as imperfectly conducting boundaries or the presence
of internal heating, rotation or vertical throughflow. Of most inter-
est here is the study of Prats [6] who investigated the effect of a
uniform parallel basic flow in the layer which might be caused
by applying a uniform horizontal pressure along the layer. By using
a moving frame of reference Prats proved that this uniform basic
flow does not alter the condition for the onset of instability. In
Prats’ treatment, the critical value of Rayleigh number, Racr, is
the same as in the DB problem, viz. 4p2. Moreover, the full nonlin-
ear equations, when written in the moving frame, reduce to those
which apply when there is no basic flow. Therefore, the full nonlin-
ear behaviour of the DB problem is recovered in an infinitely long
layer. One other consequence is that there is no preferred direction
for the roll orientation at onset, a property which it does not share
with Bénard–Poiseuille convection.

With regard to what we shall call the Darcy–Bénard–Prats
(DBP) problem, there exist some recent papers which have ex-
tended the work of Prats [6]. Rees [7] considered the effect of qua-
dratic form drag in the momentum equation. He showed that the
critical Darcy–Rayleigh number, Racr, depends on both the form
drag coefficient and on the base flow velocity. Moreover, the
critical Darcy–Rayleigh number is also dependent on the roll orien-
tation, with longitudinal rolls forming the preferred pattern. The
additional effects of lateral confinement were considered by
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Nomenclature

a nondimensional wave number, Eq. (28)
An nth series coefficient, Eq. (36)
Bi Biot number, hL=k
cp specific heat at constant pressure
cwave nondimensional phase velocity, Eq. (35)
g modulus of gravitational acceleration
g gravitational acceleration
G nondimensional parameter, Ge ðcos vÞ2
Ge Gebhart number, Eq. (13)
h external heat transfer coefficient
K permeability
k thermal conductivity
L channel height
Ln differential operator, Eqs. (A11), (A12)
n integer number
P nondimensional parameter, Pe= cosv
Pe Péclet number, Eq. (16)
R nondimensional parameter, GePe2

R real part
s unit vector parallel to the base flow direction
t nondimensional time, Eq. (7)
T nondimensional temperature, Eq. (7)
Tw upper boundary temperature or external temperature
u; v;w nondimensional velocity components, Eq. (7)

U;V ;W nondimensional velocity disturbances, Eq. (17)
�uB base flow velocity
x; y; z nondimensional coordinates, Eq. (7)

Greek symbols
a thermal diffusivity
b volumetric coefficient of thermal expansion
c reduced exponential coefficient, Eq. (29)
� nondimensional parameter, Eq. (A3)
h nondimensional temperature disturbance, Eq. (17)
HðyÞ nondimensional function, Eq. (28)
k exponential coefficient, Eq. (28)
k1; k2 real and imaginary parts of k
m kinematic viscosity
q mass density
r heat capacity ratio
v angle between base flow direction and x-axis
w nondimensional streamfunction, Eq. (24)
WðyÞ nondimensional function, Eq. (28)

Superscript, subscripts
– dimensional quantity
B base flow
cr critical value
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Fig. 1. Sketch of the horizontal porous channel.
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Delache, Ouarzazi and Néel [8]; these authors found discontinuous
transitions between preferred roll states. Postelnicu [9] extended
the work of Rees [7] by combining it with the work of Banu and
Rees [10], who employed the two-temperature model for heat con-
duction. This model involves an inter-phase heat transfer coeffi-
cient to account for the absence of local thermal equilibrium
between the solid and fluid phases. A comprehensive set of results
is presented by Postelnicu [9] showing the detailed effect on the
critical Darcy–Rayleigh number and wavenumber of the inertia
parameter, the flow rate and the three parameters that are associ-
ated with local thermal nonequilibrium.

