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Abstract We study the finite-Péclet number forced con-

vective heat transfer from a uniform temperature sphere

placed in otherwise uniform fluid stream within a porous

medium. A numerical study is undertaken to determine

how the lack of local thermal equilibrium between the

phases affects temperature fields of the two phases and the

respective rates of heat transfer from the sphere. On the

upstream side of the sphere the temperature field extends

further from the sphere in the solid phase than it does for

the fluid phase, but the opposite is true on the downstream

side.

List of symbols

a radius of sphere (m)

c specific heat (kJ kg-1 K-1)

h solid/fluid heat transfer coefficient (W m-3 K-1)

H nondimensional solid/fluid heat transfer

coefficient

k thermal conductivity (W m-1 K-1)

K permeability of the porous medium (m2)

LTE local thermal equilibrium

LTNE local thermal nonequilibrium

Nu local rate of heat transfer

Nu global rate of heat transfer

�p pressure (kg m-1 s-2)

Pe Péclet number

r radial coordinate (m)

T dimensional temperature (K)

u Darcy velocity in the r-direction (m s-1)

U dimensional free stream velocity (m s-1)

v Darcy velocity in the a-direction (m s-1)

Greek symbols

a angular coordinate

c modified conductivity ratio

l fluid viscosity (kg m-1 s-1)

q fluid density (kg m-3)

h temperature of fluid phase

/ temperature of solid phase

w streamfunction

Subscripts

h surface of the sphere

f fluid phase

s solid phase

? ambient condition

Superscript

- dimensional variable

1 Introduction

Heat transfer in porous media is an important phenomenon

in a variety of practical engineering applications. These

include the utilisation of geothermal energy, the control of

pollutant spread in groundwater, the insulation of build-

ings, solar power collectors, design of nuclear reactors and
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compact heat exchangers, to name but a few. A compre-

hensive literature survey on this subject can be found in the

recent books by Ingham and Pop [1–3], Nield and Bejan

[6], Vafai [16, 17] and Pop and Ingham [7].

Very little work has been undertaken on forced con-

vection past a hot sphere embedded in a porous medium,

unlike the analogous case of convection past a hot cyl-

inder, and the literature is represented by the papers by

Romero [12, 13], Sano [14] and Pop and Yan [8]. Romero

[12] has shown that, for high Péclet number forced con-

vection past a sphere, we may obtain solutions for a wide

variety of boundary conditions. In particular we can

obtain analytical approximations for a sphere with a

prescribed heat flux, or with a prescribed but spatially

varying temperature distribution on its surface. This work

was extended to a prolate spheroid in [13]. The paper by

Sano [14] uses the method of matched asymptotic

expansions to find solutions in term of the Péclet number.

Pop and Yan [8], on the other hand, show that it is

possible to find a similarity solution for the thermal field

in the large-Péclet limit.

However, all the above-quoted solutions for forced

convection past a sphere in a porous medium assume the

condition of local thermal equilibrium (LTE) between the

fluid and the solid porous matrix. By this is meant that the

fluid and solid phases are taken to have the same temper-

ature locally over lengthscales which are small compared

with the radius of the sphere but which are big relative to

the detailed microstructure of the porous medium; see

Nield and Bejan [6]. However, in applications using porous

media, such as the environmental impact of buried nuclear

heat-generating waste, chemical reactors, thermal energy

transport/storage systems and the cooling of electronic

devices, a temperature discrepancy between the solid

matrix and the saturating fluid has been observed and

recognised. Therefore an analysis of separate energy

equations for the two phases, that is, a local non-equilib-

rium model, has assumed increasing importance. Further

references on this topic may be found in the recent papers

by Wong et al. [18] and Rees et al. [10], which are con-

cerned with the analogous problem of forced convection

about a circular cylinder, and in the reviews by Kuznetsov

[5] and Rees and Pop [11].

