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Linear Stability of a Free
Convection Boundary Layer Flow
Using a Thermal Disturbance
With a Slowly Increasing
Frequency
Numerical simulations are performed to investigate the linear stability of a two-
dimensional incompressible free convection flow induced by a vertical semi-infinite
heated flat plate. A small-amplitude local temperature disturbance with a slowly increas-
ing frequency is introduced on the surface near to the leading edge in order to generate
disturbance waves within the boundary layer. The aim is to compare the response of the
thermal boundary layer with that obtained by selecting discrete disturbance frequencies.
In the present study, air is considered to be the working fluid for which the value of the
Prandtl number is taken to be Pr�0.7. The computational results show that the distur-
bance decays initially until it reaches a critical distance, which depends on the current
frequency of the disturbance. Thereafter the disturbance grows, but the growth rate also
depends on the effective frequency of the disturbance. Comparisons with previous work
using constant disturbance frequencies are given, and it is shown that the sine-sweep
technique is an effective method for analyzing the instability of convectively unstable
boundary layers. �DOI: 10.1115/1.2976554�
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Introduction
In the free convection boundary layer flow over a vertical sur-

ace, the primary mode of instability takes the form of two-
imensional waves, which travel in the streamwise direction. This
s well known to be a hydrodynamic instability �1,2� even though
he basic state is generated by buoyancy forces and the flow is
dvectively unstable as opposed to being absolutely unstable.

Goldstein �3� in the study of evolution of Tollmien–Schlichting
aves recognized that near the leading edge, but not so near that

he fully elliptic equations have to be considered, the boundary
ayer is fairly thin and grows rapidly in the downstream direction
ompared with the situation further downstream. In this region the
arallel flow assumption is inaccurate. On the other hand, at
reater distances from the leading edge, the parallel flow approxi-
ation holds and the linear stability properties of the flow can be

airly accurately predicted by the thermal equivalent of the Orr–
ommerfeld equation. In the free convection boundary layer flow,
aul �4� and Paul et al. �5� also showed that the linear stability
esults based on the parallel flow approximation �Paul et al. �6��
gree well with the results obtained from full unsteady 2D simu-
ations at large downstream distances, but that there is poor agree-

ent near the leading edge region. It was concluded that it is
ecessary to solve the full unsteady 2D equations in order to ob-
ain accurate predictions of the stability characteristics near the
ase of the neutral curve rather than to use the parallel flow ap-
roximation.
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In Refs. �4,5�, the stability of the free convection thermal
boundary layer flow from a vertical flat plate was studied by in-
troducing the following thermal disturbances: �i� an isolated inter-
nal disturbance at one point in time and �ii� a time-periodic local
variation in the surface temperature near the leading edge of the
flat plate. When the point thermal disturbance was introduced, it
was found that, as time progresses, the disturbance diffuses and
travels downstream, leaving behind an undisturbed flow. The spa-
tial wavelength of the traveling cells also increases, which is con-
sistent with the fact that the base flow accelerates in the stream-
wise direction. In addition, the variation of the surface rate of heat
transfer with time showed a distinctive time scale or frequency
associated with the evolving disturbance. The latter disturbance
may be regarded as being of similar type to the suction strip
approach of Fasel and Konzelmann �7�, the oscillating heat source
of Brooker et al. �8�, and the vibrating ribbon experiments of
Dietz �9�. Such thermal disturbances produce instability waves of
Tollmien–Schlichting type into the otherwise steady flow, and
then the magnitude of the waves either grows or decays roughly in
accordance with linear stability theory analysis such as was per-
formed by Paul et al. �6� using the parallel flow approximation.

