
International Journal of Thermal Sciences 47 (2008) 1382–1392
www.elsevier.com/locate/ijts

Thermal receptivity of free convective flow from a heated vertical surface:
Linear waves

Manosh C. Paul a,∗, D. Andrew S. Rees b, Michael Wilson b

a Department of Mechanical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
b Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Received 14 June 2006; received in revised form 18 July 2007; accepted 26 October 2007

Available online 9 January 2008

Abstract

Numerical techniques are used to study the receptivity to small-amplitude thermal disturbances of the boundary layer flow of air which is
induced by a heated vertical flat plate. The fully elliptic nonlinear, time-dependent Navier–Stokes and energy equations are first solved to determine
the steady state boundary-layer flow, while a linearised version of the same code is used to determine the stability characteristics. In particular we
investigate (i) the ultimate fate of a localised thermal disturbance placed in the region near the leading edge and (ii) the effect of small-scale surface
temperature oscillations as means of understanding the stability characteristics of the boundary layer. We show that there is a favoured frequency of
excitation for the time-periodic disturbance which maximises the local response in terms of the local rate of heat transfer. However the magnitude
of the favoured frequency depends on precisely how far from the leading edge the local response is measured. We also find that the instability is
advective in nature and that the response of the boundary layer consists of a starting transient which eventually leaves the computational domain,
leaving behind the large-time time-periodic asymptotic state. Our detailed numerical results are compared with those obtained using parallel flow
theory.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The general problem of stability of free convective bound-
ary layer flows is a combination of the problems of hydro-
dynamic instability and thermo-convective instability. Thermo-
convective instabilities arise in cases where less dense fluid lies
under more dense fluid. Examples of such situations include
the classical Bénard convection problem, and boundary layer
flows over inclined heated surfaces. For the latter example the
primary mode of instability takes the form of longitudinal vor-
tices in the direction of the induced basic flow (see Haaland
and Sparrow [1] and Chen and Tzuoo [2]). On the other hand,
for free convection boundary layer flow over a vertical heated
surface, buoyancy forces generate the basic flow, but the pri-
mary instability is known to be hydrodynamic in origin. In this
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case, the primary mode of instability takes the form of two-
dimensional waves travelling in the streamwise direction (see
Nachtsheim [3] and Heiber and Gebhart [4]).

In studies of instabilities, a small disturbance is often im-
posed onto the basic flow in order to assess the stability and
transition processes inside the boundary layer. The classical
mechanism by which imposed disturbances are converted into
Tollmien–Schlichting (TS) type waves is known as the recep-
tivity of the boundary layer. The term ‘receptivity’ was first
introduced by Morkovin [5] to evaluate the transition process
from laminar to turbulent flows.

The boundary layer flow stability problems with receptivity
are usually classified into two categories. One is the study of
receptivity to external disturbances which are naturally present
in the ambient environment, e.g. acoustic and vortical pertur-
bations in the ambient fluid and surface roughness over which
a fluid flow generates disturbance waves into the flow. Some
relevant published works to this category are Goldstein [6,7],
Dietz [8], Wu [9–11], Tam [12], Haddad and Corke [13],
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Nomenclature

a scaling factor
f,h basic boundary layer solutions
F buffer function
g gravitational acceleration
Pr Prandtl number
k spatial wavenumber
L spatial wavelength
Q surface rate of heat transfer
M maximum value of |Q|
t time
T temperature of fluid
u,v fluid velocities in x and y directions respectively
x, y nondimensional Cartesian coordinates

Greek symbols

β coefficient of thermal expansion
χ vorticity or temperature in Eq. (29)
λ temporal frequency
ν fluid viscosity
θ nondimesional temperature

φ angular coordinate
ψ streamfunction
ω vorticity
ξ, η similarity variables

Subscripts

b1 start of buffer region
b2 end of buffer region
DIST disturbance
max maximum value
min minimum value
new present iteration value
old previous iteration value
opt optimum value

Superscripts
′ derivatives with respect to η

� steady flow quantitieŝ perturbation flow quantities
and the references therein. The second category concerns the
study of receptivity to spatially localised disturbances which
are introduced within the boundary layer of a flow, e.g. suc-
tion/blowing slots and temperature perturbations generate dis-
turbance waves inside boundary layer. Some relevant works to
this category are Fasel and Konzelmann [14], Brooker et al.
[15], Herwig and You [16].

The receptivity process considered in the present study be-
longs to the second category. We have considered a thermal
receptivity process by which various external temperature dis-
turbances are introduced into the free convection boundary
layer flow near the leading edge of the vertical flat plate. The
two-dimensional TS waves generated then grow or decay in ac-
cordance with an approximate linear stability theory described
in Paul et al. [17]. But once the flow has settled and transients
have travelled out of the computational domain, it is possible to
determine how the amplitude of the disturbance (as given, say,
by the maximum heat transfer over one period) varies with both
streamwise direction x, and the disturbance frequency λ. The
resulting neutral curve may then be compared with the parallel
flow theory.