2 Formulation of the problem

A steady flow takes place past a hot sphere of radius a,

which is embedded in a porous medium of ambient tem-

perature T?. We shall assume that the uniform free stream

velocity is U and that the temperature of the sphere is Th

where Th [ T?, although there is no reason why the sphere

should not be colder than the oncoming stream. An

axisymmetric spherical–polar coordinate system, (r,a) is

chosen, with the origin at the centre of the sphere. The

a = 0 axis is taken to be in the direction of the free stream

and we are able to assume axisymmetry. Our main aim is to

determine the heat transfer characteristics of this system,

and how they are altered by the presence of local thermal

nonequilibrium. On taking the Darcy flow model, the

equations describing the steady forced convection flow

may be written as,

o

o�r
�r2�u sin a
� �

þ o

oa
�r�v sin að Þ ¼ 0; ð1aÞ

�u ¼ �K
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�r

oTf
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� �
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�r2
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� �
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sin a
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oa
sin a

o
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� �� �
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is the Laplacian operator in axisymmetric spherical polar

coordinates. The quantities �u and �v denote the fluid

velocities in the radial and transverse directions, �r and a,

respectively, while T is the temperature, �p the pressure,

K the permeability, l the fluid viscosity, k the conduc-

tivity, q the density, c the specific heat, and e the

porosity. The subscripts f and s denote fluid and solid,

respectively.

It is important to note that the coefficient, h, is used to

model the microscale transfer of heat between the fluid and

the solid phases. The value of h depends not only on the

conductivities of the solid and fluid phases, but also on the

porosity, the detailed geometry of the porous medium and

on the microscopic Reynolds number; for more details see

Kuznetsov [5], Rees and Pop [11] and Rees [9].

The equations of motion may now be nondimensiona-

lised using the transformations,

�r ¼ ar; ð�u; �vÞ ¼ Uðu; vÞ; ð3aÞ
Tf ¼ ðTc � T1Þhþ T1; Ts ¼ ðTc � T1Þ/þ T1; ð3bÞ

where h and / are the temperatures of the fluid and solid

phases, respectively. In addition we also introduce the

nondimensional streamfunction, w, according to

u ¼ 1

r2 sin a
ow
oa
; v ¼ � 1

r sin a
ow
or
: ð4Þ

After the elimination of the pressure terms in Eqs. (1b,1c),

we obtain,
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o2w
or2
þ 1

r2

o2w
oa2
� cot a
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oa

� �
¼ 0; ð5aÞ

Pe�1r2hþ Hð/� hÞ ¼ 1

r2 sin a
ow
oa

oh
or
� ow

or

oh
oa

� �
; ð5bÞ

Pe�1r2/þ Hcðh� /Þ ¼ 0: ð5cÞ

Here r2 is the nondimensional form of the Laplacian, �r2
;

given in (2), and the constants,

H¼ ah

UðqcÞf
; c¼ �kf

ð1� �Þks
; and Pe¼

UaðqcÞf
�kf

; ð6Þ

are a nondimensional inter-phase heat transfer coefficient, a

porosity-scaled conductivity ratio and the Péclet number,

respectively. Equations (5a, b, c) are to be solved subject to

the boundary conditions,

w ¼ 0; h ¼ / ¼ 1 on r ¼ 1;

w! 1

2
r2 sin2 a; h;/! as r !1:

ð7Þ

Equation (5a) subject to (7) may be solved readily to

obtain,

w ¼ 1

2
r2 � 1

r

� �
sin2 a; ð8Þ

which may be shown easily to give the appropriate form for

the uniform free stream when r is large. Substituting (8)

into Eqs. (5b, c) gives
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We are particularly interested in how the isotherm patterns of