In addition, for the time-periodic thermal oscillation �4,5�, sinu-
soidal thermal disturbances of fixed frequency were introduced
near the leading edge of a flat plate to generate wavelike instabili-
ties in order to study the stability and thermal receptivity of the
boundary layer flow. A large range of different frequencies were
introduced in order to trace out a neutral stability curve based on
the full elliptic system of equations. The main purpose of the
present paper is to revisit this stability problem by using thermal
disturbances with a gradually increasing frequency. In other engi-
neering contexts this procedure is referred as a sine-sweep. If the

sine-sweep method were shown to be able to reproduce the sta-
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ility characteristics of the boundary layer accurately, then it
ould be used to replace a very large number of simulations with
ne albeit lengthy simulation. In our application of the sine-sweep
dea a slow variation of the effective frequency is used, and the
tability properties of the boundary layer are compared with those
btained in Refs. �5,6� in order to determine the applicability of
he sine-sweep idea.

The sine-sweep idea may also be applied to experimental setups
n order to determine the stability characteristics of the boundary
ayer. This would also yield important information such as neutral
urves and local growth rates relatively quickly.

Governing Equations and Boundary Conditions
We consider the two-dimensional incompressible free convec-

ion boundary layer flow over a vertical infinite span heated plate
here x is the streamwise coordinate and y is the wall-normal

oordinate. A detailed schematic of the flow configuration may be
ound in Ref. �5�. The equations of motion of the free convective
oundary layer flow are taken to be the incompressible Navier–
tokes and energy transport equations. For unsteady two-
imensional flow this system, subject to the Oberbeck–Boussinesq
pproximation, may be written in nondimensional stream function
��, vorticity ���, and temperature ��� form �5� as

�2�

�x2 +
�2�

�y2 = � �1�

��

�t
=

�2�

�x2 +
�2�

�y2 +
��

�x

��

�y
−

��

�y

��

�x
+

��

�y
�2�

��

�t
=

1

Pr
� �2�

�x2 +
�2�

�y2� +
��

�x

��

�y
−

��

�y

��

�x
�3�

here the stream function ��� is defined such that u=�y and v=
�x. Here u and v are the nondimensional velocity components
long the x and y coordinate directions, respectively. The constant
r is the fluid Prandtl number. The detailed nondimensionaliza-

ions of the full governing equations are given in Refs. �4,5�. We
ote that the length scale used is a natural one based on the prop-
rties of the fluid and the temperature drop. Therefore no Grash-
of number appears in the equations, as Gr=1 defines this natural
ength scale. The boundary layer approximation is now equivalent
o x�1.

On applying the Schwartz–Christoffel transformation 3��+ i��
�4�x+ iy��3/4 into Eqs. �1�–�3� and introducing a small distur-
ance into the steady flow for which we set

���,�,t� = �̄��,�� + ��̂��,�,t� �4�

���,�,t� = �̄��,�� + ��̂��,�,t� �5�

���,�,t� = �̄��,�� + ��̂��,�,t� �6�

he following linearized perturbation equations are obtained:

�2�̂

��2 +
�2�̂

��2 = A�̂ �7�

A
��̂

�t
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��2 +
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��̄ ��̂� + � ��̄ ��̂
−
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where � in Eqs. �4�–�6� represents a small quantity, and therefore
powers of � have been neglected when deriving Eqs. �7�–�9�. Fur-
thermore, the overbar indicates the steady state base flow quanti-
ties while the hat �circumflex� denotes the perturbation variables.
The quantity 	, which appears in Eq. �8�, is the polar angle from
the heated surface, while the function A is defined according to
A3= � 3

4
�2��2+�2�2.

The corresponding boundary conditions that are needed to solve
Eqs. �7�–�9� are

�̂ = �̂� = 0, �̂ = 0 on � = �min = 0 �10�

�̂ = �̂� = 0, �̂� = 0 on � = �min �11�

�̂� = 0, �̂ = 0, �̂ = 0 as � = �max �12�

while at the outflow ��max� we apply a buffer domain function in
order to dampen down disturbances and to prevent unphysical
reflections. Further details of the use of a buffer function are given
in Sec. 3. It should be noted here that the leading edge of the
heated surface was taken to be at �min=20, which corresponds to
x�37 in Cartesian coordinates. The origin of the coordinate sys-
tem is outside of the computational domain and therefore we de-
fine the new variable x�=x−37, which is the distance to the lead-
ing edge. The parallel flow investigations �PFIs� �6� were carried
out for the same x�.

