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Abstract Free convection plumes usually rise vertically, but do not do so when in an asym-
metrical environment. In such cases they are susceptible to a thermoconvective instability
because warmer fluid lies below cooler fluid in the upper half of the plume. We analyse the
behaviour of streamwise vortex disturbances in plumes that are close to being vertical. The
linearised equations subject to the boundary layer approximation are parabolic and are solved
using a marching method. Our computations indicate that disturbances tend to be centred in
the upper half of the plume. A neutral curve is determined and an asymptotic theory is deve-
loped to describe the right hand branch of this curve. The left hand branch is not amenable to
an asymptotic analysis, and it is found that the onset of convection for small wavenumbers
is very sensitively dependent on both the profile of the initiating disturbance and where it is
introduced.
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Cp Specific heat
d Natural lengthscale
f Reduced streamfunction

D. A. S. Rees
Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK

D. A. S. Rees (B)
Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
e-mail: ensdasr@bath.ac.uk

A. Postelnicu
Department of Thermal Engineering and Fluid Mechanics, Transilvania University, Bd. Eroilor 29,
Brasov 500036, Romania

A. P. Bassom
School of Mathematics and Statistics, University of Western Australia, Crawley, WA 6009, Australia

123



222 D. A. S. Rees et al.

g Acceleration due to gravity
k Vortex wavenumber
K Permeability
p Fluid pressure
P Perturbation pressure
q ′′′ Strength of heat source
T Temperature
u, v, w Darcy velocities in the x , y and z-directions
U, V,W Perturbation velocities
x, y, z Cartesian coordinates
Y Scaled form of η in asymptotic analysis

Greek symbols

α Thermal diffusivity
β Coefficient of cubical expansion
δ Orientation of the plume centreline
ε Inclination of a horizontal boundary
µ Fluid viscosity
θ Non-dimensional temperature
� Perturbation temperature
φ Angular coordinate
φ+, φ− Orientations of bounding surfaces
ψ Streamfunction
ρ Fluid density
η Similarity variable
ξ Scaled value of x

Other symbols, subscripts and superscripts

− Dimensional
ˆ Non-dimensional
′ Derivative with respect to η
c Critical value
∞ Ambient
0, 1, 2, . . . Terms in asymptotic series

1 Introduction

Free convection plumes within porous media arise in a number of important contexts, notably
above buried electrical cables or hot pipes. Further, the presence in landfill sites of toxic
substances, such as radioactive waste or chemical pollutants, may also cause a solutal plume
to form whether or not there is a background groundwater flow. The dispersal of pollutants
in particular has important ramifications environmentally, and should the resulting plume
be unstable, then this becomes an extra means by which solutes may spread. In the present
article, then, we address the issue of the instability of a free convection plume.

In a fully idealised setting of an infinitely large porous region, a plume with a vertical
centreline is formed above a uniform horizontal line source of heat, and it assumes a boundary-
layer form at sufficiently large distances above the source. Thus, to a high degree of accuracy,
the resulting temperature field and the induced flow may be described by a classical boundary
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layer theory. Wooding (1963) was the first to consider this type of flow and he showed that
the centreline temperature of the line source plume decays as x−1/3, where x is the distance
from the source along the centreline, while the thickness of the plume is proportional to x2/3.
In fact, the boundary layer equations for the plume admit analytical solutions.

Wooding’s work has been extended in a variety of ways. Ingham (1988) considered the
situation where form drag is dominant. Although the resulting boundary layer equations
are then more complicated, they still admit an analytical solution. Rees and Hossain (2001)
considered the transition between the region within which form drag dominates (which
is relatively close to the line source but still sufficiently distant that the boundary layer
approximation applies) and the Darcy regime at larger distances. On the other hand, Afzal
(1985) sought to determine the Darcy-flow plume solution more accurately by employing
a higher order boundary layer theory, where the flow in the region external to the plume
influences higher order terms in the solution for the plume. This analysis furnishes small
corrections to Wooding’s (1963) results.