the fluid and solid phases differ from one another, and how

they contribute towards local and global rates of heat

transfer. The local rates of heat transfer per unit area are

given by

Nuf ¼ �
oh
or

r¼1; Nus ¼ �
o/
or

����

����
r¼1

; ð10Þ

while the global rates of heat transfer per unit area are

given by

Nuf ¼ �
1

2

Zp

0

oh
or
jr¼1 sin ada ð11aÞ

and

Nus ¼ �
1

2

Zp

0

o/
or
jr¼1 sin ada: ð11bÞ

3 Numerical method

The coupled equations for the temperatures of the fluid and

solid phases, Eqs. (7), were solved using second order

accurate central difference approximations. When the

Péclet number is large, systems like (9a, b) require sub-

stantial under-relaxation in order to obtain convergence and

we employed an unsteady method. These equations were

supplemented by adding first order time-derivatives to the

right hand sides of Eq. (9a, b). We employed the DuFort–

Frankel method for time stepping, details of which may be

found in many textbooks, such as that of Smith [15].

Given that the line a = 0, p is a line of symmetry we

confined our computations to half of the physical domain,

and the correct symmetry was assured by setting the first a-

derivative of both h and / to zero at a = 0 and p.

The external boundary, which is located at a suitably

large value of r, is both an inflow and an outflow boundary.

In the range 1
2
p\a\p fluid flows into the computational

domain and therefore we set h = / = 0 on that part of the

boundary. However, fluid flows out in the range 0� a\ 1
2
p

and therefore it is more difficult to choose a good boundary

condition. While it is possible to use a very large value of r

as the radius of the computational domain in order to

eliminate upstream effects of a poor outflow condition, this

iscomputationally expensive. As in [18], two different

methods were used: (1) setting the second r-derivative to

zero, and (2) adopting a buffer region methodology. The

ideabehind the first method is to allow the temperature

fields as much freedom as possible to evolve, but it was not

found to behave uniformly well. Quite often pointwise

spatial oscillations arose near outflow, thereby degrading

the integrity of the solution. Often these oscillations were

coupled with a lack of convergence to the steady state. The

second method is drawn from recent work on the simula-

tion of boundary layer instabilities where disturbances to

the basic flow are artifically damped out by multiplying the

disturbance field by an appropriate function (which is equal

to 1 over most of the computational domain, but which

decreases smoothly to 0 at the outflow boundary); see

Kloker et al. [4] for a detailed discussion of this topic.

While the buffer region method was designed for following

boundary layer instabilities, we found that it also works

extremely well in the present context. By its very nature,

the buffer region does modify the temperature field locally

near outflow, but it has negligible upstream effect. In fact

there is little difference in the results obtained between

methods (1) and (2) except for near the outflow boundary.

Heat Mass Transfer (2008) 44:1391–1399 1393

123



However it was found that method (2) was much more

robust.

During the preliminary stages of our numerical work, we

found that the distance the thermal field penetrates from the

sphere into the surrounding porous medium depends

strongly on the values of Pe and H, and therefore the

maximum radius we used in the simulations also needed to

vary quite considerably. For large values of both Pe and H

the value rmax = 3 was found to be sufficient, but when

when Pe and H are both relatively small rmax was some-

times greater than 100. This latter case reflects the fact that

conduction has a relatively strong effect in both phases

when Pe is small and more so in the solid phase when H is

small. In almost all cases the number grid points in the a-

direction was taken to be 160. The size of the timestep is of

no consequence since the aim is to determine the resulting

steady-state thermal fields as efficiently as possible.

4 Numerical solutions

The solutions to the governing equations (9a, b), depend on

the the three independent parameters Pe, H and c. We shall

present solutions firstly in the form of detailed isotherms in

order to display how the thermal fields vary with changes

in the parameters, and then both the local and the global

rates of heat transfer are presented.

In Figs. 1, 2, 3 and 4 detailed isotherms are shown,

where the flow, which is given by Eq. (8), proceeds from

left to right. In these figures the fluid-phase isotherms are

displayed in the upper half, while those for the solid phase

are displayed in the lower half.