After solving for the basic state, ��̄ , �̄ , �̄�, using the procedure
outlined in Sec. 3, a thermal disturbance is introduced by chang-
ing the surface temperature near the leading edge. Therefore we
solve the linearized disturbance equations �7�–�9� subject to the
no-slip condition on the surface and the thermal boundary condi-
tion

�̂ = e−a�� − �0�2
sin�ct2� at � = 0 �13�

where 
=2ct is defined as the temporal frequency, which is a
slowly varying function of time t. In Eq. �13� �0=20 is the center
of the region where the thermal disturbance is introduced. This
region is located well upstream of where the boundary layer be-
comes unstable. In addition, a=0.1 was chosen such that the ther-
mal disturbance region was well resolved on the computational
grid but is still located fully upstream of the neutral point.

3 Numerical Method
Finite difference techniques are used to solve the system of

nonlinear equations �1�–�3� and the system of linear equations
�7�–�9�. The overall accuracy of the numerical scheme is second
order in both time and space.

The time-dependent equations are discretized using central dif-
ferences and the DuFort–Frankel method for the time-derivative
and diffusion terms. The Jacobian terms are approximated using
the Arakawa �10� formulation, which was designed to be particu-
larly suitable for unsteady flows. Derivative boundary conditions
are approximated using a standard ghost point approach, which
has a smaller discretization error than a one-sided first-order ap-
proximation.

The Poisson equation �7� was solved using a multigrid correc-
tion scheme algorithm to accelerate iterative convergence. It in-
corporates a V-cycle algorithm involving the line Gauss–Seidel
relaxation procedure. The method is based on the pointwise
method described in Ref. �11� but adopts two line relaxations per
coordinate direction on each multigrid level.

The buffer domain technique of the outflow boundary follows

the methodology introduced by Kloker et al. �12�. The naive im-

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



p
o
s
w
d
c
l
r
fl
m
R
a

a
p
D
�
c
t
fi
t
a
a
w

w
t
fl
s
b

w
c
t

s
c
r
b

a
y
=
s
t
=
r
l
i
v
l
s
u

4

r
w
r

J

Downl
osition of boundary conditions involving either the first or sec-
nd derivatives of the dependent variables results in the progres-
ive upstream propagation of spatially pointwise oscillations,
hich eventually degrade the evolving solution. Kloker et al. �12�
iscussed at length six different strategies for dealing with outflow
onditions and concluded that, for the Blasius boundary layer at
east, a very satisfactory method is to use an absorbing buffer
egion. Such a region is used to damp out disturbances to the basic
ow and is sometimes called a relaminarization region. The
ethod has also been used very satisfactorily in other flows; see
efs. �13,14�, for example. For the present problem the concept of
buffer region translates into setting

�dist
new = F��� � �dist

old �14�

t each time step. Here � represents either the vorticity or tem-
erature, �old is the computed value of � obtained using the
uFort–Frankel method subject to the boundary condition

� /��=0 at �=�max, and �new is the value of �, which is used to
ompute � at subsequent time steps. The buffer function F���
akes the value of 1 in most of the computational domain and is a
fth-order polynomial in �, which decreases from 1 at the start of

he buffer region to 0 at outflow. At both the beginning ��=�b1�
nd the end ��=�b2� of the buffer region the function has zero first
nd second derivatives. In more detail, the buffer function used
as

F��� = 1, �  �b1

F��� = 1 − 10�3 + 15�4 − 6�5, �b1  �  �b2 �15�

F��� = 0, � � �b2

here �= ��−�b1� / ��b2−�b1�. For nonlinear problems, such as
hose involving the computation of the basic steady flow, the out-
ow formula �14� translates into the following form, which is
uitable for solving for the true variables rather than for distur-
ances:

�new = F��� � �old + �1 − F���� � �basic �16�

here �basic represents the basic boundary layer solutions of the
orresponding variable �vorticity or temperature�, which is ob-
ained from the steady solutions of Eqs. �1�–�3�.

In the simulation, �max=620 was chosen and the buffer region
tarted from �b1=520. A series of simulations was undertaken
hanging the position of the start of the buffer region, and the test
esults show that there was no effect on the solutions in the un-
uffered region.