The aim of the present paper is to consider the following variant
on the DBP problem. In the above-cited works thermoconvective
instability was driven by an unstable temperature gradient that
is imposed externally. In the present paper we shall assume that
there is no imposed temperature gradient across the layer, but
rather that heat is generated internally by the action of viscous dis-
sipation. In particular the upper surface will be taken to be isother-
mal (infinite-Biot number), while the lower surface is thermally
insulated. The former boundary condition is relaxed later in the pa-
per by using a finite-Biot-number condition to represent external
heat transfer to the ambient temperature.

A linear stability analysis of oblique rolls which are orientated
arbitarily with respect to the uniform base flow direction is per-
formed. The disturbance equations are solved both analytically
by a series method and numerically by a fourth order Runge Kutta
method. We present information on how the critical Darcy–Ray-
leigh number and wavenumber vary with the Gebhart and Péclet
numbers. Asymptotic expressions for the critical quantities vs the
Péclet number are obtained.

2. Mathematical model

We shall consider laminar buoyant flow in a horizontal parallel
channel with height L (see Fig. 1). Both the Darcy model and the
Boussinesq approximation are invoked. The components of seep-
age velocity along the �x-, �y- and �z-directions are denoted by �u, �v
and �w, respectively. The lower boundary wall �y ¼ 0 is assumed to
be adiabatic, while the upper boundary wall �y ¼ L is supposed to
be isothermal with temperature Tw. Both boundary walls are
impermeable. Later in the paper we relax the assumption of having
a perfectly conducting upper boundary.

The governing mass, momentum and energy balance equations
can be expressed as

o�u
o�x
þ o�v

o�y
þ o �w

o�z
¼ 0; ð1Þ

o�v
o�x
� o�u

o�y
¼ g bK

m
oT
o�x
; ð2Þ

o�v
o�z
� o �w

o�y
¼ g bK

m
oT
o�z
; ð3Þ

o�u
o�z
� o�w

o�x
¼ 0; ð4Þ

r oT
o�t
þ �u

oT
o�x
þ �v

oT
o�y
þ �w

oT
o�z
¼ a

o2T
o�x2 þ

o2T
o�y2 þ

o2T
o�z2

 !

þ m
K cp

�u2 þ �v2 þ �w2� �
; ð5Þ

where r is the ratio between the average volumetric heat capacity
ðqcpÞm of the porous medium and the volumetric heat capacity
ðqcpÞf of the fluid. Eq. (2) has been obtained by combining the �x-
component and the �y-component of Darcy’s law in order to remove
the explicit dependence on the pressure field; Eqs. (3) and (4) were
obtained in a similar manner.
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The velocity and temperature boundary conditions are ex-
pressed as

�y ¼ 0 : �v ¼ 0 ¼ oT
o�y
; �y ¼ L : �v ¼ 0; T ¼ Tw: ð6Þ

In this paper, a horizontal pressure gradient is applied that produces
a uniform flow of magnitude �uB at an angle v to the x-direction; this
is defined more precisely below.

2.1. Nondimensionalization

Let us introduce dimensionless variables such that

ð�x; �y;�zÞ ¼ ðx; y; zÞL; �t ¼ t
rL2

a
; ð�u; �v; �wÞ ¼ ðu; v;wÞ a

L
;

T ¼ Tw þ T
ma
K cp

: ð7Þ

Then, Eqs. (1)–(5) can be rewritten as

ou
ox
þ ov

oy
þ ow

oz
¼ 0; ð8Þ

ov
ox
� ou

oy
¼ Ge

oT
ox
; ð9Þ

ov
oz
� ow

oy
¼ Ge

oT
oz
; ð10Þ

ou
oz
� ow

ox
¼ 0; ð11Þ

oT
ot
þ u

oT
ox
þ v

oT
oy
þw

oT
oz
¼ o2T

ox2 þ
o2T
oy2 þ

o2T
oz2 þ u2 þ v2 þw2; ð12Þ

where the Gebhart number is given by

Ge ¼ g bL
cp

: ð13Þ

The boundary conditions (6) may be expressed in dimensionless
form as

y ¼ 0 : v ¼ oT
oy
¼ 0; y ¼ 1 : v ¼ T ¼ 0: ð14Þ

It must be pointed out that, in most practical cases, the Gebhart
number is very small. The condition Ge ¼ 1 is far beyond any con-
ceivable application, as it is illustrated in Table 1 with reference
to some liquids and gases. As it is shown by the last column of Table
1, the thickness L corresponding to the condition Ge ¼ 1, i.e., the ra-
tio cp=ðg bÞ, is several kilometers. Cases with Ge � Oð1Þ will be con-
sidered in the following treatment just for comparison with the
asymptotic case Ge! 0.

