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Abstract

Purpose – The aim is to determine the effect of different conductivity ratios on forced convection
past a circular cylinder embedded in a porous medium, where the solid cylinder forms a uniform heat
source.

Design/methodology/approach – The authors employ an unsteady finite difference method to
obtain the resulting steady-state solutions. Interface conditions are applied using the fictitious point
method.

Findings – It is found that, the thermal field within the cylinder and in the external porous region
depend strongly on the ratio of the respective conductivities. In the extreme cases the cylinder acts
either as one with a uniform temperature (high-cylinder conductivity) or with a uniform heat flux
(low-cylinder conductivity).

Research limitations/implications – Conductivity ratios in the range 0:1 # g # 100 and Péclet
numbers in the range, 1 # Pe # 1; 000 were taken.

Originality/value – Forced convection studies usually focus on cases where the solid phase has a
prescribed temperature or heat flux. The present paper employs a uniform heat generation within the
cylinder to determine how the therrmal field depends on the Péclet number and the conductivity ratio.
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Nomenclature
Cp ¼ specific heat
f ¼ buffer region function
k ¼ conductivity
K ¼ permeability
p ¼ pressure
Pe ¼ Péclet number
q00 0 ¼ strength of heat source
r ¼ radial coordinate
R ¼ radius of cylinder

T ¼ dimensional temperature
u ¼ radial velocity
U ¼ free stream velocity
v ¼ angular velocity

Greek characters
g ¼ conductivity ratio
c ¼ streamfunction
r ¼ density
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m ¼ dynamic viscosity
f ¼ angular coordinate
u ¼ non-dimensional temperature

Subscripts, superscripts
2 ¼ dimensional quantity

c ¼ cylinder
i ¼ grid point index in r-direction
j ¼ grid point index in f-direction
n ¼ timestep
pm ¼ porous medium

Introduction
The importance of heat transfer phenomena associated with free or forced convection
flow in porous media is well known. Interest in this area has been motivated by such
diverse engineering problems as geothermal energy extraction, storage of nuclear
waste material, ground water flows, pollutant dispersion in aquifers, design of nuclear
reactors, solar power collectors, compact heat exchangers, food industries, to name just
a few applications. The archival publications of transport phenomena in porous media
have been reviewed and presented in the recent books by Ingham and Pop (1998, 2002,
2005), Nield and Bejan (2005), Vafai (2000, 2005), Pop and Ingham (2001), Bejan and
Kraus (2003), Ingham et al. (2004) and Bejan et al. (2004).

To date few studies exist of forced convection past a heated cylinder embedded in a
porous medium. In a seminal paper Pop and Yan (1998) showed that, it is possible to
reduce the high-Péclet number (Pe) forced convection problem to self-similar boundary
layer form, for which analytical solutions are available. An earlier paper by Nasr et al.
(1994) looked in detail at how the conductivities and grain sizes of the surrounding
porous medium affected heat transfer from a hot cylinder. Kimura (1989) has
considered the transient case where the temperature of the cylinder is raised suddenly
from the ambient value, and the same author studied an elliptic cylinder using both
integral and numerical techniques (Kimura, 1988). More recently, Rees et al. (2003) and
Wong et al. (2004) have considered the effect of utilising the two-temperature model of
conduction in a porous medium, where separate but coupled temperature fields
associated with the solid and fluid phases are considered; these papers consider both
the boundary layer limit ðPe!1Þ and moderate values of Pe. At present, there exists
only one paper considering forced convection past a cylinder with a uniform heat flux
from its surface. Kimura and Yoneya (1992) conducted an experimental study of this
configuration and presented the result of an approximate analytical study of the
boundary layer which arises at high-Péclet number boundary. Therefore, at the present
time, there are are no published studies containing detailed moderate Péclet number
computations or a rigorous high-Péclet number boundary layer analysis.

Forced convection flows usually involve heated boundaries with either a prescribed
surface temperature or surface heat flux. A somewhat different situation is considered
here where uniform internal heat generation within a solid cylinder is the source of
heating for the system and where a uniform external flow exists in the porous medium
outside of the cylinder. Therefore, this is a type of conjugate heat transfer problem where
neither the local surface temperature nor the heat flux at the surface of the cylinder is
known in advance. These need to be obtained as part of the numerical solution
procedure by imposing continuity of both temperature and heat flux at the surface of the
cylinder, as was done by Kimura and Pop (1992) in a free convection problem. Some
aspects of the thermal coupling between a solid medium and a neighbouring saturated
porous medium and a list of references on the topic may be found in the review articles
by Kimura et al. (1997) and Pop and Nakayama (1999), and also in the recent papers by

Internal heat
generation in a
porous medium

731



Vaszi et al. (2003, 2004). Our aim is, therefore, to determine the behaviour of the
thermal field surrounding and within a uniformly heat-generating cylinder which is
embedded within a fluid-saturated porous medium with a uniform free stream.