Initially, a total of 480 nodes were used in the �-direction with
uniform distribution of the mesh size of d�=1.25. In the

-direction we used 48 nodes and the domain extends to �max
12. In order to show grid independence test of our stability re-

ults, the above grid size was doubled, i.e., we used 960 nodes in
he x-direction and 96 nodes in the y-direction. We have ��
5��, which yields a cell aspect ratio of 5, and therefore a line

elaxation method is essential. We were able to take five multigrid
evels and each V-cycle was comprised of two relaxation sweeps
n each coordinate direction for each grid. At each time step the
orticity and temperature fields are updated for the new time
evel, followed by the solution of the Poisson equation for the
tream function, and finally the boundary vorticity is computed
sing the ghost point approach.

Results and Discussion
We have run simulations for three different values of the pa-

ameter c in Eq. �13�: c=10−4, c=5�10−5, and c=2.5�10−5,
ith a constant time step of �t=0.01. In Sec. 4.1, some computed

−5
esults of the linear stability are presented for c=5�10 , and a
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detailed comparison of the stability characteristics for the other
values of c with the fixed frequency simulation of Ref. �5� is
presented in Sec. 4.2.

In order to generate results up to the maximum effective fre-
quency of 
max=0.8, for which the corresponding nondimensional
time is tmax=8000, we used a total of 4�105 time steps for c
=10−4. When the value of c is reduced to half of its original value,
i.e., for c=5�10−5, the computational cost doubles and we re-
quired 8�105 time steps to achieve results up to 
max=0.8 or
tmax=8000. Similarly, we required 16�105 time steps for c=2.5
�10−5.

We note that the value of �t is very small compared with the
physical time scales over which variations of interest take place.
In addition, the magnitude of c is chosen such that the frequency
variation is slow enough that the transient results obtained for any
frequency are very close to the results that were obtained when
the flow was perturbed with a fixed frequency. This sine-sweep
approach has often been used in other engineering contexts to
determine, for example, the resonance characteristics of mechani-
cal systems or the acoustic properties of cavities. It is, to our
knowledge, the first time that it has been used to assess the sta-
bility characteristics of a thermal boundary layer.

4.1 Stability Results for c=5Ã10−5. Given that the effective
temporal frequency in the sine-sweep disturbance �13� is a func-
tion of time �viz., 
=2ct�, it is now possible to trace out the
evolution of the thermal disturbance inside the boundary layer
with respect to either time or frequency. In this regard we have

plotted some isocontours of the temperature disturbance, �̂, in Fig.
1 for c=5�10−5. The contour levels in each frame are set at

�10−n maxx�,y��̂� for n=1,2, . . . ,5, and it must be noted that the
wall-normal coordinate, y, has been stretched substantially in or-
der to see the patterns clearly. The dashed contours correspond to

negative values of �̂ while the solid lines correspond to positive

values of �̂. The results in Fig. 1 are for various values of the
disturbance frequency 
. The results shown in the lowest frame
are for 
=0.1, which corresponds to the nondimensional time of
t=1000, while the top frame is for 
=0.75 for which the corre-
sponding time is t=7500.

The numerical values corresponding to the contour plots show
that, for all values of 
, the thermal disturbances decay initially
with x� near the leading edge of the surface and then grow with
x�; this feature is easily seen in Fig. 1 for 
�0.55, and for 

0.55 it is clearer in Fig. 3. The x� locations where the distur-
bance begin to be amplified �i.e., the neutral location� depend on
the forcing frequency 
. We find that, when 
�0.5, the initial
decay of the thermal disturbances is substantial and that the neu-
tral location moves downstream as 
 increases. The neutral point
location is indicated by the black triangles for 
�0.5.