Afzal’s analysis is restricted to a symmetrical domain where the line source is placed
at the apex of a wedge of saturated porous medium which has a vertical centreline. This
free convection plume still continues to rise vertically, just as one would expect intuitively.
Bassom et al. (2001) relaxed this restriction by considering a porous medium bounded by
two plane surfaces which are located arbitrarily, but are still such that the line source is
located at the horizontal intersection of the planes; this is, of course, equivalent to a ro-
tation of Afzal’s wedge about the line source. Bassom et al. (2001) used a higher-order
boundary layer theory to derive an analytical formula which relates the inclinations of the
bounding surfaces to the angle that the centreline of the plume makes to the vertical. Rees
et al. (2002) showed that anisotropy has the same effect, even in an unbounded porous
domain.

When a plume rises at an angle to the vertical, the upper half is unstably stratified and
may therefore be susceptible to thermoconvective instability, as relatively warm fluid lies
below relatively cool fluid in the upper half of the plume. Given Wooding’s observations
alluded to above, a Darcy-Rayleigh number which is based upon the width of the plume as
the lengthscale, and the temperature variation across the plume, will increase as x1/3 as x
increases. This suggests that the plume should become increasingly unstable with distance
from the source.

Noting that there is no reference to instability in the seven pages on free convection
plumes in the monograph by Nield and Bejan (2006), this article is devoted to making the
first step in analysing such an instability. We follow closely the analysis of Rees (2001)
which was concerned with the vortex instability of the boundary layer induced by a near-
vertical constant temperature surface. Although the effect of an asymmetrical domain is
to cause the plume to rise at an O(1) angle to the vertical, the chief advantage of
considering the near-vertical plume is that the linearised stability equations satisfy the boun-
dary layer approximation with no further simplifying assumptions being necessary. These
equations form a system of parabolic partial differential equations. By contrast, for plu-
mes with an O(1) inclination, it would be necessary to solve a fully elliptic system. In the
present context, a plume which rises almost vertically corresponds to one where, for exam-
ple, the line source is embedded in a flat surface which is aligned at a small angle to the
horizontal.

We shall seed vortex disturbances at locations which are relatively close to the line source,
and use the solutions for different wavenumbers to construct a neutral stability curve. Other
detailed aspects of the solutions obtained are also discussed.
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2 Equations of Motion and Basic Flow

We consider the stability of a line source plume in a porous medium within which Darcy’s
law and the Boussinesq approximation are assumed to be valid, and where the fluid and solid
phases are in Local Thermal Equilibrium. The steady equations governing mass conservation,
fluid motion and heat transport are

∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z
= 0, (2.1a)

u = K

µ

[
−∂ p

∂x
+ ρ∞gβ(T − T ∞) cos δ

]
, (2.1b)

v = K

µ

[
−∂ p

∂ y
+ ρ∞gβ(T − T ∞) sin δ

]
, (2.1c)

w = − K

µ

∂ p

∂z
, (2.1d)

u
∂T

∂x
+ v

∂T

∂ y
+ w

∂T

∂z
= α∇2T . (2.1e)

Here x , y and z are the streamwise, cross–stream and spanwise Cartesian coordinates, u, v
andw denote the corresponding fluid flux velocities, the pressure is p and the temperature T .
In system (2.1) the angle of inclination of the x-axis from the vertical is δ which is also taken
to be the inclination of the centreline of the plume; the overall configuration is illustrated
in Fig. 1 where φ is the anticlockwise polar angle from the upward vertical. The porous
medium is therefore wedge-shaped and of infinite extent, and the boundaries of the wedge
are assumed to be impermeable and are held at the ambient temperature T∞.