Our understanding of the receptivity process and the cru-
cial mechanisms required for the generation of instability waves
have largely come from the papers by Goldstein [6,7]. His
works have been focused on localised disturbances either from
the leading edge ([6]) or from changes in the wall geome-
try ([7]) which includes local surface roughness. Goldstein [6]
also recognised that three general classes of receptivity re-
gions might exist: (i) the leading-edge region where the basic
boundary layer is thinner and grows rapidly, and the motion
is governed by the unsteady boundary layer equation, (ii) re-
gions which are much further downstream where the boundary
layer is forced to make a rapid adjustment, and the motion is
governed by the Orr–Sommerfield equation, and finally (iii) an
overlap region where the TS wave solutions of regions 1 and 2
match asymptotically.

Although we have not performed an asymptotic analysis in
the present paper, we have found that the results obtained from
the parallel flow approximation study of Orr–Sommerfield type
undertaken by Paul et al. [17] are in excellent agreement with
those of the present fully elliptic simulation at large streamwise
distances from the leading edge. On the other hand there is a
poor agreement between the results obtained from the two dif-
ferent methods at locations near to the leading edge. Thus it is
shown that the full elliptic system should be used, at least for
this type of flow, rather than the parallel flow approximation.

So the general aim of this paper is to perform a numerical
investigation to study the instability and receptivity of the ther-
mal boundary layer flow over a vertical surface by introducing
two different types of thermal disturbance into the steady flow:
(i) an isolated internal disturbance, and (ii) time-periodic ther-
mal disturbances. We use air as the working fluid and set the
Prandtl number to 0.7. The thermal disturbances into the free
convective flow are convectively unstable, as the generated two-
dimensional waves travel to the downstream leaving behind the
undisturbed solutions. The receptivity mechanism is a relevant
issue for a convectively unstable flow. But, in some situations
absolute instability may arise, e.g. when a surface temperature
gradient is imposed (see Tao et al. [18]).

The literature is very limited on the study of the thermal
receptivity and instability of a free convective boundary layer
flow. To the authors’ knowledge, there appears to be no full
numerical investigation of such of the thermal boundary layer
flow over a vertical heated surface. When the vertical thermal
boundary layer is subject to harmonic disturbances in time, it is
not clear how the strength of the subsequent response depends
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on the frequency of the disturbance, whether there appears to
be a most dangerous frequency in terms of the strength of the
overall response which could maximise the boundary layer re-
sponse, and how the frequency of the thermal disturbance will
vary with the boundary layer thickness.

Our principal motivation of this study is to search for an-
swers to the above hidden questions. Possible practical engi-
neering applications fit within the range of industrial applica-
tions where a sudden or periodic change in the surface temper-
ature can cause significant changes in the heat transfer process
driven by the free convection. Moreover the thermal receptiv-
ity of the free convective boundary layer flows is of particular
interest to the Thermofluid communities because the presence
of an advectively unstable boundary layer means that the heat
transfer may be increased substantially by the simple expedient
of introducing a small oscillatory disturbance.

2. Equations of motion and boundary conditions

2.1. Governing equations

We consider the two-dimensional free convective bound-
ary layer flow from a vertical semi-infinite heated plate.
A schematic diagram of the flow domain showing the coordi-
nate directions, the transformed coordinates and the boundary
conditions is shown in Fig. 1. A Cartesian frame of refer-
ence is chosen, where the x̄-axis is aligned vertically upwards

Fig. 1. (a) A schematic diagram of the flow configuration showing the coordi-
nate directions and boundary conditions, (b) computational mesh. Note that the
horizontal coordinate has been stretched greatly in this diagram.
with the heated surface. Convective flow is assumed to be gov-
erned by the equation of continuity, the incompressible Navier–
Stokes equations and the energy transport equation subject to
the Oberbeck–Boussinesq approximation. For unsteady two di-
mensional flow this system may be written in nondimensional
streamfunction, vorticity and temperature form,

∇2ψ = ω (1)

ωt = ∇2ω + ψxωy − ψyωx + θy (2)

θt = Pr−1∇2θ + ψxθy − ψyθx (3)

(Paul et al. [17]) where Pr = 0.7 is the Prandtl number for air
and the streamfunction is defined in the usual way according
to u = ψy , v = −ψx where u and v are the nondimensional
fluid velocity components along the nondimensional coordinate
directions x and y respectively.

It is important to note that our scalings do not give rise to
a Grashof number in the governing nondimensional equations.
That this is acceptable follows from the fact that there is no ex-
ternally defined length scale in the idealised configuration being
studied, and that the natural lengthscale d = (ν2/gβ�T )1/3 is
equivalent to setting the usual Grashof number to unity; such a
procedure has also been used in studies of vortex disturbances
in thermal boundary layer flows in porous media undertaken by
Rees ([19,20]) where the governing Darcy–Rayleigh number
was set to unity in order to define a natural lengthscale.