In Fig. 1 we can also see that the length of the thermal cells
increases with distance from the leading edge, thereby confirming
that the basic flow accelerates, the streamwise velocity being
roughly proportional to x1/2. As time progresses, which corre-
sponds to increasing the disturbance frequencies, the wavelength
decreases. The effects of the buffer function used in the buffer
region near the outflow at x�=3565 are also noticeable, where the
damping of the disturbances is clearly evident. Also it should be
noted that the largest positive thermal wave located at the up-
stream of the start of the buffer domain takes a total of 136 spatial
nodes when 
=0.1, while it is 26 when 
=0.4

The time evolution of the surface rate of heat transfer, H�t�,
which was computed using the following relation:

H�x�,t� = � � �̂

��
�

�=0

�17�

has been plotted in Fig. 2 at �a� x�=16 and �b� x�=207 for the
−5
same value of c, i.e., c=5�10 . Figure 2�a� shows that the mag-
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itude of the disturbance decays for all time as this location is
lose to the leading edge of the vertical surface and well upstream
f the neutral location, x�=147, determined by Paul et al. �6�. On
he other hand, Fig. 2�b� shows that the disturbance grows until t
s just below 3000 and then decays, as this distance is well above
ownstream of the neutral location. The dashed lines in both
rames indicate the envelope of the local maximum responses; and
or the other x� locations, these envelopes are plotted in Fig. 3
sing a log scale.

In Fig. 3 the envelopes of the maximum response of the thermal
isturbance in terms of the surface rate of heat transfer are dis-
layed against time t for a selection of locations along the bound-
ry layer. The results are calculated at various locations along the

x*=0

y

θ̂

Fig. 1 Contours of �̂ recorded at
quency, �, for c=5Ã10−5. Here ten
the global extrema within each fra
dashed contour lines represent neg
represent positive �̂.
eated surface using the following relation:
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Q�x�,t� = envelope	log10
� � �̂

��
�

�=0


� �18�

This equation defines a surface in �x� , t�-space or equivalently in
�x� ,
�-space.

The variation of Q at x�=16 �i.e., at x=53� shows that Q decays
for all time, which is not surprising, and it is, indeed, expected,
since this location is very close to the leading edge of the surface
and it lies well below the critical/neutral distance �x�=147� of the
neutral curve obtained by Paul et al. �6�. The next four curves in
Fig. 3 are at x�=34 �i.e., at x=71�, x�=52 �i.e., at x=89�, x�=72
�i.e., at x=109�, and x�=93 �i.e., at x=130�, respectively, and
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0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

λ

x*=3565

0.1

rious values of the temporal fre-
ntour levels are plotted based on
„see the text of the paper…. The

ve values of �̂ while the solid lines
va
co
me
ati
since these are also below the critical distance no growth of the
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hermal disturbance is observed. Thus the results obtained from
he elliptic calculations approximately coincide with the results
rom the parallel flow analysis of Paul et al. �6�. At larger values
f x�, the corresponding curves show that there is a frequency
nterval within which the disturbances grow. The frequencies of

aximum disturbance amplification for any given distance, x�,
hich are plotted as a dotted line in the figure, show clearly that

he disturbances also grow in space for any given frequency—this
spect will be looked at more closely in Figs. 4–7 and summa-
ized later.

The uppermost curve in Fig. 3 corresponds to x�=2813 �i.e.,
=2850�, which is just upstream of the buffer region, and this is

he location where the disturbances are expected to reach their
argest values. In the buffer zone no growth of the disturbances is
chieved as its purpose is to dampen down the disturbances and
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−5
here c=5Ã10
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remove unphysical reflections near the outflow boundary.
While Fig. 3 shows the variation of the disturbance amplitude

with time, t, for a set of values of x�, Fig. 4 shows its variation
with x� at chosen times or, equivalently, at chosen effective fre-
quencies, 
. From this figure we can see that the disturbance
amplitude decays for all frequencies when x� is sufficiently close
to the leading edge. As mentioned before, this region is within the
stable region of the neutral curve. The curve corresponding to 

=0.1 is almost horizontal after the initial decay, indicating that
disturbances of this frequency are almost neutral, i.e., they neither
grow nor decay. However, when 
 takes larger values we see very
evident regions of decay and growth. Neutral locations correspond
to minima in these curves, which are denoted by circles.