Figure 1 compares the thicknesses of the thermal

regions of the two phases for a selection of values of the

Péclet number when H = c = 1. These values of H and c
are such that local thermal nonequilibrium (LTNE) effects

are moderate. The chief difference between the small and

the large values of Pe lies in the thickness of the

boundary layers, but in all four cases shown the thermal

field within the solid phase is more extensive on the

upstream side of the sphere than is the field in the fluid

phase. Although h and / are coupled, there is no

advection term in the / equation which allows / to dif-

fuse further upstream than h. For small values of Pe is

small, conduction effects are generally more significant

than advection, at least near the sphere, and therefore both

temperature fields extend a large distance from the sphere.

But as Pe increases, advection becomes increasingly

dominant. A thermal boundary forms on the upstream

side of the sphere accompanied by increasing rates of heat

transfer. When Pe = 1,000 a well-defined boundary layer

has formed most of the way around the sphere, and grows

substantially.

The effect of variations in H on the isotherms are shown

in Fig. 2 where we have taken Pe = 100 and c = 1. This

figure shows the changes in the ease with which heat is

transferred between the phases. When H = 0.01 the spatial

extent of the thermal field in the solid phase is substantially

greater than within the fluid phase. At this value of H very

little heat is passed to the solid phase which allows for

strong conductive effects. When H increases more heat is

transferred between the phases which causes the thermal

field of the solid phase to shrink quite rapidly. Conversely

there is slight, barely noticeable shrinking in the thermal

field of the fluid phase. There remains a slight mismatch

between the isotherms of the respective phases on the axis

when H = 10, but this has disappeared when H = 100.

Figure 3 shows the Pe = 1 counterpart to the cases

shown in Fig. 2. The strength of the external flow is now

1% of that corresponding to Fig. 2 and therefore the ther-

mal fields of both phases are much more extensive. Once

more we see that the solid phase isotherms extend con-

siderably further than those of the fluid phase when H is

small, and that the thermal fields become identical when H

becomes large.

Figure 4 shows the effect of changing c when Pe = 100

and H = 1. Firstly we note that large values of c cause the

temperature of the solid phase to react quickly to changes in

the temperature of the fluid phase, and therefore we recover

LTE in the large-c limit even though H = 1. Indeed, it may

Pe=1

Pe=100 Pe=1000

Pe=10

Fig. 1 Isotherm plots for forced convection past a uniform temper-

ature sphere with H = c = 1. Isotherms for the fluid phase occupy

the upper half of each subfigure while the lower half corresponds to

the solid phase. Isotherms are plotted at intervals of 0.05; this

convention also applies to Figs. 2, 3 and 4. The values of the Péclet

number are, 1, 10, 100, 1,000
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be shown that h-/ = O(c-1) when c is large. On the other

hand, when c reduces in size, the thermal fields of both

phases increase substantially in size. Given that c multiplies

the source/sink term in the equation for /, the temperature of

the solid phase almost independent of the fluid phase when

c = 1, and therefore thermal field of the solid phase becomes

large. However, the source/sink term in the equation for h is

still significant, which means that the fluid depends quite

strongly on the behaviour of the solid phase. In particular,

this means that the thermal field of the fluid phase is also

large when c is small.

Figures 5, 6, 7 and 8 show local rates of heat transfer

which correspond to the isotherm plots displayed in

Figs. 1, 2, 3 and 4, respectively. All these figures show that

the local rate of heat transfer increases monotonically from

a = 0, the rear stagnation point, to a = p, the forward

stagnation point. At the rear stagnation point the thermal

boundary layer lifts off the sphere, and the rate of heat

transfer is particularly small there. On the other hand, at the

forward stagnation point a relatively large rate of heat

transfer occurs as the fluid flow opposes conduction. Fig-

ure 5, in particular, shows that the rate of heat transfer is

H=0.01 H=0.03 H=0.1

H=1 H=10 H=100

Fig. 2 The effect of different

values of H on the isotherms for

Pe = 100 and c = 1. The

parameter H takes the values

0.01, 0.03, 0.1, 1, 10 and 100

H=0.01 H=0.03 H=0.1

H=1 H=10 H=100

Fig. 3 The effect of different

values of H on the isotherms for

Pe = 1 and c = 1. The

parameter H takes the values

0.01, 0.03, 0.1, 1, 10 and 100
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relatively large and becomes increasingly so as the Péclet

increases, and the thermal fields tend towards boundary

layer form. On the other hand, when H = 0.01 in Fig. 6,

we see clearly the strong decoupling the fluid and solid

phases. The Nuf curve shows a substantial variation which

is typical in such forced convective situation. However, the

Nus curve is alomst constant, which shows that the thermal

field of the solid phase is almost indepdent of the flow, and

that conduction effects dominate.

