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Abstract

The Cheng–Minkowycz model of the Darcy free convection boundary layer flow over a permeable vertical plate with prescribed power-law
temperature distribution Tw(x) = T∞ +A ·xλ and an applied lateral mass flux is revisited in this paper. The relationship between the wall heat flux
and the entrainment velocity (the similar transversal velocity at the outer edge of the boundary layer) as function of the mass transfer parameter fw

is examined analytically by using the Merkin transformation method. It is shown that at the value of fw where the Nusselt number becomes zero
and changes sign, the entrainment velocity passes through its minimum value (Entrainment Theorem). The converse statement is also true, and
holds for all the surface temperature distributions with power-law exponent in the range −1 < λ < 0. It also applies to the Darcy free convection
over a permeable vertical plate with exponential temperature distribution when the effect of viscous dissipation is significant.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Following the seminal work of Cheng and Minkowycz [1]
and Cheng [2,3], the theory of self-similar boundary layer flows
in fluid saturated porous media has experienced a rapid devel-
opment. A comprehensive review of this development of broad
theoretical and practical interest can be found in the mono-
graphs of Pop and Ingham [4] and Nield and Bejan [5], for
example. Extensions to the non-similar case of constant surface
temperature and constant transpiration velocity were reported
by Merkin [6] and Minkowycz [7].

The present paper revisits the Cheng–Minkowycz model
[1,2] of the Darcy free convection boundary layer flow over
a permeable vertical plate with prescribed power-law temper-
ature distribution Tw(x) = T∞ + A · xλ, A > 0, and an applied
lateral mass flux proportional to x(λ−1)/2. Its focus is on a spe-
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cific physical and mathematical aspect of this model, namely
on the relationship between the wall heat flux and the entrain-
ment velocity as function of the mass transfer parameter fw

(suction/injection parameter). The main result of the paper is
summarized in a short statement referred to as entrainment the-
orem, which asserts that at the value of the mass transfer pa-
rameter where the wall heat flux changes sign, the entrainment
velocity of the flow passes through its minimum value. The en-
trainment theorem holds for all −1 < λ < 0, and its converse is
also true. It also applies to the Darcy free convection over a per-
meable vertical plate with exponential temperature distribution
when the effect of viscous dissipation is significant.

2. Basic equations and problem formulation

We consider the Cheng–Minkowycz model [1,2] of the self-
similar Darcy free convection boundary layer flow over a per-
meable vertical plate with prescribed power-law surface tem-
perature distribution Tw(x) = T∞ + A · xλ. Hereafter the nota-
tions of [1] and [2] will be used. Following Chaudhary et al. [8],
for the wall temperature exponent λ the variation range λ > −1
will be admitted.
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Nomenclature

A wall temperature coefficient, Eq. (7)
An dimensionless expansion coefficients, Eq. (18)
f dimensionless stream function
fw mass transfer parameter, Eq. (3)
f∞ similar entrainment velocity, Eq. (7)
H dimensionless heat transfer parameter, Eq. (6)
Tw wall temperature distribution, = T∞ + Axλ

T∞ ambient temperature
x dimensional wall coordinate
y dimensional transversal coordinate
Y dimensionless function, Eq. (12)
z dimensionless variable, Eq. (12)
z0 z at the wall, Eq. (15)

Greek symbols

β parameter, Eq. (15)
λ wall temperature exponent
η similarity independent variable, Eq. (5)
θ dimensionless temperature, Eq. (5)

Subscripts

w values at the wall
∞ values at infinity (outer edge of the boundary layers)
k,n summation indices

Superscripts

dashes derivatives with respect to η

dots derivatives with respect to fw
The self-similar stream function f = f (η) and temperature
θ = θ(η) fields are obtained as solutions of the two point bound-
ary value problem [1,2]

f ′′ − θ ′ = 0 (1)

θ ′′ + 1 + λ

2
f θ ′ − λf ′θ = 0 (2)

f (0) = fw, θ(0) = 1 (3)

f ′(∞) = 0, θ(∞) = 0 (4)

where the prime denotes differentiation with respect to the sim-
ilarity variable η, and fw stands for the mass transfer parameter
(or similar suction/injection velocity; with fw > 0 correspond-
ing to suction, and fw < 0 to injection). On integrating Eq. (1)
and applying the boundary conditions (4) one immediately de-
termines that the temperature θ(η) is identical to the self-similar
streamwise velocity f ′(η) of the flow, [1,2],