Governing equations
The governing equations for forced convection flow past a circular cylinder of radius R
which is embedded in a porous medium are based on the conservation of mass,
momentum and thermal energy. We will assume that flow in the porous medium is
governed by Darcy’s law, and therefore modifications such as form drag
(the Forchheimer terms), boundary effects (the Brinkman terms) and anisotropy are
either negligible or absent.

With this in mind the equation of continuity and the momentum (Darcy) equations
may be written in the forms:

›ru

›�r
þ

› �y

›f
¼ 0; ð1Þ

�u ¼ 2
K

m

›�p

›�r
; �y ¼ 2

K

m

1

r

›�p

›f
; ð2a; bÞ

where �r and f are the radial and angular coordinates and �u and �y are the
corresponding fluid seepage velocities. The constants, K and m, are the permeability of
the saturated medium and the dynamic viscosity, respectively. The thermal energy
equation for the porous medium may be written in the form:
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where kpm is the thermal conductivity of the porous medium and Tpm its temperature.
The values r and Cp refer to the density and the specific heat. Likewise, the thermal
energy equation for the solid cylinder is:

kc
›2Tc

›�r 2
þ

1

�r

›Tc

›�r
þ

1

�r 2

›2Tc

›f 2

� �
þ q000 ¼ 0: ð4Þ

Here, kc is the conductivity of the solid cylinder, q000 is the constant rate of heat
production within the cylinder and Tc is its temperature.

The cylinder occupies the region �r # R and this provides a natural lengthscale.
There is a uniform free stream far from the surface of magnitude U which is in the
direction of increasing �r on f ¼ 0. Therefore, we choose to non-dimensionalise using
the following transformations:

�r ¼ Rr; ð�u; �y Þ ¼ U ðu; y Þ; �p ¼
URm

K
p and T ¼ T1 þ

q000R 2

kc
u; ð5Þ

where T1 is the constant temperature of the free stream. As the flow is
two-dimensional it is convenient to introduce the streamfunction, c, according to:

u ¼
1

r

›c

›f
; y ¼ 2

›c

›r
; ð6Þ
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and therefore the governing equations (2)-(4), take the non-dimensional form:
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and:
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while the dimensionless form of equation (1) is satisfied by equation (6). The Péclet
number, Pe which appears in equation (8) is defined as:

Pe ¼
URðrCpÞ

kpm
: ð10Þ

Equation (7) has the solution:

c ¼ r 2
1

r

� �
sinf; ð11Þ

which yields a uniform free stream of unit magnitude when r is large, and which gives
c ¼ 0 on both the axis (f ¼ 0, p) and the surface of the cylinder (r ¼ 1).

The boundary conditions for the temperature field are:
. that u decays to zero as r increases indefinitely; and
. that there is continuity of both temperature and heat flux at the interface between

the cylinder and the porous medium.

Therefore, we require:

uc ¼ upm and kc
›uc

›r
¼ kpm

›upm

›r
at r ¼ 1: ð12Þ

Finally, we define the parameter g, the ratio of the conductivity of the cylinder to that
of the porous medium, as, g ¼ kc/kpm.

Numerical method
Equations (8) and (9) were solved by converting them into time-evolution equations
and time-marching to steady state. Thus, the equations solved were:
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and:
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where the expressions involving c in equation (13) may be expanded using the
definition of c in equation (11). Equations (13) and (14) were solved using a finite
difference method on a uniform grid. We define the radial and angular steplengths as
hr and hf, respectively, and the number of steps in each of these directions are Nr and
Nf. Therefore, ri ¼ ihr and fj ¼ jhf; define the spatial grid, and the interface is at
i ¼ I, that is, Ihr ¼ 1. The time variable is discretised in the same way with the uniform
timestep ht, and discrete values of t being given by tn ¼ nht. Finally, the numerical
approximation to the exact value of f(rj, uj, tn) is denoted by unij .

The governing equations were discretised using standard second order central
differences in space, while timestepping was achieved using the DuFort-Frankel
method. As the equations are linear, there is no possibility of physical instability, and
convergence to an ultimate steady-state is always obtained when the timestep is
sufficiently small, otherwise numerical instability arises. On the axis, f ¼ 0, p, central
differences in space were employed using the ghost point technique (i.e. setting
u n
i;21 ¼ u n

i;1) to ensure even symmetry ð›u=›f ¼ 0Þ, thereby reducing the
computational effort.