The frequency for which the largest disturbance amplitude is
obtained at a given downstream location depends on x�; this is

00 2500 3000 3500 4000

(a) x*=16

00 2500 3000 3500 4000

(b) x*=207

ate of heat transfer recorded at „a…
5
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Fig. 4 Envelope of the maximum heat transfer response, Q,
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−5
t
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t
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llustrated clearly in Fig. 4 by the dashed line. For example, near
o x�=500, the frequency 
=0.3 gives the maximum amplitude,
hile near the buffer domain, values of 
 that are closer to 0.4
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dashed lines are for c=10−4, the dashed-dotted
=2.5Ã10−5, and the circles are for the discrete
ield the greatest response.
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4.2 Results for the Different Values of c. In this section we
summarize the stability results that have been presented in Sec.
4.1 and we also give a detailed comparison of those obtained for
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ith this in mind, the envelope of the maximum surface heat
ransfer rate, Q�x� ,
�, has been computed for the other two values
f c, namely, c=10−4 and c=2.5�10−5, and these are plotted in
ig. 5 along with the results for c=5�10−5 and the fixed fre-
uency results.

The circles in each frame of Fig. 5 represent the results ob-
ained by Paul et al. �5�, which were obtained with constant fre-
uency forcing. The sine-sweep simulation results are plotted as
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ig. 6 The envelope of the curves presented in Figs. 4 and 5.
or legends, see Fig. 5. The solid line with square symbols
enotes the results for c=2.5Ã10−5 obtained by the finer grid,
60Ã96.
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the dashed lines for c=10−4, while the dashed-dotted lines are the
results for c=5�10−5 and the solid lines are for c=2.5�10−5.
This figure shows clearly that the qualitative agreement of the
sine-sweep results with the fixed frequency results is very good.
The results of c=2.5�10−5 have also an excellent quantitative
agreement with the fixed frequency for 0.5
0.7, but when

=0.8, it appears that the results of c=5�10−5 show better agree-
ment with the fixed frequency results. In the first three frames,
when 
0.4, the c=2.5�10−5 results deviate slightly from the
fixed frequency results in the downstream section of the boundary
layer.

Table 1 shows the computed values of the neutral location
against the disturbance frequency, 
, for the different values of c,
where the corresponding values obtained by Paul et al. �5� are also
shown. The results show that the neutral locations obtained using
our sine-sweep simulations agree well with Ref. �5� especially for
c=5�10−5 and c=2.5�10−5.

Figure 6 now displays the upper envelope of the curves shown
in Figs. 4 and 5, where the envelope is defined as

Qmax�x�� = max
0.2�
�0.45

Q�x�,
� �19�

Thus Qmax�x�� represents the maximum possible response of the
boundary layer to thermal disturbances at each streamwise station.
The values of the frequencies, which maximize Q and which are
denoted by 
opt, are shown in Fig. 7�a�—it is this figure that
shows for which disturbance frequency, the largest disturbance
amplitude, is obtained at a given downstream location.

The circles in Fig. 6 correspond to the previous computational
results of Ref. �5� for disturbances of fixed frequency, while the
dashed lines correspond to the results for c=10−4, the dashed-
dotted lines correspond to the results for c=5�10−5, and the solid
lines correspond to the results for c=2.5�10−5. In addition, the
solid line with square symbols in Figs. 6 and 7�a� corresponds to
the results for c=2.5�10−5, which are obtained by the second
grid setup, 960�96. It is clearly seen from these figures that the
stability results obtained by both grid arrangements agree quite
well and they are well resolved in the simulations.