θ(η) = f ′(η) (5)

Thus, all the quantities of physical and engineering interest can
be calculated in terms of the self-similar stream function f =
f (η). The heat transferred through the wall is characterized by
the dimensionless group

Nux√
Rax

= −θ ′(0) = −f ′′(0) ≡ H (6)

where Nux and Rax are the local Nusselt and Darcy–Rayleigh
numbers, respectively, [1,2]. For simplicity, the dimensionless
group H ≡ Nux/

√
Rax will be named the heat transfer para-

meter.
The dimensional entrainment velocity v(x,∞) is the trans-

versal component v(x, y) of the velocity field v(u(x, y),

v(x, y),0) at the outer edge of the boundary layer, [1,2],

v(x,∞) = −(1 + λ)
[
αρ∞gβKAxλ−1/(4μ)

]1/2
f (∞) (7)

where f (∞) ≡ f∞ will be referred to as similar entrainment
velocity.

The aim of the present paper is to investigate the relation-
ship between the heat transfer parameter H = H(λ;fw) and the
similar entrainment velocity f∞ = f∞(λ;fw) in the parameter
plane (λ,fw) specified by the wall temperature exponent λ and
the mass transfer parameter fw . According to our knowledge,
this problem has not yet been examined in detail. Concerning
the effect of fw on H = H(λ;fw) and f∞ = f∞(λ;fw), the
following theorem will be proven below.

At the value fw = f ∗
w of the mass transfer parameter where

the wall heat flux vanishes (H(λ;f ∗
w) = 0) and changes sign,

the similar entrainment velocity of the flow f∞ = f∞(λ;fw)

passes through its minimum value f∞,min = f∞(λ;f ∗
w). The

converse statement is true, too.
This theorem holds for all λ values in the interval −1 <

λ < 0 and will be referred to in shortened form as the entrain-
ment theorem. The entrainment theorem is the main result of
the paper.

3. Analytical solutions

3.1. The special cases λ = −1/3 and λ = −1/2

As it is well known, [9,10], in the special cases λ = −1/3
and λ = −1/2 the solution of the boundary value problem
(1)–(4) can be given in terms of elementary transcendental
functions.

• Case λ = −1/3, [9,10]

H = 1

3
fw, −∞ < fw < +∞

f∞ =
√

f 2
w + 6 =

√
9H 2 + 6

f (η) = f∞ tanh

(
1

6
f∞η + ln

√
f∞ + fw

f∞ − fw

)
(8)

• Case λ = −1/2, [9]

H = 1

4

(
fw − 2

fw

)
, 0 < fw < +∞

f∞ =
(

f 3
w + 12fw + 36

)1/3

(9)

fw
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The solution for the similar stream function f = f (η) can be
given for λ = −1/2 only in the implicit form η = η(f ) (for fur-
ther details see [9]). It is worth emphasizing here that, while
the solution (8) exists for all values −∞ < fw < +∞ of the
mass transfer parameter, the implicit solution η = η(f ) cor-
responding to λ = −1/2 exists only when a lateral suction
(0 < fw < +∞) is applied, [9].

3.2. The Merkin transformation

To prove the entrainment theorem for all −1 < λ < 0, an
extension of the Merkin transformation approach [11] to the
present boundary value problem (1)–(4) will be used. Eliminat-
ing the dimensionless temperature θ with the aid of Eq. (5), we
first transcribe the boundary value problem (1)–(4) in the form

f ′′′ + 1 + λ

2
ff ′′ − λf ′2 = 0 (10)

f (0) = fw, f ′(0) = 1, f ′(∞) = 0 (11)

The basic feature of the Merkin transformation is that it reverses
the role of the stream function f in the boundary value prob-
lem (10), (11) from that of the old dependent variable to that
of a new independent variable φ ≡ f∞ − f and at the same
time, it transfers the role of the dependent variable from f to
p(φ) ≡ df/dη. The main advantage of this transformation is
that it enables the calculation of the heat transfer parameter
H = H(λ;fw) and the entrainment velocity f∞ = f∞(λ;fw)

without needing to know the solution f = f (η;λ,fw) of the
boundary value problem (10), (11), neither in an explicit, nor in
an implicit form.