The equation for the global conservation of heat takes the form,

q ′′′ = ρ∞Cp

∞∫
−∞

u(T − T ∞) d y (2.2)

where q ′′′ is the rate of heat production per unit length of the line source. We have already
neglected the conduction component in (2.2) as that is easily shown to be asymptotically
small relative to the advective term when the boundary layer approximation is valid.

Equation (2.1) may be non-dimensionalised using the natural lengthscale,

d = (ρ∞Cp)µα
2

ρ∞gβK q ′′′ . (2.3)

Therefore we introduce the substitutions,

(x, y, z) = d(x̂, ŷ, ẑ), (u, v, w) = α

d
(û, v̂, ŵ), (2.4a)

p = µα

K
p̂, T = T ∞ + q ′′′

ρ∞Cpα
T̂ . (2.4b)
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Fig. 1 Showing the coordinate system, the locations of the bounding surfaces (φ = φ−, φ+) and the direction
of gravity. In this sketch φ is the polar angle measured anticlockwise from the upward vertical. The line source
is located at the origin

Equations (2.1) and (2.2) become,

∂ û

∂ x̂
+ ∂v̂

∂ ŷ
+ ∂ŵ

∂ ẑ
= 0, (2.5a)

û = −∂ p̂

∂ x̂
+ T̂ cos δ, v̂ = −∂ p̂

∂ ŷ
+ T̂ sin δ, ŵ = −∂ p̂

∂ ẑ
, (2.5b, c, d)

û
∂ T̂

∂ x̂
+ v̂

∂ T̂

∂ ŷ
+ ŵ

∂ T̂

∂ ẑ
= ∇2T̂ . (2.5e)

and
∞∫

−∞
ûT̂ d ŷ = 1. (2.6)

Following Rees (2001) it is necessary to introduce one further scaling based upon the fact
that the centreline of the plume is almost vertical (δ � 1). We set

x̂ =
(

cos2 δ

sin3 δ

)
x, (ŷ, ẑ) =

(
cos δ

sin2 δ

)
(y, z), (2.7a)

û = (sin δ)u, (v̂, ŵ) =
(

sin2 δ

cos δ

)
(v,w), (2.7b)
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p̂ = p, T̂ =
(

sin δ

cos δ

)
θ, (2.7c)

whereupon system (2.5) becomes

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2.8a)

u = θ −
(

sin2 δ

cos2 δ

)
∂p

∂x
, v = θ − ∂p

∂y
, w = −∂p

∂z
, (2.8b)

u
∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
=

(
sin2 δ

cos2 δ

)
∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 (2.8c)

and the heat flux condition reduces to
∞∫

−∞
uθ dy = 1. (2.9)

Thus we see that small values of δ are equivalent to invoking the boundary layer approxi-
mation, since the only terms in (2.8) which are then formally negligible are the streamwise
diffusion terms.

We may take the line source to be embedded in a plane-bounding surface at a small
inclination, ε, away from the horizontal. In Fig. 1 this is equivalent to setting

φ+ = 1
2π + ε, φ− = − 1

2π + ε. (2.10)

The analysis of Bassom et al. (2001) yields the formula,

cot

(
φ+ − δ

3

)
− cot

(
δ − φ−

3

)
= −2 tan δ (2.11)

which relates the inclination of the plume centreline, δ, to the inclinations of the bounding
surfaces. When ε is small in Eq. 2.10, it is straightforward to show that

δ ∼ 4
7ε, (2.12)

and therefore a slight inclination of the bounding surface away from the horizontal causes
a small change in the direction taken by the plume. It is this change that renders the plume
subject to instability.