The curves of Qmax obtained by the sine-sweep simulations lie
slightly below the fixed frequency results �5�. The distance from
the leading edge at which Qmax obtains its minimum values �Fig.
6� also varies with c �Table 2�. This distance x�, which distur-
bances are not amplified at all and which we refer to as “neutral
distance” or “neutral point,” decreases as c decreases; for ex-

Table 1 Computed values of the neutral locations, „A… c=10−4,
„B… c=5Ã10−5, and „C… c=2.5Ã10−5, and comparison with Paul
et al. †5‡

Neutral locations, xc
�


 A B C Ref. �5�

0.5 355 500 506 543
0.55 469 630 638 673
0.6 590 773 773 797
0.65 724 903 896 919
0.7 851 1029 1021 1058
0.75 1191 1393 1377 1406

Table 2 Distance from the leading edge at which Qmax obtains
its minima „Fig. 6… and error relative to fixed frequency results

c x� 
opt Error �%�

10−4 126 0.262 4.4
5�10−5 114 0.261 3.6

2.5�10−5 109 0.255 1.2
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mple, we have found that the neutral distance for c=10−4 is x�

126, while it is x�=114 for c=5�10−5 and x�=109 for c=2.5
10−5. The computations of Ref. �5� yield a value of the neutral

istance of x�=105, which clearly agrees quite well with the sine-
weep result for c=2.5�10−5. The corresponding values of the
requency at the neutral point obtained with the present method
re about 
=0.263 for c=10−4, 
=0.261 for c=5�10−5, and 

0.255 for c=2.5�10−5, while the value obtained by Ref. �5� was
bout 
=0.252. So, the frequency result for c=2.5�10−5 also
grees quite well with the previous fixed frequency simulation.

The neutral curves for the different values of c are also pre-
ented in Fig. 7�b� against the disturbance frequency, and these are
ompared with those of the fixed frequency simulation �5�, where
gain quite good agreement is found for c=5�10−5 and c=2.5
10−5 with Ref. �5�.
The PFIs of Ref. �6� showed that the value of 
 at the neutral

oint was about 
=0.264. Although the present result is closer to
hat of the PFI than to the constant frequency computation, our
im here is to see whether the sine-sweep computation can repro-
uce the constant frequency results sufficiently accurately using
ust one numerical simulation. Table 2 shows that the errors in the
resent computations are roughly 4.4% for c=10−4, 3.6% for c
5�10−5, and 1.2% for c=2.5�10−5. Therefore, we conclude

hat the sine-sweep technique with a sufficiently small value of c
in this case, c=2.5�10−5� gives excellent results.

From the computational point of view, the total wall-clock time
equired to perform the sine-sweep code is much less than the
onstant frequency code. The total work done is proportional to
he number of time steps taken in each code, as the amount of
ork done per time step is the same for the sine-sweep code and

he fixed frequency code. It is likely that one requires simulations
rom more than 100 cases to achieve a well resolved neutral curve
s shown in Ref. �6�. In the previous simulations of Ref. �5� with
he selected discrete frequency we required about 105 time steps
o achieve a periodic solution after the transient. We had to run the
xed frequency code 100 times to find the solutions for 100 fre-
uencies. On the other hand, the present sine-sweep code with c
2.5�10−5 has saved about 86% of computational time com-
ared with the fixed frequency code. The savings are even larger
or the two larger values of c. We saved 92% of computational
ime with c=5�10−5 and 96% with c=10−4. To conclude, the
resent sine-sweep code was found to not only accurately repro-
uce the fixed frequency code results but also results in significant
omputational time savings.

Conclusion
In this paper, we have reported on a numerical investigation in

rder to study the linear stability of a two-dimensional incom-
ressible free convection boundary layer flow over a heated semi-
nfinite flat plate. A small-amplitude local temperature disturbance
22501-8 / Vol. 130, DECEMBER 2008
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with slowly increasing frequency was introduced on the surface
near the leading edge in order to generate disturbance waves in-
side the boundary layer. We have compared the stability charac-
teristics obtained from the sine-sweep computations with those of
the fixed frequency computations of Paul et al. �5� and with the
PFI of Paul et al. �6�.

As far as we are aware, this has been the first study where the
sine-sweep technique has been used to assess the stability charac-
teristics of a thermal boundary layer. It has been shown that this
technique is an effective method for analyzing the stability of an
advectively unstable boundary layer. Even larger savings can be
expected from simulations with an entire frequency spectrum per-
turbed simultaneously as, e.g., by a pulse disturbance. This ap-
proach is possible as the problem studied here is linear and dis-
turbance waves may be linearly superimposed.
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