Firstly, we extend the Merkin transformation method [11],
developed originally for an impermeable surface fw = 0, to the
case fw �= 0 in which a lateral mass flux is present. To this end,
we modify the transformation slightly by changing to a new
independent variable z and to a new dependent one, Y = Y(z),
which we define as follows:

z = 1 − f

f∞
, Y = 2

(1 + λ)f 2∞
df

dη
(12)

Thus, the boundary value problem (10), (11) becomes

d

dz

(
Y

dY

dz

)
+ (z − 1)

dY

dz
− βY = 0 (13)

Y(0) = 0, Y (z0) = 2

(1 + λ)f 2∞
(14)

where

z0 = 1 − fw

f∞
, β = 2λ

1 + λ
(15)

The first condition (14) has been obtained from f ′(∞) = 0 and
the second one from f (0) = fw and f ′(0) = 1. We mention
that, in the case β = 2 (obtained formally from Eq. (15) for
λ → ∞), the boundary value problem (10), (11) describes the
Darcy free convection over the vertical plate with exponential
temperature distribution, when the effect of viscous dissipation
is significant, [12,13].
The heat transfer parameter H is obtained in this approach
as

H = 1

2
(1 + λ)f∞

dY

dz

∣∣∣∣
z=z0

(16)

After the solution Y = Y(z) of the boundary value problem
(13), (14) has been found, the solution f = f (η) of the original
problem (10), (11) can be obtained in the implicit form η =
η(f ) by quadratures,

η = − 2

(1 + λ)f∞

1− f
f∞∫

z0

dz

Y (z)
(17)

3.3. The series solution

Looking for the solution of the boundary value problem (13),
(14) in the power series form

Y =
∞∑

n=0

Anz
n (18)

one obtains for the coefficients An the system of equations,
[14],

k∑
n=0

(n + 1)
[
(n + 2)An+2Ak−n + (k − n + 1)An+1Ak−n+1

]
= (k + 1)Ak+1 + (β − k)Ak, k = 0,1,2, . . . (19)

The boundary condition Y(0) = 0 implies that A0 = 0. Thus,
one obtains from Eq. (19) the following expressions for the next
two coefficients

A1 = 1, A2 = 1

4
(β − 1) (20)

The subsequent coefficients A3,A4,A5, . . . can then be ob-
tained recursively according to

Ak = β − k + 1

k2
Ak−1 − k + 1

2k
·
k−1∑
n=2

AnAk−n+1

k = 3,4,5, . . . (21)

Specifically, we have

A3 = 1

72
(1 − β2)

A4 = 1

576
(1 − β2)(1 − 2β)

A5 = 1

86400
(1 − β2)(11 − 81β + 88β2)

A6 = 1

1036800
(1 − β2)(−9 − 125β + 447β2 − 337β3) (22)

Then, the second boundary condition (14) yields for f∞ the
equation

1 + λ

2
f 2∞

∞∑
Ak

(
1 − fw

f∞

)k

− 1 = 0 (23)

k=1
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For the heat transfer parameter H = H(λ;fw) one obtains from
Eq. (16) the expression

H = 1

2
(1 + λ)f∞

∞∑
k=1

kAk

(
1 − fw

f∞

)k−1

(24)

4. Discussion

4.1. The proof

A first analytical proof of the entrainment theorem can be
given with the aid of Eqs. (23) and (24). Indeed, on differenti-
ating Eq. (23) once with respect to fw one obtains

2f∞
df∞
dfw

∞∑
k=1

Ak

(
1 − fw

f∞

)k

−
(

f∞ − fw

df∞
dfw

) ∞∑
k=1

kAk

(
1 − fw

f∞

)k−1

= 0 (25)

On solving this equation with respect to df∞/dfw and taking
into account Eqs. (23) and (24) again, one obtains the relation-
ship

df∞
dfw

= f∞H

fwH + 2
(26)

This equation shows that, when at some value fw = f ∗
w of

the mass transfer parameter the heat transfer parameter H =
H(λ;fw) possesses (for a specified λ) a zero, then, fw = f ∗

w

yields at the same time a zero of the derivative df∞/dfw of
the entrainment velocity, and conversely. This conclusion is
in agreement with the statement of the entrainment theorem.
However it leaves the question open, whether the common root
fw = f ∗

w of equations H = 0 and df∞/dfw = 0 corresponds
to a minimum, a maximum or to an inflexion point of the func-
tion f∞ = f∞(λ;fw). A more general and detailed analytical
proof of the entrainment theorem, supported directly by the
basic equations (10), (11) of our two point boundary value prob-
lem, is given in Appendix A.