2.2. Base flow

We are under the assumptions of a horizontal steady parallel
flow in the direction of the unit vector s ¼ ðcos v; 0; sinvÞ lying in
the x—z-plane and of a purely vertical heat flux.
Table 1
Determination of Ge ¼ g bL=cp for some typical fluids (data from Ref. [11])

Fluid b [K�1] cp

[J kg�1 K�1]
g b=cp

[m�1]
cp=ðg bÞ
[km]

Water
(saturated) at 20 �C

1:8� 10�4 4181.8 4:2� 10�7 2370

Unused engine oil
(saturated) at 20 �C

7� 10�4 1880.0 3:7� 10�6 274

Dry air at 300 K
(atmospheric pressure)

1/300 1005.7 3:3� 10�5 31

Carbon dioxide at 300 K
(atmospheric pressure)

1/300 871.0 3:8� 10�5 27
The basic state, which we shall analyse for stability, is given by,

uB ¼ Pe cos v; vB ¼ 0; wB ¼ Pe sin v; TB ¼
Pe2

2
ð1� y2Þ; ð15Þ

where

Pe ¼
�uB � sL

a
; ð16Þ

defines the Péclet number based on the uniform base flow velocity
�uB � s. Obviously, it is not restrictive to assume that �uB � s > 0, i.e.
Pe > 0.

2.3. Linearization

Perturbations of the base state given by Eq. (15) are defined as

u ¼ uB þ U; v ¼ vB þ V ; w ¼ wB þW ; T ¼ TB þ h: ð17Þ

On substituting Eq. (17) in Eqs. (8)–(12) and neglecting nonlinear
terms in the perturbations, we obtain the linearised stability
equations,

oU
ox
þ oV

oy
þ oW

oz
¼ 0; ð18Þ

oV
ox
� oU

oy
¼ Ge

oh
ox
; ð19Þ

oV
oz
� oW
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oh
oz
; ð20Þ

oU
oz
� oW

ox
¼ 0; ð21Þ

oh
ot
þ Pe cos v oh

ox
þ Pe sin v oh

oz
� Pe2Vy

¼ o2h
ox2 þ

o2h
oy2 þ

o2h
oz2 þ 2Pe cosvU þ 2Pe sinvW; ð22Þ

where use has been made of Eq. (15). The linearity of Eqs. (18)–(22)
implies that, due to the superposition property, one may treat rolls
of different orientations separately with regard to instability. An
advantage is that each of these cases can be dealt with using a
purely 2D treatment.

3. Instability with respect to rolls

We shall be introducing periodic roll solutions as the distur-
bance. Given that v is an arbitrary direction it is not restrictive
to consider rolls with axes along the z-direction by first
setting

U ¼ Uðx; y; tÞ; V ¼ Vðx; y; tÞ; W ¼ 0; h ¼ hðx; y; tÞ: ð23Þ

On introducing a streamfunction, w, such that

U ¼ Pe�2 ow
oy
; V ¼ �Pe�2 ow

ox
; ð24Þ

then Eqs. (18), (20) and (21) are satisfied identically, while Eqs. (19)
and (22) may be rewritten in the form

o2w
ox2 þ

o2w
oy2 þ GePe2 oh

ox
¼ 0; ð25Þ

oh
ot
þ Pe cos v oh

ox
þ y

ow
ox
¼ o2h

ox2 þ
o2h
oy2 þ 2Pe�1 cos v ow

oy
: ð26Þ

The boundary conditions fulfilled by w and h are easily inferred from
Eqs. (14), (15), (17) and (24), namely