On defining the streamfunction, ψ , in the usual way: u = ψy , v = −ψx , Eqs. 2.8 and 2.9
admit the well-known solutions (see Wooding 1963),

ψ = x1/3 f (η), θ = x−1/3 f ′(η), (2.13)

where η = y/x2/3 is the similarity variable, and where f satisfies,

f ′′′ + 1
3 ( f f ′′ + f ′ f ′) = 0, (2.14)

subject to

f (0) = 0, f ′′(0) = 0,

∞∫
0

f ′ f ′ dη = 1
2 . (2.15)
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Ingham’s (1988) analytical solution is

f = c tanh( 1
6 cη), c = (9/2)1/3. (2.16)

We may now determine expressions for the velocities, the temperature and the pressure:

u = θ = x−1/3 f ′, v = x−2/3 [ 2
3η f ′ − 1

3 f
]
,
∂p

∂η
= x1/3 f ′ + [ 1

3 f − 2
3η f ′] . (2.17)

3 Stability Analysis

From this point onwards we shall use lowercase notation for the dependent variables corre-
sponding to the basic flow described above, and upper case for the perturbations. Therefore
we introduce disturbances by replacing p in Eqs. 2.8 by p+εP where |ε| � 1 and where the
latter p is the basic pressure solution. Similar substitutions are made for the other dependent
variables. The linearised perturbation equations are found to be:

∂U

∂x
+ ∂V

∂y
+ ∂W

∂z
= 0, (3.1)

U = �, V = −∂P

∂y
+�, W = −∂P

∂z
, (3.2a–c)

∂2�

∂y2 + ∂2�

∂z2 = u
∂�

∂x
+ v

∂�

∂y
+ ∂θ

∂x
U + ∂θ

∂y
V, (3.2d)

where we have now invoked the boundary layer approximation by taking the limit δ → 0.
After substitution of the basic flow variables (u, v, p and θ ), as given above, the introduction
of the coordinate transformation,

η = y/x2/3, ξ = x1/3, (3.3)

and the slight rescaling,

P → x1/3 P, (3.4)

which is made for convenience, the perturbation equations become

P ′′ + ξ4 Pzz = [ 1
3ξ�ξ − 2

3η�
′] + ξ�′, (3.5a)

�′′ + ξ4�zz = ( 1
3 f ′) [ξ�ξ −�] − ( 1

3 f
)
�′ + (

ξ − 2
3η

)
f ′′�− f ′′ P ′. (3.5b)

Finally we may now introduce vortex rolls using,

(P,�) → (P,�) cos kz, (3.6)

and derive the system

P ′′ − ξ4k2 P = [ 1
3ξ�ξ − 2

3η�
′] + ξ�′, (3.7a)

�′′ − ξ4k2� = ( 1
3 f ′) [

ξ�ξ −�
] − ( 1

3 f
)
�′ + (

ξ − 2
3η

)
f ′′�− f ′′ P ′. (3.7b)
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The boundary conditions are that

P, � → 0 as η → ±∞. (3.8)

This is a set of parabolic equations in which ξ denotes the direction of marching. We follow
Rees (2001) by introducing thermal vortex disturbances of various shapes at different values
of ξ (which we shall call ξi ) and follow their evolution with ξ . Our main set of numerical
results arise from considering the thermal disturbance� = exp(−η2) at ξi = 1. The system
was solved using a fairly standard implementation of the Keller box method (see Rees 2001).
We used 500 equally spaced intervals in the range −25 ≤ η ≤ 25, and a steplength of 0.005
in the ξ -direction. Thus quite highly accurate results were obtained.

Rees (2001) studied convection which was induced by a uniformly hot surface. In the
presence of instability the overall rate of heat transfer from the surface is increased and the
thermal energy together with the surface rate of heat transfer were used as separate measures
of the onset of instability. Here we choose a different way of monitoring the growth of
vortices as with the plume extra heat cannot be generated away from the line source and
thermal energy must be conserved. Therefore we choose to use the maximum temperature
of the disturbance to monitor whether or not the plume is unstable.

4 Results and Discussion

4.1 General Characteristics and the Neutral Curve

We begin by showing how vortex disturbances evolve after their inception. Figure 2 shows
the detailed isotherms for two cases where the point of introduction of the disturbance is
ξi = 1 and where the wavenumbers are k = 0.007 and k = 0.004. It is important to recall
that these isotherms represent a cross-section through the full three-dimensional disturbance,
as given by Eq. 3.6.