4.2. The special cases λ = −1/3 and λ = −1/2

The special solutions given in Section 3.1 offer a good op-
portunity for a simple straightforward validation of the entrain-
ment theorem.

In the case λ = −1/3, the statement of this theorem becomes
evident by a simple inspection of Eqs. (8). Indeed, according
to the first equations (8), the heat transfer parameter H be-
comes zero for fw ≡ f ∗

w = 0 (impermeable surface), where,
according to the second equation (8), the entrainment veloc-
ity f∞ actually reaches its minimum value, f∞,min = √

6. In
the case λ = −1/2, elementary calculations show that both
the heat transfer parameter H and the first derivative of f∞
with respect to fw,df∞/dfw = (f 2

w − 2)(f 2
w + 6)/(fwf∞)2,

become zero for fw = √
2. Thus f ∗

w = √
2, and the correspond-

ing minimum value of the entrainment velocity is f∞,min =
211/6 = 3.5636. These two particular cases of the entrainment
Fig. 1. Plots of the similar entrainment velocity f∞ = f∞(λ;fw) and the heat
transfer parameter H = H(λ;fw) as functions of the mass transfer parameter
fw for λ = −1/3 and λ = −1/2, respectively.

theorem are illustrated in Fig. 1, where the respective quan-
tities f∞ = f∞(λ;fw) and H = H(λ;fw) have been plotted
as functions of fw . One sees that f∞(λ;f ∗

w), with f ∗
w = 0 for

λ = −1/3, and f ∗
w = √

2 for λ = −1/2, actually is a minimum
of the entrainment velocity. Thus, according to the entrainment
theorem, H(λ;f ∗

w) = 0, such that the wall heat flux changes
sign at fw = f ∗

w . In the case λ = −1/2, for example, the heat
is transferred from the wall to the fluid (a direct heat flux) only
in the range fw > f ∗

w = √
2, while for 0 < fw < f ∗

w = √
2, the

heat transfer takes place from the fluid to the wall (reversed heat
flux). At fw = f ∗

w = √
2 where f∞ = f∞,min, the wall is adia-

batic, and H(λ;√2) = 0. In the case λ = −1/3, the sign change
of the wall heat flux happens at fw = f ∗

w = 0. Furthermore, it
is an elementary exercise to show that in the case of the special
solutions (8) and (9), the derivative df∞/dfw can also be put
into the generally valid form (26).

4.3. The full interval −1 < λ < 0

In the general case −1 < λ < 0, the results of the nu-
merical investigation of the entrainment theorem based on
Eqs. (23) and (24) are illustrated graphically in Fig. 2 for
five selected values of the temperature exponent, namely: λ =
−0.75,−0.65,−0.50,−0.45,−1/3,−0.20. The family of en-
trainment velocity curves f∞ = f∞(λ;fw) represents the con-
tour plots (topographic maps) of Eq. (23) for the selected val-
ues of λ. The family of the corresponding heat transfer curves
H = H(λ;fw) must then be obtained by substituting the ex-
plicit (numerical) solution of Eq. (23) into Eq. (24), and plotting
the resulting expressions of H as functions of the mass trans-
fer parameter fw . Numerically, we find that, for any specified
value of λ in the interval −1 < λ < 0, the minima f∞,min =
f∞(λ;f ∗

w) of the entrainment velocity on the one hand, and the
vanishing values H(λ;f ∗

w) of the heat transfer parameter on the
other hand, are reached at the same values f ∗

w(λ) of the mass
transfer parameter fw , in full agreement with the entrainment
theorem. The corresponding points of the two families of curves
are marked in Fig. 2 by dots, and the respective numerical val-
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Table 1
Values f ∗

w of the mass transfer parameter fw for which the similar entrainment velocity f∞(λ;fw) reaches (in the interval −1 < λ < 0) its minimum f∞,min =
f∞(λ;f ∗

w) and the heat transfer parameter vanishes, H(λ;f ∗
w) = 0

λ f ∗
w f∞,min λ f ∗

w f∞,min

−0.99 213.468 215.145 −0.475 1.16656 3.35329
−0.98 105.547 107.231 −0.45 0.93521 3.16153
−0.95 40.7753 42.4793 −0.40 0.51093 2.82420
−0.925 26.3663 28.0878 −1/3 0