y ¼ 0 : w ¼ oh
oy
¼ 0; y ¼ 1 : w ¼ h ¼ 0: ð27Þ

Solutions of Eqs. (25)–(27) are sought in the form of plane waves,



Fig. 2. Perfectly isothermal upper wall ðBi!1Þ: stability diagram ða;RÞ.
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wðx; y; tÞ ¼ RfWðyÞek teiaxg; hðx; y; tÞ ¼ RfHðyÞek teiaxg; ð28Þ

where the positive real constant a is the prescribed wave num-
ber, while k ¼ k1 þ ik2 is a complex exponential growth rate to
be determined. We shall set k1 ¼ 0 in order to investigate neutral
stability. Moreover, for numerical convenience we shall also set

c ¼ k2 þ aPe cos v: ð29Þ

By substituting Eq. (28) in Eqs. (25) and (26), we obtain

W00 � a2 Wþ iaRH ¼ 0; ð30Þ
H00 � ðicþ a2ÞHþ 2P�1W0 � iayW ¼ 0; ð31Þ

where primes denote differentiation with respect to y, and where
we have introduced the nondimensional parameters,

R ¼ GePe2; P ¼ Pe= cos v: ð32Þ

In Eq. (30) R plays the role of a Darcy–Rayleigh number as it multi-
plies the buoyancy term, while P is a modified Péclet number. Elim-
ination of H between Eqs. (30) and (31) yields a fourth order
ordinary differential equation for WðyÞ, namely

W
0000
� ð2a2 þ icÞW00 � 2iaRP�1W0 þ a2ða2 � Ryþ icÞW ¼ 0: ð33Þ

The boundary conditions fulfilled by WðyÞ are easily deduced from
Eqs. (27), (28),

y ¼ 0 : W ¼ W000 � a2 W0 ¼ 0; y ¼ 1 : W ¼ W00 ¼ 0: ð34Þ

Eqs. (28) and (29) imply that the perturbation wave travels in the x-
direction with a dimensionless phase velocity

cwave ¼ Pe cosv� c
a
: ð35Þ

If cwave > 0, the wave travels in the same direction of the base flow.
On the other hand, if cwave < 0, the wave travels in the direction
opposite to the base flow, which is unphysical.

3.1. The eigenvalue problem

The homogeneity of Eqs. (33) and (34) implies that WðyÞ is de-
fined only up to an arbitrary overall scale factor, which means that
we may set W0ð0Þ ¼ 1 as a normalisation condition.

These equations form an ordinary differential eigenvalue
problem for R and c for any chosen wavenumber, a, and modi-
fied Péclet number, P. Given the definition of R in Eq. (32), this
means that the critical Gebhart number may be found in terms
of the Péclet number. It is more satisfying from a physical point
of view to obtain a critical Péclet number as a function of the
Gebhart number, but although one may plot the variation of
the critical Gebhart number with Péclet number, it turns out
that R remains of Oð1Þ through the physically acceptable range
of values of Ge.

3.2. Series solution of the initial value problem

Eqs. (33) subject to (34) may be solved by a power series meth-
od using

WðyÞ ¼
X1
n¼0

An

n!
yn: ð36Þ

The three known (complex) initial conditions are,

A0 ¼ 0; A1 ¼ 1; A3 ¼ a2; ð37Þ

while A2 will need to be obtained by prescribing the boundary con-
ditions at y ¼ 1, Eq. (34). Higher order coefficients An may be deter-
mined by substituting Eq. (36) into Eq. (33) and collecting like
powers of y. One thus obtains
A4 ¼ ð2a2 þ icÞA2 þ 2 iaRP�1; ð38Þ

and the recursion relation

Anþ4 ¼ ð2a2 þ icÞAnþ2 þ 2 iaRP�1 Anþ1 � a2ða2 þ icÞAn

þ na2 RAn�1 ; 8 n P 1: ð39Þ

The series solution given by Eq. (36) has a very rapid convergence.
The real values of R and c and the complex value of A2 are obtained
by ensuring that the two complex boundary conditions at y ¼ 1 are
satisfied. In all the following cases six digits of accuracy may be
achieved by truncating the sum to the first 40 terms. Neutral curves
may be traced out by varying the value of a, and the value which
minimises R is termed the critical wavenumber, and denoted by acr.