In both cases the disturbance decays at first, and moves upwards so that it is placed well
within the upper half of the plume, which is where the plume is unstably stratified. The
thermal disturbance continues to penetrate into the lower, stably stratified, half of the plume,
but it is much weaker there. When k = 0.007 the maximum disturbance temperature ceases
to decay at ξ � 6.14, and it enjoys a short interval of growth until ξ � 8.70, after which
point it decays again. Such a pattern arises in general if the wavenumber is not too large. For
k = 0.004 the interval of growth is 6.66 < ξ < 14.34.

Figure 3 shows how the maximum temperature of the disturbance varies with ξ for a chosen
set of wavenumbers. It is clear that the interval within which the disturbance grows depends
strongly on the wavenumber of the vortices. The curve for k = 0.008 displays only a very
short interval of growth, whereas the k = 0.009 and k = 0.010 curves decay for all values of ξ .

On finding the maxima and minima of the curves shown in Fig. 3 and the corresponding
curves for many other intermediate values of k, it is possible to construct a neutral stability
curve to summarise the linear stability properties of the present system. This is shown in
Fig. 4 where the critical values of ξ are denoted by ξc. Careful computations using ξ -steps
as small as 0.001 suggest that the maximum wavenumber for which instability may arise is
k � 0.00833, and that the disturbances with a larger wavenumber always decay. On the other
hand, the smallest value for ξc corresponding to neutral stability arises when

kc � 0.00691 and ξc � 6.014. (4.1)
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Fig. 2 Displaying disturbance isotherms using 40 equally spaced intervals. The initial disturbance,� = e−η2

was introduced at ξi = 1. (a) k = 0.007, (b) k = 0.004

We have also determined an approximate neutral curve by solving the ordinary differential
eigenvalue problem for ξ and k which is obtained by setting all ξ -derivatives to zero in
Eqs. 3.7. Calculations were carried out using a fourth order Runge-Kutta scheme with the
shooting method, and at least four significant figures of accuracy were obtained. We see that
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Fig. 3 The variation of �max
with ξ for (a) k = 0.001, 0.002,
0.003, 0.004, 0.005 and 0.006;
(b) k = 0.007, 0.008, 0.009 and
0.0100. The initial disturbance,

� = e−η2
was introduced at

ξi = 1
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this curve lies within the neutral curve obtained from the parabolic simulations; the reason
for this is that the zero ξ -derivative assumption over-constrains the equations, resulting in
the need for a larger local Rayleigh number for instability.

For the sake of comparison with the parabolic simulations, we have found the minimum
point on the approximate neutral curve that is

kc � 0.0059014, and ξc � 6.61454. (4.2)

Thus we see that the critical wavenumber is poorly predicted by the approximate analysis.
The disturbance temperature profile corresponding to the minimum point given by (4.1)

is displayed in Fig. 5. This profile confirms that the disturbance is centred above η = 0,
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Fig. 4 Neutral curve for the onset of convection based on ξi = 1. Vortex disturbances grow in the region
between the upper and lower branches of the curve. Continuous line: parabolic simulations; dashed line:
approximate solution; dotted line: three-term asymptotic solution for the right hand branch. The bullets denote
the respective minima

the centreline of the plume. In addition we see that there is a small region with the opposite
sign when η is negative; this region of opposite sign is also present in the data used to create
Fig. 2, but it is too weak to be seen there.

4.2 The Effect of Varying the Value of ξi and the Initiating Disturbance Profile

In all the results displayed so far, the initiating disturbance temperature profile is exp(−η2)

and it has been introduced at ξi = 1, which is well upstream of the minimum value of ξc

given in (4.1). Rees (2001) discusses at length the impact on neutral stability of using different
initial disturbance profiles and different positions at which the disturbance is initiated. The
general conclusion that was drawn in that article is that the neutral curve is independent
of these factors whenever the disturbance is introduced at sufficiently small values of ξi . It
is therefore important to determine whether such a conclusion also applies for the present
plume.