√
6

−0.90 19.1508 20.8905 −0.30 −0.24173 2.28717
−0.875 14.8124 16.5708 −0.25 −0.59877 2.06842
−0.85 11.9121 13.6899 −0.20 −0.96336 1.87389
−0.825 9.83326 11.6311 −0.15 −1.35787 1.69859
−0.80 8.26748 10.0861 −0.10 −1.82423 1.53817
−0.75 6.05820 7.92085 −0.05 −2.47976 1.38807
−0.70 4.56445 6.47469 −10−2 −3.64256 1.27009
−0.65 3.47728 5.43922 −10−3 −4.85551 1.24194
−0.60 2.64188 4.66032 −10−4 −5.79068 1.23885
−0.55 1.97170 4.05225 −10−5 −6.57006 1.23853
−1/2

√
2 211/6 −10−6 −7.25949 1.23898
Fig. 2. Plots of the entrainment velocities f∞ = f∞(λ;fw) as functions of the
mass transfer parameter fw for six different values of the power-law exponent λ

in the range −1 < λ < 0. The minima of the curves f∞(λ;fw), marked by dots,
are associated with adiabatic temperature profiles, i.e. with flows of vanishing
heat transfer parameter, H(λ;f ∗

w) = 0, in full agreement with the entrainment
theorem.

ues of f ∗
w and f∞,min, along with those obtained for further 24

values of λ in the interval −1 < λ < 0, are collected in Table 1.
A further important consequence of Eqs. (23) and (24), is

that, for finite values of fw(−∞ < fw < +∞), no zeros of the
heat transfer parameter H(λ;fw) can exist when λ � 0. In the
range λ � 0, the boundary value problem (1)–(4) admits solu-
tions only for H(λ;fw) > 0.

The elementary analytical results (8) and (9) corresponding
to the values λ = −1/3 and λ = −1/2 could also be recov-
ered from Eqs. (23) and (24) exactly, and have been included
in Fig. 2 and Table 1, too. For sake of transparency, the values
of f ∗

w and f∞,min included in Table 1 have been plotted as func-
tions of λ in Fig. 3. This figure shows that both f ∗

w and f∞,min

decrease monotonically as λ increases from −1 toward 0. How-
ever, while f∞,min is positive for all −1 < λ < 0, f ∗

w changes
sign at λ = −1/3, becoming negative in the range −1/3 <
Fig. 3. Dependence on the temperature exponent λ,−1 < λ < 0, of the mini-
mum entrainment velocity f∞,min(λ) and of the corresponding value f ∗

w(λ) of
the mass transfer parameter fw .

λ < 0. This feature can also be proven analytically with the
aid of the integral relationship

H = 1 + λ

2
fw + 1 + 3λ

2
·

∞∫
0

f ′2(η)dη (27)

which is a straightforward consequence of Eqs. (10) and (11).
Indeed, for H(λ;f ∗

w) = 0 and −1 < λ < 0, Eq. (27) implies

sgnf ∗
w = − sgn(1 + 3λ) (28)

which clearly shows that f ∗
w > 0 for −1 < λ < −1/3 and

f ∗
w < 0 for −1/3 < λ < 0, in full agreement with Fig. 3 and

Table 1.
Furthermore, the adiabatic temperature profiles, i.e. the so-

lutions θ = θ(η) = f ′(η) corresponding to the vanishing values
H(λ;f ∗

w) = 0 of the heat transfer parameter H predicted by
the entrainment theorem, are also of physical interest. Based on
the data of Table 1, in Fig. 4 such profiles are shown for five
selected values of the power law exponent λ. It is seen that the
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Fig. 4. Adiabatic temperature profiles corresponding to the indicated values of
temperature exponent λ.

Fig. 5. Five dimensionless temperature profiles for λ = −1/2. The middle
one represents the adiabatic profile with (H,f∞) = (0, f∞,min), which cor-
responds to fw = f ∗

w = √
2. The upper two profiles with fw < f ∗

w , are associ-
ated with negative values of H(reversed wall heat flux) and the lower ones with
fw > f ∗

w , correspond to positive values of H(direct wall heat flux).

thickness of the adiabatic temperature boundary layers decrease
as the values of λ decrease toward the value −1.