2.2. Coordinate transformation

The usual boundary layer approximation to Eqs. (1)–(3) is
satisfied by the self-similar solutions

ψ = x3/4f (η), θ = h(η), ω = x1/4f ′′(η) (4)

(see Pohlhausen [21] and Ostrach [22]) where η = y/x1/4 is the
similarity variable and where the functions f and h satisfy the
ordinary differential equations,

f ′′′ + 3

4
ff ′′ − 1

2
f ′f ′ + h = 0 (5)

h′′ + 3

4
Prf h′ = 0 (6)

subject to the boundary conditions

f (0) = f ′(0) = h(0) − 1 = 0 and

f ′, h → 0 as η → ∞ (7)

This form of the similarity variable motivates the use of the
Schwartz–Christoffel transformation[

3

4
(ξ + iη)

]4

= (x + iy)3 (8)

which we use because it guarantees an orthogonal grid and
thereby optimises the iterative numerical solution of Poisson
equations such as (1). In polar coordinates, the transformation
may be written in the form,

ξ = 4
r3/4 cos

3
φ, η = 4

r3/4 sin
3
φ (9)
3 4 3 4
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where r is the nondimensional radial distance from the origin
and φ is the angle from the upward vertical. In terms of ξ and η,
Eqs. (1) to (3) become

ψξξ + ψηη = Aω (10)

Aωt = ωξξ + ωηη + ψξωη − ψηωξ

+ A1/2
(

θξ sin
1

4
φ + θη cos

1

4
φ

)
(11)

Aθt = Pr−1(θξξ + θηη) + ψξθη − ψηθξ (12)

where the function, A, is given by

A(ξ,η) =
(

3

4

)2/3(
ξ2 + η2)1/3 (13)

We note that it is not possible to write these equations solely
in terms of ξ and η, but the φ-dependent terms in (11) may be
computed easily using the definitions of ξ and η in Eq. (9).

2.3. Boundary conditions

The corresponding boundary conditions to be used to solve
Eqs. (10)–(12) are

ψ = ψη = 0, θ = 1 on η = ηmin = 0 (14)

ψ = ψξ = 0, θξ = 0 on ξ = ξmin (15)

ψη = 0, ω = 0, θ = 0 as η = ηmax (16)

The conditions on ψ on η = ηmin and ξ = ξmin correspond
to the no-slip condition, while the conditions on ψ and ω

given in (16) correspond to the conditions satisfied by the self-
similar boundary layer solution and therefore ηmax must be
sufficiently large to contain the developing disturbances. The
thermal boundary conditions correspond to a unit temperature
heated surface at η = ηmin, a zero ambient temperature and an
insulated surface at ξ = ξmin.

In our computations we take ξmin = 20; this means that the
corresponding curved surface is nearly horizontal, as displayed
in Fig. 1. Given the form of A in Eq. (13) and its presence mul-
tiplying the left-hand sides of (11) and (12), the value of ξmin
chosen allows us to use the DuFort–Frankel method to march
the solution forward in time. If ξmin had been chosen to be 0,
which corresponds to a second plane surface located at an angle
of 2π/3 from the x-axis, then a more difficult and computa-
tionally much slower fully implicit method, such as that used
by Rees and Bassom [23], would need to be adopted. Although
this is a device which simplifies the computational code devel-
opment, the fact that the flow is advectively unstable, rather than
absolutely unstable, suggests that the effect of this slight change
in the computational domain is minimal in terms of the results
obtained.

As a result of taking ξmin = 20 as the leading edge, the origin
of the coordinate system is outside of the fluid domain. In Carte-
sian coordinates the leading edge is at y = 0 and x = 36.993,
and therefore, for convenience of presentation later, we define
the Cartesian variable

x∗ = x − 36.993 (17)
to denote distance from the leading edge of the heated surface.
The boundary conditions at outflow at ξ = ξmax are dis-

cussed at length and given in Section 3.

2.4. Boundary layer approximation

The steady state boundary layer approximation may also be
derived from Eqs. (10)–(12) in the following forms

ψηη =
(

3

4
ξ

)2/3

ω (18)

ωηη + ψξωη − ψηωξ +
(

3

4
ξ

)1/3

θη = 0 (19)

Pr−1θηη + ψξθη − ψηθξ = 0 (20)

for which the solution in the new coordinate system is

ψ ∼ 3

4
ξf (η), ω ∼

(
3

4
ξ

)1/3

f ′′(η), θ ∼ h(η) (21)

where f and h satisfy Eqs. (5) and (6).

2.5. Linear disturbance equations

We consider a small disturbance in the steady flow by setting

ψ(ξ,η, t) = ψ̄(ξ, η) + δψ̂(ξ, η, t)

θ(ξ, η, t) = θ̄ (ξ, η) + δθ̂(ξ, η, t) (22)

where δ is asymptotically small, so that powers of δ may be
neglected. Here, overbars denote the basic flow variables and
hats denote the perturbation variables.