Figure 6 shows how the evolution of the maximum disturbance temperature,�max, changes
when the position at which the disturbance is introduced is altered. The wavenumber is
taken to be k = 0.004, for which the neutral location shown in Fig. 4 is ξ = 6.47. The
actual computed data is displayed in Fig. 6a, and black circles are used to denote where
�max attains maximum or minimum values. In this figure the disturbances are introduced
at ξ = 0.1, ξ = 0.5 and integer values of ξ from 1 to 6. This figure shows that there is no
significant change in the critical value of ξ when the disturbance is introduced upstream of
ξ = 3. When the disturbance is introduced further downstream then the critical value also
moves downstream.
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Fig. 5 Disturbance temperature
profile at the critical point given
by Eq. 4.2
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Figure 6b shows the same curves, but here �max has been normalised to give the same
value at ξ = 20; such a procedure is valid since we are considering linearised theory, and the
absolute magnitude of the disturbance is not important. The normalisation allows us to see
that the variation of �max follows a common path once transients have decayed.

So far, then, the present results indicate that the near-vertical plume has the same qualitative
stability characteristics as the near-vertical heated surface of Rees (2001), namely that the
neutral curve is independent of ξi if ξi is sufficiently small.

However, when we employ a vortex disturbance with a smaller wavenumber, the situation
changes. Figure 7 shows the equivalent of Fig. 6a for k = 0.0001. In this figure we see that
ξc initially remains roughly constant as ξi increases from very small values. However, as ξi

increases further, the critical distance, ξc, decreases before eventually increasing again. This
latter variation with ξi is understandable from the point of view that the plume is clearly
unstable, but it takes only a small adjustment of the disturbance profile to obtain one that
grows. However, the reduction in ξc is more difficult to explain. We think that the natural
evolution of a disturbance after its introduction at ξi is such that it does not naturally yield
the most quickly growing disturbance at any chosen value of ξ when ξi is small. However, at
larger values of ξi , the chosen initial disturbance shape is more amenable to growth, as there
must be a wide range of growing profiles that are available, and this gives rise to onset closer
to the line source.

The ξc data shown in Fig. 7 may also be plotted against ξi to show more clearly the
dependence of the former on the latter. Figure 8 shows such curves for a variety of wave-
numbers and for three different initial disturbance profiles: � = exp[−(η − ηi )

2], where ηi

takes the three values, 0, 1 and 2.393072, a value which arises in the asymptotic analysis
presented in the next section.

In this figure we see the same general behaviour that was described in relation to Fig. 7,
but the severity of the reduction in ξc as ξi varies depends very strongly on the wavenumber
k. Indeed, when k is close to the critical value given by Eq. 4.1, ξc is roughly constant (with
only a very slight reduction) before it begins to rise roughly linearly. On the other hand, for
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Fig. 6 Showing the effect on the
evolution of �max of varying the
position at which the disturbance,

� = e−η2
is introduced: (a) the

computed values of �max;
(b) values that are scaled be to
equal at ξ = 20. Black circles
denote maxima and minima. The
wavenumber is k = 0.004
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small wavenumbers, there is a large amount of reduction in ξc from its small-ξi value, before
it too begins to rise. However, the degree of reduction also depends very strongly on ηi , which
is where the initial disturbance is centred. When k is relatively large and ηi is positive, then
ξi � 1 yields the smallest ξc. On the other hand there is substantial variation in ξc with ηi

when k is small.
We have not presented equivalent curves for negative values of ηi . The reason is that the

evolution of such a disturbance does not follow the general pattern indicated in Fig. 2. Rather,
the disturbance generates a second vortex above itself while the lower vortex eventually
decays. Thus a stability criterion which is based on a maximum temperature, or even a
maximum absolute temperature, is fraught with difficulty of interpretation.