The physical origin of the entrainment theorem has to be
sought in the sign change of the wall heat flux. This phenom-
enon is illustrated in Fig. 5, where the temperature profiles cor-
responding to five selected values of the mass transfer parame-
ter fw have been plotted as functions of η for λ = −1/2. One of
them (profile 3) is the adiabatic temperature profile correspond-
ing to H = H(λ;f ∗

w) = 0 and f∞ = f∞,min = f∞(λ;f ∗
w) =

211/6 with f ∗
w = √

2. The other four profiles correspond to the
indicated values of fw , below of fw = f ∗

w = √
2 (profiles 1

and 2) and above of fw = f ∗
w = √

2 (profiles 4 and 5), and are
associated with direct (H > 0) and reversed (H < 0) wall heat
fluxes, respectively. Bearing in mind that the wall temperature
Tw(x) = T∞ +A ·x−1/2, A > 0, is larger than the ambient tem-
perature T∞ at all stations x � 0, the positive sign of wall heat
fluxes associated with the temperature profiles 1 and 2 corre-
sponds to our physical expectation. It is also clear in this case,
that the larger the value of the suction parameter fw , the larger
is the corresponding entrainment velocity f∞ and heat trans-
fer parameter H . This behaviour is encountered also for λ � 0.
However, in the case of temperature profiles 4 and 5, it is not
immediately clear, why the wall heat flux has changed its sign
from H > 0 to H < 0, and why the entrainment velocities be-
come larger than f∞,min, although in this case Tw(x) is still
larger than T∞ for all x � 0 and the respective values of the
suction parameter fw are smaller than f ∗

w .
Obviously, the reversed wall heat fluxes (negative H ’s) are

related to the “temperature hills” of the θ -profiles 4 and 5. But,
where do these temperature peaks come from? Bearing in mind
that the dimensionless temperature θ(η) coincides (see Eq. (5))
with the dimensionless streamwise velocity f ′(η), the temper-
ature peaks which overshoot the local wall temperatures Tw(x),
represent at the same time also “velocity peaks”. Since λ < 0,
the velocity peaks transport hot fluid from upstream stations
(small values of x) to all the downstream stations (larger val-
ues of x) of the flow. Consequently the heat flows from the “hot
spots” into the wall (reversed heat flux) and, at the same time
the velocity peaks lead in this case to values of the entrainment
velocity which are larger than f∞,min. The smaller the suction
parameter, the higher the velocity peaks and the larger the cor-
responding entrainment velocities f∞ in the low suction range
0 < fw < f ∗

w . In the strong suction range fw > f ∗
w of the pro-

files 1 and 2 on the other hand, the velocity and temperature
peaks are “sucked out” from the fluid and, consequently, the
above-described “usual” heat transfer and entrainment mech-
anisms become effective. The latter ones persist then for all
λ � 0.

It is worth mentioning here that a similar phenomenon where
the wall heat flux changes sign, has already been noticed by
Sparrow and Gregg [15] a half century ago in connection with
the free convection of clear fluids over an impermeable vertical
plate with a power law temperature distribution in the range
λ < 0 of the temperature exponent. The occurrence of such
“Sparrow–Gregg temperature hills” in heat transfer problems
in wedge-type flows, has been discussed by Eckert and Drake
[16] in some detail.

5. Summary and conclusions

In the present paper the Darcy free convection boundary
layer flow over a permeable vertical plate with prescribed
power-law temperature distribution and an applied lateral mass
flux has been revisited. The relationship between the similar
entrainment velocity and the wall heat flux has been investi-
gated in detail. The main result of the paper is summarized
in the entrainment theorem which asserts that, at the value of
the mass transfer parameter where the wall heat flux becomes
zero and changes its sign, the entrainment velocity of the flow
passes through its minimum value. The entrainment theorem
holds for all negative values of the wall temperature exponent
and its converse is also true. This theorem represents at the same
time a bridge between a flow characteristic at the outer edge
and a heat transfer characteristic at the inner edge of the Darcy
free convection boundary layer. The physical reason for this
relationship resides in the temperature and velocity overshoot
occurring for negative values of the wall temperature exponent
(the “Sparrow–Gregg phenomenon”). The present authors be-
lieve that the entrainment theorem holds also in the case of free
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convection of clear fluids over a permeable vertical plate. The
rigorous proof of this conjecture is still an open research oppor-
tunity.
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Appendix A

In the following, a straightforward general analytical proof
of the entrainment theorem is given on the ground of Eqs. (10),
(11) of our basic boundary value problem.