Substituting (22) into Eqs. (10)–(12) and dropping terms
which are nonlinear in δ leads to two sets of equations: one
for the steady flow and the other for the perturbation flow. The
perturbation equations are given by

ψ̂ξξ + ψ̂ηη = Aω̂ (23)

Aω̂t = ω̂ξξ + ω̂ηη + ψ̄ξ ω̂η + ω̄ηψ̂ξ − ψ̄ηω̂ξ − ω̄ξ ψ̂η

+ A1/2
(

θ̂ξ sin
1

4
φ + θ̂η cos

1

4
φ

)
(24)

Aθ̂t = Pr−1(θ̂ξξ + θ̂ηη

) + ψ̄ξ θ̂η + θ̄ηψ̂ξ − ψ̄ηθ̂ξ − θ̄ξ ψ̂η (25)

and the boundary conditions are

ψ̂ = ψ̂η = 0, θ̂ = 0 on η = ηmin = 0 (26)

ψ̂ = ψ̂ξ = 0, θ̂ξ = 0 on ξ = ξmin (27)

ψ̂η = 0, ω̂ = 0, θ̂ = 0 as η = ηmax (28)

The general procedure for the solving the perturbation equa-
tions is as follows. First, we compute the steady state basic
flow satisfying the nonlinear equations (10)–(12). The reason
for needing this is that the solution of the boundary layer equa-
tions depart quite markedly from the solution of the steady
elliptic equations near ξ = ξmin. Then we solve the linearised
disturbance equations (23)–(25) for various initial and bound-
ary conditions in order to study the stability characteristics of
the boundary layer flow.
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3. Numerical method

Finite difference techniques are used to solve the system of
nonlinear equations (10)–(12) and the system of linear equa-
tions (23)–(25). The time-dependent equations are discretised
using second-order accurate central differences in ξ and η, and
the DuFort–Frankel method for the time-derivative and diffu-
sion terms. Although the DuFort–Frankel scheme is not of sec-
ond order accuracy, timestep checks indicate that our solutions
are essentially independent of the timestep we used. The Jaco-
bian terms are approximated using the Arakawa [24] formula-
tion which was designed to be particularly suitable for flows
which are unstable. Derivative boundary conditions are approx-
imated using a standard fictitious point approach, for although
a straightforward first order approximation at a boundary does
not destroy overall second order accuracy, the fictitious point
method has a smaller absolute error.

The Poisson equation satisfied by the streamfunction was
solved using the multigrid Correction Scheme algorithm to ac-
celerate iterative convergence. It incorporates a V-cycling al-
gorithm involving the line Gauss–Seidel relaxation procedure.
The method is based on the pointwise method described in
Briggs [25], but adopts two line relaxations per coordinate di-
rection on each multigrid level in order to maximise iterative
convergence speed.

The conditions to be applied on the outflow boundary follow
the methodology introduced by Kloker [26]. The naive imposi-
tion of boundary conditions involving either the first or second
derivatives of dependent variables result in the progressive up-
stream propagation of spatially pointwise oscillations which
eventually degrade the evolving solution. Kloker et al. [27] dis-
cuss at length six different strategies for dealing with outflow
conditions and conclude that, for the Blasius boundary layer at
least, a very satisfactory method is to use an absorbing buffer
region. Such a region is used to damp out disturbances to the ba-
sic flow and is sometimes called a relaminarisation region. The
method has also been used very satisfactorily in other flows;
see Stemmer et al. [28] and Bake et al. [29] for example. For
the present problem the concept of a buffer region translates
into setting

χnew
DIST = F(ξ) × χold

DIST (29)

at each timestep. Here χ represents either the vorticity or
temperature, χold is the computed value of χ obtained using
the DuFort–Frankel method subject to the boundary condition
∂χ/∂ξ = 0 at ξ = ξmax, and χnew is the value of χ which is
used to compute χ at subsequent timesteps. The buffer func-
tion, F(ξ), takes the value, 1, in most of the computational
domain, and is a 5th order polynomial in ξ which decreases
from 1 at the start of the buffer region to 0 at outflow. At both
the beginning (ξ = ξb1) and the end (ξ = ξb2) of the buffer re-
gion the function has zero first and second derivatives. In more
detail, the buffer function used was

F(ξ) =
{1, ξ < ξb1

1 − 10γ 3 + 15γ 4 − 6γ 5, ξb1 < ξ < ξb2 (30)

0, ξ > ξb2
where

γ = ξ − ξb1

ξb2 − ξb1
(31)

For nonlinear problems, such as those involving the com-
putation of the basic steady flow, the outflow formula, (29),
translates into the following form which is suitable for solving
for the true variables, rather than for disturbances,

χnew = F(ξ) × χold + [
1 − F(ξ)

] × χbasic (32)

where χbasic represents the basic boundary layer solutions of
the corresponding variable (vorticity or temperature) which is
obtained from the steady solutions of Eqs. (10)–(12).