123



234 D. A. S. Rees et al.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

•••
••
••
••
••

••
••

••
••

••
••
••••

•• •• •• •• •• •• •• •

Fig. 7 Showing the effect on the evolution of �max of varying the position, ξi , at which the disturbance,

� = e−η2
, is introduced. Black circles denote ξc . The wavenumber is k = 0.0001
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Fig. 8 Showing the effect on the neutral distance, ξc , of varying ξi and ηi where the disturbance profile

� = e−(η−ηi )
2

is introduced at ξ = ξi . Continuous curves correspond to ηi = 0, dashed lines to ηi = 1 and
dotted lines to ηi = 2.393072 (c.f. Eq. 5.10). The wavenumbers represented are given by 104k = 1, 2, 4, 7,
10, 20, 30, 40, 50 and 60
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5 Asymptotic Behaviour of the Neutral Curve

This section is devoted to a brief description of the behaviour of the right hand branch of the
neutral curve shown in Fig. 4. This is important because it becomes increasingly difficult to
compute the right hand branch when k is very small due to the fact that the disturbance has
a very large region of growth. Our aim here is to find an analytical formula for the shape of
the branch.

A detailed examination of the numerical solutions indicate that not only are the vortex
disturbances centred at a positive value of η (since this is where the plume is unstably
stratified), but that they appear to narrow slightly as ξ increases. This latter observation is
quite common for the right hand branch of neutral curves for developing boundary layers.
We note that, at large values of ξ , the evolution of disturbances is such that all memory of
the form and location of the initial disturbance has been lost.

The disturbance is assumed to be centred at η = η0, a value which is to be determined
below, and we find that it extends from this line by an O(ξ−1/4) distance. We therefore take
the following scalings:

η = η0 + ξ−1/4Y, (5.1)

P(ξ, η) = ξ1/4
∞∑

n=0

ξ−n/4 Pn(Y ), (5.2)

θ(ξ, η) =
∞∑

n=0

ξ−n/4θn(Y ), (5.3)

k = ξ−3/2
∞∑

n=0

ξ−n/4kn . (5.4)

In addition, we expand the basic state, f , which is given by Eq. 2.16, in a standard Taylor
series about η = η0:

f (η) = f0 +
∞∑

n=1

ξ−1/4 f (n)0
Y n

n! , (5.5)

where f0 = f (η0) and where f (n)0 is the value of the nth derivative of f at η = η0. Our
aim is to determine values for the kn terms in (5.4). The above series are substituted into
Eqs. 3.5 and coefficients of like powers of ξ are equated. At leading order (i.e., O(ξ)) in the
expansion of (3.7b) we obtain,

k2
0θ0 = f (2)0 θ0, (5.6)

from which we infer that,

k0 =
√

− f (2)0 , (5.7)

which will be evaluated later. At the next order we obtain,

− 2k0k1θ0 = f (3)0 Y θ0, (5.8)

and therefore we must have both,

k1 = 0, and f (3)0 = 0. (5.9)

123



236 D. A. S. Rees et al.

This latter condition corresponds to where the temperature gradient within the basic state
takes its largest value. Hence we obtain,

η0 = 3

c
ln(2 + √

3) = 2.393072, (5.10)

which is the location of the centreline of the vortex disturbance. It may now be shown that,

k0 = 2−1/23−3/4 = 0.310202. (5.11)

At O(ξ1/2) in the expansion of Eq. 3.7b and at leading order (i.e. at O(ξ5/4)) in the expansion
of Eq. 3.7a we obtain the pair of equations,

θ ′′
0 −

[
2k0k2 − 1

2 Y 2 f (4)0

]
θ0 = − f (2)0 P ′

0, k2
0 P0 = −θ ′

0. (5.12)