We also used a 4th order Runge Kutta code with the shooting
method as an alternative numerical procedure. In the following,
all the numerical results are obtained by both methods in order
to ensure their cross-validation.

3.3. Stability analysis

In the first instance, it is important to note that P�1 ¼ 0 when
considering longitudinal rolls, for which v ¼ p=2. In these cases,
Eq. (33) loses the RP�1 term, and it is possible to show that the
resulting eigenvalue problem admits real eigensolutions with
c ¼ 0. Thus the complex 4th order system reduces to a real 4th or-
der system. The neutral stability curve for this case is given in
Fig. 2, which shows that it has the classical shape for Bénard-like
problems. In this case we find that

Rcr ¼ 61:8666 and acr ¼ 2:44827: ð40Þ

Therefore, we may state that

Pecr ¼ 7:8655Ge�1=2; ð41Þ

where all decimal places quoted are correct. Given that, for most
convection problems involving liquids, Ge can hardly be greater
than 10�6, unless L � 1m or higher, this means that we must have
a relatively high flow rate within the porous layer to generate suf-
ficient heat to cause a thermoconvective instability.

Indeed, when Ge takes extremely small values, Eq. (41) implies
that Pe must be extremely large. Therefore, Eq. (33) also suggests
that the RP�1 term is negligible in these circumstances and there-
fore the onset criterion is independent of v, as in DBP problem of
Prats [6].

For roll orientations other than longitudinal, the definition of P
given in Eq. (32) shows that stability criteria for all roll orientations
may be given in terms of the transverse roll, for which v ¼ 0.
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In Figs. 3 and 4, we show the respective variation of Rcr with P
and with G ¼ Ge cos2 v. From Eq. (32), the latter parameter is such
that R ¼ GP2. Also shown are the three-term large-P asymptotic
solutions given by Eq. (A35). These figures show that there is only
a fairly weak variation in the critical values with both these param-
eters. In fact, the three-term asymptotic expansion of Rcr yields ex-
tremely accurate solutions over a range of G which is much bigger
than is physically achievable for a porous medium. A detailed com-
parison between the asymptotic and the numerical data shows
that the error in Rcr exceeds 1% once Ge > 0:45 or, equivalently,
Pe < 0:64.

Fig. 5 shows how the critical wavenumber varies with G. At
large values of P (or, equivalently, small values of G), the critical
wavenumber is approximately constant, reducing strongly as P
and G tend towards Oð1Þ magnitudes. Fig. 6 shows the reduced
wavespeed, c. In all cases the reduced wavespeed, c, is positive,
which means that the overall wavespeed, k2, is reduced from the
speed of the base flow. Therefore rolls travel more slowly than
the base flow. The variation of c is roughly linear with P�1, as
shown in the Appendix. In both cases, the asymptotic expansions
given in the Appendix yield extremely accurate representations
of the numerical results. Finally, we note that, since Ge� 1 implies
that Pecr � 1, it is highly likely that inertia/form drag effects will be
significant; we intend to report on this aspect in the near future.
0.5 1.0 1.5 2.0 2.5 3.0

50

52

54

56

58

60

62

10 ( )Log P

cr
R

Asymptotic analysis

Evaluated data

Fig. 3. Perfectly isothermal upper wall ðBi!1Þ. Rcr vs P diagram: comparison
between the evaluated data and the asymptotic expansions.

−4 −3 −2 −1 0

50

52

54

56

58

60

62

10( )Log G

cr
R

Asymptotic analysis

Evaluated data

Fig. 4. Perfectly isothermal upper wall ðBi!1Þ. Rcr vs G diagram: comparison
between the evaluated data and the asymptotic expansions.