In the computation we took ξmax = 620, ξmin = 20, ηmax =
12 and ηmin = 0, with a regular grid of 480 points in the ξ direc-
tion and 48 points in the η direction. We have δξ = 5δη which
yields a cell aspect ratio of 5, and therefore a line relaxation
method is essential. We were able to take 5 multigrid levels
and each V-cycle was comprised of 2 relaxation sweeps in each
coordinate direction for each grid. The buffer region extended
from the 400th to the 480th point in the ξ direction. At each
timestep the vorticity and temperature fields are updated for the
new time level, followed by the solution of the Poisson equa-
tion for the streamfunction and finally the boundary vorticity is
computed using the fictitious point approximation.

When the boundary layer solution as given in Eq. (21) on
all grid points is used as the initial condition, the flow evolves
rapidly near the leading edge which induces a large thermal
wave to form and to propagate downstream. This wave becomes
highly nonlinear quite rapidly and very thin internal shear lay-
ers develop which are resolved very poorly by the grid we use.
Consequently the method becomes numerically unstable and
quickly yields temperatures which are outside of the range 0
to 1. Therefore we adopted an ad hoc strategy of removing
highly nonlinear disturbances by interpolating both the θ and ω

profiles from either side of the nonlinear wave. As the wave
had by this time already propagated downstream of the leading
edge region in which the wave had been initiated, the result-
ing modified flow, when integrated forward in time, eventually
produces a highly nonlinear wave some distance further down-
stream. This procedure was continued as often as was necessary
to “clean” the boundary layer of unsteady components in order
to obtain the steady-state solution of the full equations. The pro-
cedure works only because the flow is convectively (or, perhaps
less confusingly in the free convection context, advectively) un-
stable as opposed to being absolutely unstable.

In our numerical computations we discuss two different
types of localised disturbance placed near the leading edge. The
next section considers the evolution of a disturbance placed
within the boundary layer at one point in time. Thereafter at-
tention is focused on unsteady local variations in the boundary
temperature in order to determine the detailed effect of different
disturbance frequencies.

4. Evolution of an initial disturbance

A disturbance was introduced by setting θ̂ = 1 at the point
(ξ, η) = (45,1.5), i.e. at (x, η) 	 (110,1.5), which is fairly
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Fig. 2. Contours of θ̂ depicting the response to a point disturbance at
(x, η) 	 (110,1.5), and are scaled to lie within the respective extrema in each
frame.

close to the leading edge, and 7000 timesteps of length δt = 0.1
were used. Although such a point disturbance introduces a
checkerboard pattern in the temperature profile at subsequent
timesteps, the effect does not last long since the timestep is
quite small.

As time progresses the disturbance diffuses outwards from
its point of introduction and travels along the boundary layer
due to the overall upwards movement of the fluid. The perturba-
tion temperature field in the x–y plane has been recorded at dif-
ferent times from t = 25 to t = 300 and these are displayed in
Fig. 2—it is very important to note that the depicted aspect ra-
tios of the cells are very different from what would be observed
in practice since in this figure xmax 	 3500 and ymax 	 60.
From these contours, both the diffusion and advection of the
evolving disturbance are seen clearly with well-defined advanc-
ing and trailing edges. The cells at t = 250 show a distinctive
“boomerang” shape; such a shape arises because the maximum
velocity of the basic flow occurs away from the surface. The fi-
nal frame (t = 300) corresponds to a point in time just before
the advancing front encounters the buffer region.

Fig. 2 clearly shows the spatial extent of the wavepacket,
but also shows how the wavelength of the cells increases with
distance from the leading edge. This is consistent with the fact
that the basic flow accelerates in the streamwise direction. We
note that the train of cells is not spatially periodic.

The variation in the perturbation surface rate of heat transfer,
defined by,

Q(x, t) = ∂θ̂

∂η

∣∣∣∣
η=0

(33)

is displayed as a contour plot in Fig. 3. The contours shown
correspond to plus and minus various powers of 10. The lower
boundary of the contours in Fig. 3 shows how quickly the ad-
vancing front of the disturbance propagates downstream and,
given the decreasing slope, is seen to accelerate. This is con-
sistent with the fact the basic boundary layer flow also ac-
celerates since u ∝ x1/2. The upper boundary of the contours
Fig. 3. Variation of Q(x, t) after the introducing the point disturbance.

corresponds to the trailing edge of the wave packet, which also
accelerates, and therefore the instability is confirmed as being
advective in nature. On the right-hand side the buffer region cor-
responds to x > 3000 and is seen to dampen the disturbances.
Although this region appears to have a significant effect on the
flow, and indeed this is the intention, it has an almost negligible
influence on the region upstream of it. This was tested by using
a larger buffer region and comparison of the profiles outside of
this larger region showed almost no difference between the two
simulations.

The disturbance depicted in Fig. 3 grows rapidly as it trav-
els downstream as evidenced by the fact that the contours at
x 	 2800 and t 	 400 correspond to a perturbation which is 106

stronger than at the depicted trailing edge of the disturbance. It
is also interesting to note that there seems to be a distinctive
timescale associated with the evolving disturbance; the interval
between successive zeros in the perturbation heat transfer may
be gauged by the vertical distance between isotherms in Fig. 3.