Use of the results obtained so far, and the elimination of P0 yields the equation,

θ ′′
0 −

[
k0k2 + 1

4 f (4)0 Y 2
]
θ0 = 0, (5.13)

which is the parabolic cylinder equation. This equation admits eigensolutions for specific
values of k2; on scaling (5.13) into the standard form, it is straightforward to show that the
leading eigenvalue and eigensolution are,

k2 = −2−4/33−1/3, θ0 = e−Ȳ 2/2, (5.14)

where

Ȳ = ( 1
4 f (4)0 )1/4Y. (5.15)

Further analysis rapidly becomes very lengthy to present, but proceeding in the same way
it is possible to show, first, that k3 = 0 at the next order of the expansion, and that

θ1 = 2−5/123−55/24 [
Ȳ 3 − Ȳ

]
e−Ȳ 2/2. (5.16)

Finally, we obtain

k4 = 0.341280, (5.17)

and therefore the three-term approximation to the right hand branch of the neutral curve is

k ∼ 0.310202ξ−3/2 − 0.275161ξ−2 + 0.341280ξ−5/2, (5.18)

which is shown in Fig. 4. We note that, when k = 0.001, the parabolic simulation yields
ξ = 40.804396, while the three-term large-ξ approximation gives ξ = 42.313615, which is
in error by less than 4%.

We mention that while it is possible to construct an asymptotic description of the right
hand branch of the neutral curve, an equivalent calculation for the left hand branch is not
feasible. This branch is described by a fully non-parallel theory, in the sense that its location
is sensitive to both the initial disturbance profile imposed at ξi , and the value of ξi itself, as
depicted in Fig. 8. This is very reminiscent of the situation that arises in the development of
Görtler vortices in spatially developing curved boundary layers; it was first shown by Hall
(1982) that the position of the neutral curve for this problem is a function of initial conditions.
What we can infer from Fig. 4 is that for a vortex of wavenumber k < 0.00833, an imposed
structure decays for some distance, then encounters the left hand branch of the neutral curve
and subsequently grows. This growth is only halted once the right hand branch is reached
and the location of this branch is virtually independent of the initial conditions.
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6 Conclusions

In this article we have considered the stability characteristics of a plume which is generated
by a line source that is embedded in a nearly horizontal surface. The inclination of the surface
causes the centreline of the plume to be aligned at a small angle from the vertical, thereby
rendering it susceptible to instability. Using the boundary layer approximation as the only
approximation, the linearised stability equations become parabolic, and therefore we have
monitored the evolution of vortex disturbances which were seeded near to the line source.

We have found that the neutral curve is independent of the shape (i.e. the cross-sectional
profile) of the vortex and the position of its introduction whenever it is introduced upstream
of ξ = 3, and whenever the wavenumber is not too small. The critical values of ξ and the
wavenumber, k, are 6.014 and 0.00691, respectively.

In dimensional terms the critical distance may now be written in terms of ε, the inclination
of the plane from the horizontal. Using the transformations (2.4a), (2.7a) and (3.3), and
recalling that δ is given in terms of ε in (2.11), the critical distance is found easily to be,

x =
(

7 × 6.014

4ε

)3

d � 1166dε−3. (6.19)

As this critical distance recedes to infinity as ε → 0, we may also conclude that the vertical
plume is linearly stable to vortex disturbances. This conclusion is in qualitative agreement
with the studies of Lewis et al. (1995) and Rees (1993) who showed that the vertical boundary
layer which is driven by a uniformly hot surface is also stable.

We have also found that the evolution of disturbances with relatively small wavenumbers
is very sensitive to the initial disturbance profile and the position at which the disturbance has
been introduced into the plume. Even disturbances which are initiated at very small values
of ξi do not necessarily provide the smallest value of ξc, but in those cases where they do
not, the wavenumber of the vortex is substantially below the value given in Eq. 4.1, which
remains the smallest value of ξc for the system.
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