0.5 1.0 1.5 2.0 2.5 3.0

−1.5

−1.0

−0.5

Asymptotic analysis

Evaluated data

10
cr

(
)

L
og

γ

10( )Log P

Fig. 6. Perfectly isothermal upper wall ðBi!1Þ. ccr vs P diagram: comparison
between the evaluated data and the asymptotic expansions.
3.4. The effect of an imperfectly isothermal upper boundary wall

The practical possibility of having a perfect isothermal bound-
ary is limited by the finite, although very high, efficiency of the
thermal contact between the surface and the external environment
through a properly designed convection process. Thus, a more real-
istic thermal condition at the upper boundary �y ¼ L is given by a
third kind or Robin boundary condition. In this case, the �y ¼ L
boundary condition in Eq. (6) is replaced by

�y ¼ L : �v ¼ 0; �k
oT
o�y
¼ hðT � TwÞ; ð42Þ

where k is the thermal conductivity and h the external heat transfer
coefficient.

Then, instead of Eq. (14b), one has

y ¼ 1 : v ¼ 0 ¼ oT
oy
þ Bi T; ð43Þ

where Bi ¼ hL=k is the Biot number. The temperature distribution
for the base flow is such that

TB ¼
Pe2

2
2
Bi
þ 1� y2

� �
: ð44Þ

Nothing changes in the formulation of the fourth order differential
equation for W, which is still given by Eq. (33). On the other hand, as
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a consequence of Eqs. (30) and (43), the y ¼ 1 boundary condition
Eq. (34) is replaced by

y ¼ 1 : W ¼ W000 þ BiW00 � a2 W0 ¼ 0: ð45Þ

From a mathematical viewpoint, this means that the only practi-
cal change in the series solution algorithm is in the definition of
the constraint equations at y ¼ 1 to determine coefficient A2, the
overall procedure being the same. In the small-G limit, or, equiv-
alently for longitudinal rolls, the effect of different values of Bi on
the neutral curve is given in Fig. 7. A perfectly conducting upper
boundary corresponds to the limit Bi!1, and we see that the
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critical values of both R and a reduce as Bi decreases. In the insu-
lating limit, Bi! 0, we obtain acr ¼ 0, which is consistent with
the similar case for the Darcy–Bénard problem; see pp. 193 and
194 of Nield and Bejan [1].

When G takes nonzero values the variation of Rcr, acr and ccr may
be seen in Figs. 8–10, respectively. The variation of Rcr with G is gi-
ven in Fig. 8 where substantial changes in the G� 1 values occur
only as G! 1, an unphysically large value. We see also that Rcr re-
duces as Bi decreases. The corresponding wavenumber variation is
shown in Fig. 9. When G takes physically significant values the
reduction in the critical wavenumber is monotonic as Bi decreases.
Similar behaviour arises for the reduced wavespeed, c, shown in
Fig. 10.

4. Conclusions

In this paper, we have considered horizontal flow in a porous
layer where viscous dissipation serves to raise the temperature
of the moving fluid. Given that the upper surface of the layer is rel-
atively cold, this means that the thermal profile is potentially ther-
moconvectively unstable. Our aim has been to determine criteria
for the onset of convection. We have found that the parameter R,
which plays the role of a Rayleigh number, remains of O(1) magni-
tude over all physically realistic values of the Gebhart number.
From this, it has been possible to determine the critical Péclet
number (and the associated wavenumber and phase speed) as a
function of the Gebhart number. In general, the transverse roll re-
quires a smaller Péclet number before it is destabilised than any
other roll orientation. Other orientations have physical significance
when the layer is restricted laterally, and our results may also be
applied to these cases. The Appendix gives a large-Péclet asymp-
totic analysis which gives extremely accurate correlations for all
physically realistic values of the Gebhart number.