A simple examination of Figs. 6 and 7 shows that, in all

cases, the local heat transfer of the fluid phase is higher

than that of the solid phase over most of the sphere and

including the upstream stagnation point. This happens

because conduction is assisted by advection within the fluid

phase. However, close to the rear stagnation point, the

situation is not as simple, for the solid phase exhibits the

higher rate of heat transfer when Pe = 100, but exhibits

the lower rate of heat transfer when Pe = 1. At higher

values of the Péclet number the strength of the flow causes

γ = 0.01 γ = 0.01 γ = 0.01

γ = 0.01γ = 0.01γ = 0.01

Fig. 4 The effect of different

values of c on the isotherms for

Pe = 100 and H = 1. The

parameter c takes the values

0.01, 0.03, 0.1, 1, 10 and 100

0
0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

35

40

Fig. 5 Values of Nuf (continuous lines) and Nus (dashed lines) as

functions of a for H = c = 1 and Pe = 1, 3, 10, 30, 100, 300 and

1000. At a = p both Nuf and Nus increase with Pe

0

2

4

6

8

10

12

14 H = 0.01 

H = 100

H = 0.01 

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6 Values of Nuf (continuous lines) and Nus (dashed lines) as

functions of a for Pe = 100 and c = 1 with H = 0.01, 0.03, 0.1, 0.3,

1, 3, 10, 30 and 100. At a = p both Nuf and Nus vary monotonically

with H
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the thermal field to lift away from the cylinder over a small

region close to the rear stagnation point, which yields the

relatively low rate of heat transfer there. But when Péclet

takes smaller values, the thermal fields are much thicker,

and the fact that the fluid phase has the higher rate of heat

transfer follows simply from the fact the the thermal field

in the fluid phase is a little more compressed than its solid

phase counterpart.

Similar comments apply when we consider variations in

c, as shown in Fig. 8. Small values of c cause Nus to vary

only slightly with position around the sphere, while the

opposite is true when c is large.

Finally, we consider some detailed values of the global

rates of heat transfer. The numbers displayed in each Table

have errors which are much less than 1%; higher accuracy

can be obtained by either using a much finer grid, which

will take considerably more CPU time, or by using more

sophisticated methods.

Table 1 shows how the global rates of heat transfer vary

with H when H = c = 1; these values correspond to the

data displayed in Fig. 1. The increase in the rate of heat

transfer with Pe is very evident, and we note that there is an

approximately tenfold increase in both Nuf and Nus as Pe

increases from 10 to 1,000. This is consistent with the

boundary layer analysis of [8] where the local and global

rates of heat transfer were found to be proportional to Pe1/2

when Pe is large. This is shown more clearly in the last two

columns of Table 1 which show how Nuf =Pe1=2 and

Nus=Pe1=2 vary. It is clear that these quantities are tending

towards a well-defined limit.

Tables 2 and 3 show the variations of Nuf and Nus with

H when c = 1 and when Pe = 100 and Pe = 1, respec-

tively, corresponding to the isotherms shown in Figs. 2 and

3. We have already seen that LTE is established as H

increases, and these Tables show that the ratio Nuf =Nus !
1 in the large-H limit. As in [18], it is also necessary to

state that the degree of LTNE not only decreases when H

increases for fixed values of Pe, but also as Pe decreases

when H is fixed. The latter case arises because the

increasing dominanation of conduction as the primary

mechanism of heat transfer from the sphere gives the

phases much more space in which to evolve to the same

local values. In mathematical terms, the effect of advection

near the surface is now of O(Pe) relative to conduction, and

therefore the Eqs. (9a) and (9b) are identical at leading

order in Pe.