We have also investigated the effect of changing the location
and spatial extent of the initiating disturbance, but the overall
qualitative nature of the response of the boundary layer is the
same and therefore we have not presented further results—this
behaviour was also noted by Janssen and Armfield [30] in their
study of convective instabilities in a differentially heated cavity.
However, this section provides the context into which may be
set certain aspects of the response of the boundary layer to time-
periodic disturbances and which are discussed in Section 5.

5. The response to time-periodic disturbances

A time-periodic thermal disturbance was introduced on the
heated surface in the region near the leading edge and which is
given by

θ̂ = e−a(ξ−ξ0)
2

sin(λt) at η = 0 (34)

where λ is the temporal frequency, and ξ0 is the centre of the
disturbance. In addition, a = 0.1 is the chosen scaling factor
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Fig. 4. Variation of Q(x, t) caused by a time-periodic thermal disturbance for
λ = 0.1.

which ensures that the disturbance is well-resolved on the com-
putational grid but also does not get close to the neutral dis-
tance.

We used 10,000 timesteps of length δt = 0.1 in all the com-
putations. In all cases considered this length of time is more
than sufficient for transient effects to decay, and for a time-
periodic response to be established. We also note that the so-
lutions we present are graphically identical to those obtained
using smaller timesteps. Although we are unaware of experi-
mental work which has used time-periodic disturbances to de-
termine the receptivity of external thermal boundary layers in
a free convective flow over a vertical heated surface, Liepmann
et al. [31] used localised time-periodic heating to generate TS
waves into the boundary layer of flow on a horizontal flat plate.

As in the last section, variations in the location, ξ0, where
the disturbance is centred leads to no significant change in the
boundary-layer response. We therefore concentrate on those
cases for which ξ0 = ξmin = 20. In similar fashion, only slight
quantitative differences are found when different values of the
scaling factor, a, are used, and therefore we concentrate solely
on variations in the frequency, λ.

For the frequency, λ = 0.1, the variation with time of the
perturbation surface rate of heat transfer, Q(x, t), is plotted in
Fig. 4. The contours in this and subsequent figures of the same
type are scaled with respect to the maximum and minimum val-
ues of Q in each frame, and successive contour levels are the
maximum value of |Q| multiplied by plus and minus succes-
sive negative integer powers of 10. The intention is obtain a
qualitative feel for the boundary layer response. Although the
computations are undertaken in the (ξ, η) coordinate system we
present these results in terms of the nondimensional Cartesian
coordinate, x.

This figure shows that there are two very different timescales
present: (i) a relatively long one which is associated with the
forcing timescale and which is most evident at later times,
and (ii) a relatively short one which is effectively the start-
Fig. 5. Variation of Q(x, t) caused by a time-periodic thermal disturbance for
λ = 0.4.

ing transient. Near the point (x, t) 	 (300,100) the transient
first becomes evident and the contour bands associated with the
starting transient are very similar indeed to those of the initial
disturbance case which is plotted in Fig. 3.

Once the transient has left the computational domain, the
flow after t 	 650 is essentially time-periodic. The contour
spacing for x > 1000 does not vary greatly and therefore we
may conclude from this evidence that the disturbance is essen-
tially neutral for this value of λ. However the contours indicate
that there is clearly fairly strong decay in the region x < 100,
which is the region where one expects all disturbances to decay
since it lies below the neutral stability curve first computed by
Nachtsheim [3].

Fig. 5 shows the response when λ = 0.4. This frequency is
roughly the same as that of the transient, and therefore the even-
tual time-periodic response grows very substantially as it prop-
agates downstream. The magnification in amplitude between
x = 600 and x = 2400 is approximately 105, suggesting that
we have what could be interpreted as a resonance between the
forcing and the boundary-layer response since this frequency is
close to the frequency of the fastest growing mode. This aspect
will be dealt with in more quantitative detail below.

The final case we present corresponds to the frequency,
λ = 0.55, and the response returns to the situation where there
are two different timescales observed (see Fig. 6). The transient
frequency is now smaller than that of the forcing frequency.
The region over which the periodic response decays has now
increased quite markedly in size, and does so increasingly as λ

increases further, although the overall growth which occurs
within the computational domain is still substantial. Neutral-
ity appears to be located near x = 700. Later we will discuss
how this feature is connected with the neutral curve obtained
by Paul et al. [17] using the parallel flow approximation. But
again we note that the range over which decay takes place in-
creases as λ increases; see Paul [32] for details, which contains
further contour plots for different values of λ > 0.55.
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Fig. 6. Variation of Q(x, t) caused by a time-periodic thermal disturbance for
λ = 0.55.