At the origin it is not possible to discretise equations (13) and (14) directly since
some of the coefficients are singular. The Laplacian in equation (14) was therefore
approximated using the formula:

1

h2
r

2

Nf

uc1;0 þ 2
XNf21

j¼1

uc1; j þ uc1;Nf
2 2Nfuc0;0

" #
: ð15Þ

Expression (15) may be derived by recourse to standard five-point Cartesian formula
with steplengths both equal to hr, where all possible ways of writing the five-point
formula (i.e. by rotating the artesian axes so that axes coincide with the grid-lines f
¼ constant) are averaged, and then modified according to the fact that ›uc=›f ¼ 0 on
the axis.

At the interface not only is the temperature distribution continuous as r increases,
but so is the heat flux, as given by equation (11). A straightforward central difference
approximation of equation (11) based at the interface will yield an algebraic equation
involving a upm value at r ¼ rI21 and a uc value at r ¼ rIþ1, both of which may be
termed ghost points since they are outside their appropriate domains of existence.
However, we may also write down the central difference approximations to both
equations (8) and (9) at the interface. Both the resulting expressions contain the two
ghost points, and may be added together in a suitable way so that the application of the
approximation to equation (11) removes the ghost points from the resulting expression.
In this way, we obtain a rather lengthy formula which applies at the interface and
which does not contain ghost points.

Finally, we paid attention to possible numerical difficulties associated with the
outflow boundary, which occupies that part of the r ¼ rmax gridline in the range
0 # f # 1=2p. Two different ways of treating this boundary were attempted: in
Method I we set ›upm=›r ¼ 0, while for Method II we used a form of buffer region
which damps out thermal disturbances. The latter was inspired by the example of
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Kloker et al. (1993) who were concerned with the passage out of the computational
domain of highly detailed and evolving instabilities to the Blasius boundary layer flow
over a flat plate. These authors found that more naive formulations, such as our
Method I, cause spatial oscillations which propagate upstream and eventually
contaminate the whole flow. They also found that the use of buffer region which damps
out disturbances to the basic flow eliminates these unphysical oscillations, and, very
importantly, also has an almost negligible upstream effect. For the present paper we
employed the buffer region methodology in the following form. At each timestep a new
temperature field is determined; if this is notated by u

n;basic
i;j , then the field which is used

for subsequent computation is given by:

u n
i;j ¼ f ðriÞu

n;basic
i;j ; ð16Þ

where the buffer function, f(ri), is unity when ri , 0:8*rmax , but takes the values:

f ðriÞ ¼ cos2 5ri
rmax

2 4

� �
p

2

� �
: ð17Þ

This form for f(ri) allows the “disturbance” (i.e. the developing thermal field) to be
brought smoothly down to zero at outflow. Extensive tests were undertaken to verify
whether or not a larger buffer region is necessary, and to determine how large the
computational domain should be in the radial direction that the results we present
below are independent of the size and extent of the computational and buffer regions. It
as found not only that the buffer domain can safely be as small as 20 per cent of the
computational domain, but also the results were also found to coincide almost exactly
with those obtained using Method I, the naive approach to treating the outflow
boundary. Therefore, we conclude that the modelling of outflow boundaries in porous
media is more robust than those involving clear fluids.

The code we developed used either a zero temperature field as the initial condition,
or a previously converged solution for the same parameter case on a coarser grid,
which was then interpolated onto the given grid; this latter approach was found to
yield much improved convergence times on relatively fine grids. Convergence itself
was deemed to have occurred when the maximum absolute change in either upm or uc

over one timestep is less than 1028. In general, we found that the required extent of the
computational domain depends strongly on the magnitude of Pe, and only slightly on
the value of g. Details of the values of rmax and the number of grid points may be found
in Table I. In practice, we solved the governing equations three times for each
parameter set; for Pe ¼ 1,000, for example, the three solutions were on grids with

Pe ht rmax Nr £ Nf

1,000 0.001 2.5 240 £ 240
300 0.001 5 240 £ 240
100 0.001 5 240 £ 240
30 0.002 8 256 £ 256
10 0.005 5 240 £ 240
3 0.005 15 240 £ 240
1 0.005 25 300 £ 240

Table I.
Details of the grids used

for each value of Pe
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60 £ 60, 120 £ 120 and 240 £ 240 points, where all figures were prepared using the
solution on the finest grid.