Finally, Table 4 shows the effect of varying c when

Pe = 100 and H = 1. As previously noted, the primary

effect of small values of c is to caused the thermal fields of

both phases to expand relative to when c is large, and

therefore the associated global rates of heat transfer

decrease as c decreases. It may also be seen that LTNE also

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

H = 0.01

H = 100

H = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7 Values of Nuf (continuous lines) and Nus (dashed lines) as

functions of a for Pe = 1 and c = 1 with H = 0.01, 0.03, 0.1, 0.3, 1,

3, 10, 30 and 100. At a = p both Nuf and Nus vary monotonically

with H

2

0

4

6

8

10

12

14

γ = 0.01

γ = 100

γ = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8 Values of Nuf (continuous lines) and Nus (dashed lines) as

functions of a for Pe = 100 and H = 1 with c = 0.01,0.03, 0.1, 0.3,

1, 3, 10, 30 and 100. At a = p both Nuf and Nus increase with c

Table 1 Values of Nuf and Nus as a function of Pe when H = c = 1

Pe Nuf Nus Nuf =Pe1=2 Nus=Pe1=2

1 1.0710 0.7330

3 1.4822 1.0322

10 2.3810 1.6412

30 3.8822 2.6412 0.7088 0.4822

100 6.8468 4.5571 0.6847 0.4557

300 11.5934 7.7355 0.6693 0.4466

1,000 21.1136 13.7550 0.6676 0.4350
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becomes stronger in that limit, which suggests that thermal

conduction in the solid phases becomes significant.

5 Conclusions

In this paper we have examined the steady forced

convection boundary layer flow past a hot sphere which is

embedded in a fluid-saturated porous medium where a

two-temperature model of the microscopic heat transfer

between the solid and fluid phases has been adopted.

Detailed results for a representative sets of parameters has

been presented in a variety of forms: isotherm plots, vari-

ation of local rates of heat transfer, and values of global

rates of heat transfer.

We find that large values of the Péclet number yield

thermal fields that are of boundary layer type, and which

should therefore be amenable to a boundary layer analysis.

Even within this regime, moderate values of H and c give

rise to LTNE so that the thermal fields within the solid and

fluid phases are not identical. Indeed, we find that LTE

arises either when H is sufficiently large, or when c is

sufficiently large, even when Pe takes moderate values.

At small values of Pe the thermal field of both phases

spreads a considerable distance from the sphere, and it is

hoped to be able to perform a small-Pe analysis of this

situation in the future.

In general the local rate of heat transfer decreases with

distance around the sphere from the upstream stagnation

point. Within a boundary layer theory this might be

understood easily in terms of the increasing thickness of

the boundary layer.

Acknowledgments This paper was completed while the second

author (DASR) was enjoying study leave at the University of Bristol.

He is grateful to his hosts in the Department of Mathematics for their

hospitality.

References

1. Ingham DB, Pop I (eds) (1998) Transport phenomena in porous

media, vol 1. Pergamon Press, Oxford

2. Ingham DB, Pop I (eds) (2002) Transport phenomena in porous

media, vol 2. Pergamon Press, Oxford

3. Ingham DB, Pop I (eds) (2005) Transport phenomena in porous

media, vol 3. Pergamon Press, Oxford

4. Kloker M, Konzelmann U, Fasel H (1993) Outflow boundary

conditions for spatial Navier–Stokes simulations of transitional

boundary-layers. AIAA J 31:620–628

5. Kuznetsov AV (1998) Thermal nonequilibrium forced convection

in porous media. In: Ingham DB, Pop I (eds) Transport phe-

nomena in porous media, vol 1. Pergamon Press, Oxford, pp 103–

129

6. Nield DA, Bejan A (2006) Convection in porous media, 3rd edn.

Springer, New York

7. Pop I, Ingham DB (2001) Convective heat transfer: mathematical

and computational modelling of viscous fluids and porous media.