Appendix A. Asymptotic analysis of rolls as P ! ‘

Eqs. (30) and (31) are

W00 � a2 Wþ iaRH ¼ 0; ðA1Þ

H00 � ðicþ a2ÞHþ 2P�1W0 � iayW ¼ 0; ðA2Þ

The aim of this Appendix A is to provide an asymptotic analysis of
the solutions of the above equations which are valid in the limit
of small Ge, or, equivalently, large P. We shall employ the following
substitutions,

W! iW; � ¼ P�1; ðA3Þ
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to transform Eqs. (A1) and (A2) into a form which is more conve-
nient for the asymptotic analysis. We obtain the system,

W00 � a2Wþ aRH ¼ 0; ðA4Þ
H00 � ðicþ a2ÞHþ ð2iW0Þ�þ ayW ¼ 0: ðA5Þ

According to the numerical results presented earlier, R remains of
Oð1Þ throughout the whole physically admissible range of values
of Ge. Moreover, the small parameter �, multiplies just one term.
In what follows various streamfunction and temperature terms will
be defined as part of the asymptotic analysis, and they will all sat-
isfy the boundary conditions given in Eq. (27).

Guided by the numerical results and by the form of the Eqs. (A4)
and (A5), we shall introduce the small-� expansions,

W ¼ W0 þ �W1 þ �2W2 þ �3W3 þ �4W4 þ � � � ; ðA6Þ
H ¼ H0 þ �H1 þ �2H2 þ �3H3 þ �4H4 þ � � � ; ðA7Þ
R ¼ R0 þ �2R2 þ �4R4 þ � � � ; ðA8Þ
c ¼ �c1 þ �3c3 þ � � � ; ðA9Þ

and

a ¼ a0 þ �2a2 þ �4a4 þ � � � : ðA10Þ

At each stage we equate coefficients of like powers of � to obtain
equations for the various Wn and Hn terms.

At Oð1Þ we obtain the system,

L1ðW0;H0Þ 	 W000 � a2
0W0 þ a0R0H0 ¼ 0; ðA11Þ

L2ðW0;H0Þ 	 H000 � a2
0H0 þ a0yW0 ¼ 0: ðA12Þ

Here, we have introduced the notation Ln for later convenience.
This homogeneous system may be solved by setting a normalisation
condition such as H0ð0Þ ¼ 1, and then R0 is found as an eigenvalue.
Further terms in (A7) will be taken to satisfy the boundary condition
Hnð0Þ ¼ 0.

Eqs. (A11) and (A12) are such that R0 is a function of the wave-
number, a, and it is necessary to minimise R0 with respect to a. If
we define Wm and Hm to be the respective a-derivatives of W0

and H0, then the a-derivative of Eqs. (A11) and (A12) yield the
system,

L1ðWm;HmÞ ¼ 2a0W0 � R0H0; ðA13Þ
L2ðWm;HmÞ ¼ 2a0H0 � yW0; ðA14Þ

where we have set dR0=da ¼ 0. The solution of this additional sys-
tem yields the value of a0 which minimises R0.

At Oð�Þ we obtain,

L1ðW1;H1Þ ¼ 0; ðA15Þ
L2ðW1;H1Þ ¼ ic1H0 � 2iW00: ðA16Þ

This is an eigenvalue problem for c1 and it may be solved using real
arithmetic by means of the substitutions, W1 ¼ iW1a, H1 ¼ iH1a.

At Oð�2Þ the resulting system is,

L1ðW2;H2Þ ¼ a2½2a0W0 � R0H0
 þ ½�a0R2H0
; ðA17Þ
L2ðW2;H2Þ ¼ a2½2a0H0 � yW0
 þ i½c1H1 � 2W01
: ðA18Þ

Given that the terms multiplying a2 on the right hand sides of (A17)
and (A18) are identical to those on the right hand sides of (A13) and
(A14), it is possible to write the solution in the form,

W2 ¼ a2Wm þW2a; H2 ¼ a2Hm þH2a: ðA19Þ

The functions W2a and H2a satisfy the system,

L1ðW2a;H2aÞ ¼ ½�a0R2H0
; ðA20Þ
L2ðW2a;H2aÞ ¼ i½c1H1 � 2W01
: ðA21Þ
We note that Eqs. (A20) and (A21) have real inhomogeneous terms,
and that the system is an eigenvalue problem for R2. On the other
hand, the value of a2 is not determined at this order, but (A19)
shows that one component of the overall second order solution is
proportional to a2, which will be determined at Oð�4Þ.