Results and discussion
The detailed temperature field within the cylinder and the external porous medium are
dependent on the two parameters, Pe and g. Figures 1-3 show how the isotherms, axis
temperature and cylinder surface temperature vary with Pe while g ¼ 1. The region
within which the temperature field is significantly different from zero is seen clearly in
Figure 1 to decrease substantially as the strength of the external flow, as measured by
the Péclet number, Pe, increases. At small values of Pe heat is able to conduct fairly
readily upstream of the cylinder, but, when Pe becomes large, the thermal field within
the porous medium is confined to a boundary layer on the surface of the cylinder, and
to the thermal wake downstream of the cylinder. For this particular value of g, for
which the conductivity ratio of the cylinder to that of the porous medium is unity, the
temperature distribution within the cylinder itself is roughly parabolic in r.

The above observations regarding the thermal field may also be shown in Figure 2
which displays the temperature on the central axis (i.e. on f ¼ 0, which corresponds to

Figure 1.
The effect of different
values of the Péclet
number Pe, on the
isotherms for g ¼ 1

Pe = 1

Pe = 10

Pe = 100

Pe = 3

Pe = 30

Pe = 1,000

Notes: Isotherms are spaced using 40 equal intervals between zero and the maximum temperature for each
case and the dotted line indicates the location of the surface of the heated cylinder, these conventions also
apply to Figures 4 and 7
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positive values of r in this figure, and on f ¼ p for negative values of r). Whilst
Figure 1 shows isotherms using 40 intervals between zero and the maximum
temperature achieved, Figure 2 shows the absolute temperatures as functions of both r
and Pe. For low values of Pe the maximum temperature achieved is higher than for
large values of Pe – this is due to the increased rapidity with which heat is transported

Figure 2.
Temperature profiles
along the axis of the

cylinder in the direction
of the external free stream
for g ¼ 1 and for Pe ¼ 1,
3, 10, 100, 300, and 1,000

−3 −2 −1 0 1 2 3
0.0

Notes: The positions of the interface between the cylinder and
the porous medium are shown by the dashed line

0.2

0.4

0.6

0.8

1.0

Pe = 1,000

Pe = 1

Pe = 3

Pe = 10

r

q

Figure 3.
Non-dimensional

temperature profiles along
the surface of the cylinder

from the rear stagnation
point at f ¼ 0 to the

forward stagnation point
at f/p ¼ 1

0.0

Notes: The parameters are given by g = 1 and Pe = 1, 3, 10, 30,
100, 300 and 1,000. The dashed line denotes the horizontal axis

0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

q

f /p

0.7

0.8

Pe = 1

Pe = 3

Pe = 10
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away from the cylinder. However, given that the heat source within the cylinder is
uniform and constant, the temperature gradients at r ¼ ^1, as shown in Figure 2 as
the temperature curves cross the dashed lines, vary only slightly with Pe. The detailed
surface temperature variation with f for different values of Pe are shown in Figure 3.
For small values of Pe the relative variation in the non-dimensional temperature, u is
not large, but for large values of Pe, there is a relatively large rise in f close to the rear
stagnation point at f ¼ 0. This suggests that, a large Pe asymptotic analysis might
proceed, at least initially, by assuming a sufficiently small amplitude parabolic
temperature profile within the cylinder; it is hoped to report on such an analysis in the
future.

Now we turn to the effects of varying the conductivity ratio, g. Figures 4-6 are
concerned with these effects for Pe ¼ 100, which is fairly typical for a high-Péclet
number flow, while Figures 7-9 correspond to Pe ¼ 1.

Figure 4 shows isotherms for the Pe ¼ 100 case for a variety of values of g. When g
is large, which corresponds to the cylinder having a very high conductivity, then there
is little variation in the temperature profile within the cylinder, due to the fact that
heat is transported easily through the solid medium. For such a highly conducting
cylinder the maximum temperature it attains is located increasingly close to the rear
stagnation point as g increases, as may be shown in Figure 5, and the maximum
temperature attained also increases due to the increased heat capacity of the cylinder.

Figure 4.
The effect of different
values of the conductivity
ratio g on the isotherms
for Pe ¼ 100

g  = 100

g  = 5

g  = 0.5

g  = 10

g  = 2

g  = 0.1
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On the other hand, when g is small, then the isotherms within the cylinder tend once
again to concentric circles showing that the thermal field within the cylinder is almost
independent of the external free stream. Figure 5 confirms that when g is small then
uc ¼ .1/4(1 2 r 2) at leading order. The numerical data used to plot Figure 6 also
shows that the ratio of the interface temperatures at the upstream (forward) and
downstream (rear) stagnation points tends towards roughly 0.3 as g! 0, which is an
indication of the correction to the above leading order behaviour. Although, it is not
obvious from Figure 6, the same ratio tends towards unity as g becomes large.