Pergamon Press, Oxford

8. Pop I, Yan B (1998) Forced convection flow past a cylinder and a

sphere in a Darcian fluid at large Péclet numbers. Int Commun

Heat Mass Transfer 25:261–267

9. Rees DAS (2008) Microscopic modelling of the two-temperature

model for conduction in heterogeneous media. J Porous Media

(submitted)

10. Rees DAS, Bassom AP, Pop I (2003) Forced convection past a

heated cylinder in a porous medium using a thermal nonequili-

bium model: boundary layer theory. Eur J Mech B Fluids 22:473–

486

Table 2 Values of Nuf and Nus as a function of H when Pe = 100

and c = 1

H Nuf Nus Nuf =Nus

0.01 8.2797 1.3076 6.3318

0.03 8.1485 1.8445 4.4176

0.1 7.3670 2.6698 2.9522

0.3 7.4401 3.5764 2.0804

1 6.8468 4.5571 1.5024

3 6.3683 5.2188 1.2203

10 6.0546 5.6120 1.0789

30 5.9281 5.7632 1.0286

100 5.8762 5.8240 1.0090

Table 3 Values of Nuf and Nus as a function of H when Pe = 1 and

c = 1

H Nuf Nus Nuf =Nus

0.01 1.3718 0.4203 3.2637

0.03 1.3107 0.4802 2.7298

0.1 1.2388 0.5693 2.1762

0.3 1.5101 0.6385 1.8011

1 1.0703 0.7325 1.4612

3 1.0053 0.7918 1.2697

10 0.9553 0.8391 1.1385

30 0.9266 0.8672 1.0684

100 0.9092 0.8848 1.0276

Table 4 Values of Nuf and Nus as a function of c when Pe = 100

and H = 1

c Nuf Nus Nuf =Nus

0.01 2.6392 0.8212 3.2140

0.03 3.5444 1.2349 2.8701

0.1 4.7172 2.0234 2.3314

0.3 5.7911 3.0786 1.8811

1 6.8468 4.5571 1.5024

3 7.5765 5.9697 1.2692

10 8.0582 7.2075 1.1180

30 8.2655 7.8804 1.0489

100 8.3542 8.2181 1.0166

1398 Heat Mass Transfer (2008) 44:1391–1399

123



11. Rees DAS, Pop I (2005) Local thermal nonequilibrium in porous

medium convection. In: Ingham DB, Pop I (eds) Transport phe-

nomena in porous media, vol 3. Pergamon Press, Oxford, pp 147–

173

12. Romero LA (1994) Low or high Péclet number flow past a sphere

in a saturated porous medium. SIAM J Appl Math 54:42–71

13. Romero LA (1995) Low or high Péclet number flow past a prolate

spheroid in a saturated porous medium. SIAM J Appl Math

55:952–974

14. Sano T (1996) Unsteady forced and natural convection around a

sphere immersed in a porous medium. J Eng Math 30:515–525

15. Smith GD (1978) Numerical solution of partial differential

equations: finite difference methods, 2nd edn. O.U.P., Oxford

16. Vafai K (ed) (2000) Handbook of porous media, vol I, Marcel

Dekker, New York

17. Vafai K (ed) (2005) Handbook of porous media, vol II. Marcel

Dekker, New York

18. Wong WS, Rees DAS, Pop I (2004) Forced convection past a

heated cylinder in a porous medium using a thermal nonequi-

librium model: finite Péclet number effects. Int J Thermal Sci

43:213–220

Heat Mass Transfer (2008) 44:1391–1399 1399

123


	Finite PÕclet number forced convection past a sphere in a porous medium using a thermal nonequilibrium model
	Abstract
	Introduction
	Formulation of the problem
	Numerical method
	Numerical solutions
	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