For convenience, we first introduce the notations

∂f

∂fw

= ḟ ,
∂2f

∂f 2
w

= f̈ (A.1)

for the derivatives ∂f/∂fw and ∂2f/∂f 2
w of f = f (η) with re-

spect tofw . The proof will be accomplished by finding solutions
for ḟ (η)andf̈ (η).

A.1. First order analysis

The equation for ḟ (η) is obtained by differentiating Eq. (10)
with respect to fw:

ḟ ′′′ + 1 + λ

2
(ḟ f ′′ + f ḟ ′′) − 2λf ′ḟ ′ = 0 (A.2)

Its boundary conditions have to be chosen with care, and they
are

ḟ (0) = 1, ḟ ′(0) = 0, ḟ (∞) = 0 (A.3a,b,c)

Eqs. (A.3a,b) are the first fw-derivatives of the equations
f (0) = fw and f ′(0) = 1, respectively, and Eq. (A.3c) is
the expression of the entrainment theorem which states that
ḟ (∞) = 0 for the root fw ≡ f ∗

w of f ′′(0) = 0.
Eq. (A.2) subject to (A.3) has the simple solution,

ḟ (η) = f ′(η) (A.4)

which, along with Eqs. (10) and (11) implies

ḟ ′′(0) = f ′′′(0) = λ (A.5)

Now, we expand f (η,fw) in a Taylor series with respect to fw

about fw = f ∗
w ,

f (η,fw) = f (η,f ∗
w) + (fw − f ∗

w)ḟ (η, f ∗
w)

+ 1

2
(fw − f ∗

w)2f̈ (η, f ∗
w) + · · · (A.6)

If we now let η → ∞ and take into account Eq. (A.3c), we
obtain

f∞ = f ∗∞ + 1

2
(fw − f ∗

w)2f̈ (∞, f ∗
w) + · · · (A.7)

where f ∗∞ ≡ f∞(λ,f ∗
w). Therefore, the setting of f ′′(0) = 0 is

equivalent to f∞ having a turning point at fw = f ∗
w .

The nature of the turning point may now be found by deter-
mining f̈ (∞, f ∗

w), which requires a second order analysis, i.e.
the solution for f̈ (η).
A.2. Second order analysis

The equation for f̈ (η) is,

f̈ ′′′ + 1 + λ

2
(f̈ f ′′ + f f̈ ′′) − 2λf ′f̈ ′

= 2λḟ ′ḟ ′ − (1 + λ)ḟ ḟ ′′ (A.8)

subject to

f̈ (0) = 0, f̈ ′(0) = 0, f̈ ′(∞) = 0 (A.9a,b,c)

The first two boundary conditions (A.9) arise as fw-derivatives
of Eqs. (A.3a,b), and Eq. (A.9c) expresses the fact that the en-
trainment is a constant.

It is possible to find the particular integral and two of the
three complementary functions analytically in terms of f (η),
but we do not need the third. These solutions are

f̈pi = f ′′ ⇒ f̈pi(0) = 0, f̈ ′
pi(0) = λ, f̈pi(∞) = 0 (A.10)

f̈cf1 = f ′ ⇒
f̈cf1(0) = 1, f̈ ′

cf1(0) = 0, f̈cf1(∞) = 0 (A.11)

f̈cf2 = ηf ′ + f ⇒
f̈cf2(0) = fw, f̈ ′

cf2(0) = 2, f̈cf2(∞) = f ∗∞ (A.12)

Given the form of Eq. (A.8), the third complementary function
must grow linearly as η becomes large, and therefore it is inad-
missible for the present purpose. The above three components
may be added in a suitable manner to obtain a solution which
satisfies Eqs. (A.9)

f̈ = f̈pi − λ

2
(f̈cf2 − fwf̈cf1)

= f ′′ − λ

2

[
(η − fw)f ′ + f

]
(A.13)

Therefore we may deduce that

f̈ (∞, f ∗
w) = −λ

2
f ∗∞ (A.14)

Finally, from Eq. (A.7), we see that the behaviour of f∞ near
to fw = f ∗

w is given by

f∞ = f ∗∞
[

1 − λ

4
(fw − f ∗

w)2 + · · ·
]

(A.15)

and therefore this represents a minimum whenever λ < 0.
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