Figure 5.
Non-dimensional

temperature profiles along
the axis of the cylinder in

the direction of the
external free stream for

Pe ¼ 100 and for g ¼ 0.1,
0.2, 0.5, 1, 2, 5 and 10

g  = 10

g  = 5

g  = 2

−1 0 1 2 3 4
r

0.0

0.2

0.4

0.6

0.8

q

(a)

g  = 100

g  = 10

g  = 2

g  = 1

g  = 5

r

0.0

0.2

0.4

0.6

0.8

−1 0

Notes: (a) computed temperature profiles; (b) scaled temperature
profiles, qs (which also includes g = 100)

1 2 3 4

1.0

qs

(b)
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Figure 6.
Non-dimensional
temperature profiles along
the surface of the cylinder
from the rear stagnation
point at f/p ¼ 1

0.0 0.2 0.4 0.6 1.00.8

0.0

0.2

0.4

0.6

0.8

1.0

g  = 10

g  = 5

g  = 2

f / p

q

Notes: The parameters are given by Pe = 100 and g = 0.1, 0.2,
0.5, 1, 2, 5 and 10. The dashed line denotes the horizontal axis

Figure 7.
the effect of different
values of the conductivity
ratio g on the isotherms
for Pe ¼ 1

g  = 10

g  = 2

g  = 0.5

g  = 5

g  = 1

g  = 0.2
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The interface temperature profile when g ¼ 100, which is not shown in Figure 6 due to
the magnitude of their values, 6.601 and 7.227, yields a ratio of roughly 0.91. Finally, it
is necessary to point out that the overall shape of the external thermal field shown in
Figure 4 varies little with g. The apparent relative thickness of the wake region for
g ¼ 100 as compared with the g ¼ 0.1 case is due to the fact that an equal number of
isotherms are plotted in each case. When g ¼ 100 most of the temperature variation
takes place within the porous medium, whereas the opposite occurs when g ¼ 0.1.

Figure 8.
Non-dimensional

temperature profiles along
the axis of the cylinder in

the direction of the
external free stream for
Pe ¼ 1 and for g ¼ 0.1,

0.2, 0.5, 1, 2, 5 and 10

0.0 5.0 10.0 15.0
0

2

4

6

8

10

12

(a)

−1.0 0.0 1.0 2.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

g  = 10

g  = 5

g  = 2

g  = 0.1

g  = 0.2

g  = 1

g  = 0.5

r

q

r

qs

Notes: (a) computed temperature profiles; (b) scaled temperature
profiles, qs
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When Pe ¼ 1, the primary difference is that the thermal field in the porous medium is
much more extensive than when Pe ¼ 100, as may be seen when comparing Figures 7
and 4. As the external flow field is weaker, less heat is transported away from the
cylinder by advection and therefore conductive effects are stronger. This effect may be
shown in Figure 7 for g ¼ 10, for instance, where the thermal field within the cylinder
is almost uniform, unlike the corresponding case for Pe ¼ 100 shown in Figure 4. At
g ¼ 10 the position of maximum temperature within the cylinder is almost exactly at
the rear stagnation point; see Figure 8. Indeed, at such a low value of Pe there is little
variation in the interface temperature, as may be seen in both Figures 8 and 9, and
the maximum temperature attained is greater than for Pe ¼ 100 due to the relative
importance of conductive effects.

Conclusions
In this paper, we have sought to determine how conjugate heat transfer effects modify
the forced convective heat transfer from a heated cylinder which is embedded within a
porous medium. Heat is generated uniformly within the cylinder and the detailed
isotherms and surface and axis temperature profiles have been found to depend
strongly on the value of g, which is the ratio of the conductivity of the cylidner to that
of the porous medium. When seven is large, then there is little variation in temperature
within the heated cylinder, and the temperature field within the porous medium
approximates closely that here a fixed temperature is imposed on the surface of the
cylinder. On the other hand, when g is small, most of the temperature variation takes
place within the cylinder, and we expect that the external temperature field, weak as it
is, should correspond to that of a cylinder with a uniform heat flux imposed at the
surface.

Figure 9.
Non-dimensional
temperature profiles along
the surface of the cylinder
from the rear stagnation
point at f/p ¼ 1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12
g  = 10

g  = 5

q

g  = 2

f / p

Notes: The parameters are given by Pe = 100 and g = 0.1, 0.2,
0.5, 1, 2, 5 and 10. The dashed line denotes the horizontal axis
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