6. Overview of the response to time-periodic disturbances

Fig. 7 summarises Figs. 4–6 in terms of the variation with x

of the spatial wavelength of the periodic response. This varia-
tion is also shown for many other different values of λ. These
results correspond to the final timestep, i.e. for t = 1000, as the
flow is periodic after t = 800. The horizontal coordinate of each
circle represents the position, x, of either a maximum or a min-
imum surface rate of heat transfer, while the vertical coordinate
gives the distance between the nearest positions of zero surface
heat transfer, i.e. half a “wavelength”, L/2. For all values of
λ the curves rise with increasing x suggesting that an increas-
ing wavelength with distance is indeed a global feature of the
this accelerating boundary layer flow. We also note that the spa-
tial wavelength decreases monotonically with increasing values
of the temporal frequency λ. In this regard, slightly anomalous
behaviour occurs when λ > 0.55; this may be traced to the fact
that there is an adjustment in the shape of the disturbance near
to the point where the heat transfer is smallest, as seen in Fig. 6.
This feature persists for higher values of λ (see Paul [32]).

Fig. 8 shows the maximum absolute surface rate of heat
transfer over the whole of the heated surface (37 � x � 3600).
This quantity is defined by

M(λ) = max
(ξ,t)

∣∣∣∣(∂θ̂

∂η

)
η=0

∣∣∣∣ (35)

and is a function of the forcing frequency λ. The curve (a) corre-
sponds to the overall maximum response of the boundary layer,
including the transient stage, and in this case M is maximised
over 0 � t � 800. The curve (b) represents the maximum over
one period of the final periodic state. The curves shown in Fig. 8
were obtained by running our simulations for almost 100 differ-
ent values of λ.

In many cases there is a substantial difference between the
maximum transient response and the maximum asymptotic re-
sponse. This is especially so near λ = 0.3 and λ = 0.6. Indeed,
Fig. 7. The variation in the spatial wavelength, L, with distance downstream.

Fig. 8. Variation of the maximum response, M , of the disturbance: (a) the tran-
sient response; (b) the periodic response.

for λ < 0.3 and λ > 0.6 the maximum asymptotic response is
very small compared with those values near to λ = 0.4. When
λ 	 0.411 both maxima take the same value M 	 7981, which
is the strongest response obtainable by this boundary layer and
therefore this value of λ constitutes the most dangerous distur-
bance frequency within the computational domain used. There
is also a small range of values of λ near to 0.411 where the
maximum transient and asymptotic responses are identical.

However, care must be taken over making absolute state-
ments regarding which excitation frequency is the most danger-
ous since the computational domain is necessarily finite. That
this is so may be gleaned from Fig. 9 which shows how the lo-
cal maximum asymptotic response of the boundary layer varies
with x for various values of λ. Specifically we plot the variation
of K against x where

K(x,λ) = max
800<t<1000

log10

∣∣∣∣(∂θ̂

∂η

) ∣∣∣∣ (36)

η=0
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Fig. 9. The variation of K(λ,x) with x for various values of the disturbance
frequency, λ.

In other words K(x,λ) corresponds to the maximum absolute
rate of heat transfer over one period at any chosen value of x

after transients have died out.
In all cases K decreases rapidly as x increases from x 	 37,

since the leading edge of the heated surface is in a stable re-
gion, and therefore all disturbances decay. For the larger values
of λ this decay lasts for a considerable distance and the decay is
over many orders of magnitude. When λ � 0.45 the K-curves
display a sudden dip just before they begin to increase; this is
related to the change in the shape of the cell referred to above,
and this figure shows that it is a fairly ubiquitous phenomenon.
However, when λ takes relatively small values such as 0.05, the
disturbance is seen to decay slowly. Our previous comment re-
garding the near neutrality of the λ = 0.1 case is borne out by
the fact that K hardly varies with x once x > 1000.

At intermediate values of λ, such as 0.3, 0.35 and 0.4, we
see that the maximum asymptotic response depends on where in
the boundary layer one needs the information. For example, at
x 	 500, the most dangerous frequency of excitation, in the
sense of yielding the largest response, corresponds roughly
to λ = 0.3. Similarly λ = 0.35 is the most dangerous fre-
quency when considering the response of the boundary layer at
x 	 1300, whereas λ = 0.4 corresponds to x 	 2500. Given the
behaviour of the λ = 0.45 curve we have no reason but expect
that it will, in its turn, take over as the most dangerous excita-
tion frequency at a still larger value of x, one which is outside
of the present computational domain.

Thus we can depict the upper envelope of the curves shown
in Fig. 9 using a sufficiently large number of simulations for dif-
ferent values of λ within the range 0.2 � λ � 0.45 to summarise
the overall boundary layer growth in streamwise direction. The
values of λ used to get the upper envelope are shown in Fig. 10
and are denoted by λopt. Here we see quite clearly how the value
of λopt increases with distance from the leading edge. The mini-
mum value of the envelope occurs at x∗ 	 105.5 (or x 	 142.5)
which is somewhat less than the value x∗ 	 147.2 which is the
Fig. 10. The values of λ corresponding to the upper envelope of Fig. 9.