At Oð�3Þ we have,

L1ðW3;H3Þ ¼ a2½2a0W1 � R0H1
 � a0R2H1; ðA22Þ
L2ðW3;H3Þ ¼ a2½2a0H1 � yW1
 þ i½�2W02 þ c1H2 þ c3H0
: ðA23Þ

We note that the inhomogeneous terms are purely imaginary, and
given that a2 appears again as a coefficient, we may split the solu-
tion of (A22) and (A23) into two components:

W3

H3

c3

0
B@

1
CA ¼ ia2

W3a

H3a

c3a

0
B@

1
CAþ i

W3b

H3b

c3b

0
B@

1
CA: ðA24Þ

Therefore, we need to solve the two systems of equations,

L1ðW3a;H3aÞ ¼ 2a0W1a � R0H1a þ c3aH0; ðA25Þ
L2ðW3a;H3aÞ ¼ 2a0H1a � yW1a � 2W0m þ c1Hm; ðA26Þ

and

L1ðW3b;H3bÞ ¼ �a0R2H1a; ðA27Þ
L2ðW3b;H3bÞ ¼ �2W02a þ c1H2a þ c3bH0: ðA28Þ

These are, respectively, eigenvalue problems for c3a and c3b.
Finally, at Oð�4Þ, the equations are

L1ðW4;H4Þ ¼ a4½2a0W0 � R0H0
 þ a2½�R2H0 � R0H2a

þ 2a0W2a � a0R2Hm
 þ a2
2½W0 þ 2a0Wm

� R0Hm
 � a0R2H2a � a0R4H0; ðA29Þ
L2ðW4;H4Þ ¼ a4½2a0 �W0
 þ a2½2a0H2a � yW2a � c1H3a þ 2W03a


þ a2
2½H0 þ 2a0Hm � yW2m
 þ 2W03b

� c1H3b þ c3H1a: ðA30Þ

This more complicated system may be split into four separate sys-
tems for ease of computation:

W4

H4

R4

0
B@

1
CA ¼ a4

Wm

Hm

0

0
B@

1
CAþ a2

2

W4a

H4a

R4a

0
B@

1
CAþ a2

W4b

H4b

R4b

0
B@

1
CAþ

W4c

H4c

R4c

0
B@

1
CA:

ðA31Þ

We have already taken account of the fact that the solution corre-
sponding to a4 is already known. It is now routine to write out
the remaining three systems, but these are omitted for the sake of
brevity. However, these three systems form eigenvalue problems
for R4a, R4b and R4c , respectively.

This latest solution means that, while R0 and R2 are computed
constants, the value of R4 is not; we have

R4 ¼ R4aa2
2 þ R4ba2 þ R4c; ðA32Þ

which is a quadratic in a2. Not surprisingly we find that R4a is posi-
tive and therefore a value of a2 may be found which will minimise
R4. It is,

a2 ¼ �
R4b

2R4a
: ðA33Þ

In turn, this value for a2 means that the solution at Oð�3Þ is now
known.

Having solved the full 45th order system (where all the eigen-
values are listed) we obtain the following asymptotic expansions,
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a � 2:44826615� 4:38433187P�2; ðA34Þ
R � 61:86656690� 173:51040218P�2 þ 851:18063938P�4; ðA35Þ
c � 14:50695111P�1 � 24:42147430P�3: ðA36Þ

All the coefficients are correct to the stated number of decimal
places; this required a uniform grid of 1600 equally spaced points
using a 4th order Runge Kutta code.
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