Fig. 11. Comparison between the present elliptic linear stability results and
those obtained by assuming the parallel flow approximation. The continuous
lines denote the neutral stability curve and dashed lines represent lines of con-
stant frequency. The symbols correspond to fully elliptic results.

minimum value of x∗ as given by a straightforward linear sta-
bility analysis using the parallel flow approximation (PFA). We
shouldn’t expect an elliptic analysis and a PFA analysis to yield
identical results, and it seems that the stability criterion offered
by a PFA is very conservative. However, the corresponding val-
ues of λ are very close: here we find that λopt 	 0.252 while
the value obtained from the imaginary part of the exponential
growth rate in a PFA analysis at x∗ = 147.2 is λ = 0.264.

Finally, we compare in more detail the present results, and
those obtained using the standard linear stability theory based
upon the PFA. Such a comparison is shown in Fig. 11 for five
different values of the excitation frequency. This figure shows
(i) the neutral curve for the onset of convection using the PFA as
computed by Paul et al. [17]; (ii) curves which correspond to the
above values of λ obtained by assuming the PFA, and (iii) the
variation with the local wavenumber of the x values at which



M.C. Paul et al. / International Journal of Thermal Sciences 47 (2008) 1382–1392 1391
Fig. 12. Comparison between the neutral curves obtained from the parallel flow
approximation (solid curve) and the present elliptic linear stability results (cir-
cles).

the local perturbation heat transfer is zero at a representative
point in time. In this third case the local wavenumber is defined
as k = 2π/L, where the local wavelength L is as depicted in
Fig. 7.

When λ = 0.55 the agreement between the present simu-
lations and the PFA results, shown in Fig. 11 are very good
when x > 750. Such an agreement is to be expected since PFA
data often agree well with data obtained from nonparallel stud-
ies when the local wavenumber (kx1/4, in this case) is large.
At smaller values of x the poor comparison is assumed to be
caused partly by the change in the shape of the cells, a phe-
nomenon which is unlikely to occur in the PFA computations
which are strictly local, and by the nonparallel and elliptical
nature of the flow. As λ decreases from 0.55 the comparison is
decreasingly good even at large values of x suggesting that the
elliptic effects are so strong that the PFA is no longer a suit-
able assumption to make. Indeed, this clearly must be the case
for relatively small values of x (i.e. those close to the base of
the neutral curve) since the spatial wavelength of the resulting
cells become comparable to the magnitude as the neutral dis-
tance.

Fig. 12 shows a direct comparison between the PFA neutral
curve and the interpolated values of x∗ and k where neutrality
occurs for the present simulations. In this figure we see that the
fully elliptic theory yields a stability criterion which is a little
more severe than for the PFA. That this is so is not surprising
for the PFA imposes restrictions on the disturbance, while the
present simulation allows disturbances to evolve freely in both
time and space.

7. Conclusions

In this paper we have sought to understand how the classical
thermal boundary layer from a heated vertical surface responds
to two different types of disturbance, by solving the unsteady,
fully elliptic equations of motion, rather than to use approx-
imate methods. Thus the flow has been able to evolve freely
in space without having its wavelength prescribed (as with the
PFA), or neglecting streamwise diffusion (as with parabolic
methods).

We have confirmed numerically that the present boundary
layer is advectively, rather than absolutely, unstable, at least
within the present computational domain. Given that the basic
flow accelerates as it travels upwards, this may possibly imply
that absolute instability does not arise. However, we have seen
that the upward acceleration does result naturally in a progres-
sive stretching of the individual disturbance cells.

When the boundary layer is subject to harmonic disturbances
in time, the strength of the subsequent response depends very
highly on the frequency of the disturbance and there appears
to be a most dangerous frequency in terms of the strength of
the overall response. However, our chief conclusion is that it
is not possible to determine a most dangerous disturbance fre-
quency as a global criterion. Rather, each streamwise location
in the boundary layer has associated with it its own most dan-
gerous frequency, at least in terms of the heat transfer response
to otherwise identical disturbances. We have also seen that this
frequency increases with increasing distance, which is the op-
posite to the conclusion of Brooker et al. [15] who state that the
frequency decreases. However, there are significant differences
between the two respective studies: the present paper deals with
the external flow of air in a uniformly cold environment, while
Brooker et al. consider water in a differentially heated square
cavity where the core temperature field is stratified.

Finally, although much is known from experimental work
about the destabilisation of vortices on inclined surfaces, we are
unaware of any published work, except that of Szewczyk [33],
which deals with secondary instabilities for vertical free con-
vective flows. Szewczyk found one mechanism for the desta-
bilisation of two-dimensional nonlinear waves which takes the
form of a counter-rotating pair of streamwise vortices. The pres-
ence of such vortices is unlikely to be connected to those found
on inclined surfaces since the latter are thermo-convective in
origin, whereas the former take place in the presence of strongly
nonlinear waves. A natural extension of this work would be to
investigate such three-dimensional secondary instabilities.
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