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We examine the effect of local thermal non-equilibrium on the infiltration of a hot
fluid into a cold porous medium. The temperature fields of the solid porous matrix
and the saturating fluid are governed by separate, but coupled, parabolic equations,
forming a system governed by three dimensionless parameters. A scale analysis and
numerical simulations are performed to determine the different manners in which the
temperature fields evolve in time. These are supplemented by a large-time analysis
showing that local thermal equilibrium between the phases is eventually attained. It is
found that the thickness of the advancing thermal front is a function of the governing
parameters rather than being independent of them. This has the implication that local
thermal equilibrium is not equivalent to a single equation formulation of the energy
equation as might have been expected. When the velocity of the infiltrating fluid is
sufficiently large, the equations reduce to a hyperbolic system and a thermal shock
wave is formed within the fluid phase. The strength of the shock decays exponentially
with time, but the approach to local thermal equilibrium is slower and is achieved
algebraically in time.

1. Introduction
Heat and mass transfer in porous media arises in a number of important

applications, including thermo-solutal convection in geothermal fields (McKibbin
2005), post-accident heat removal from pebble-bed reactors (Baytas 2003), the disposal
of hazardous waste in subsurface salt formations (Schotting & Landman 2004) and
the modelling of convection in the underground storage of CO2 (Ennis-King, Preston
& Paterson 2005). Many studies are concerned, in particular, with the flushing out of
contaminants, oil or heat from various types of porous medium. The process of heat
extraction from geothermal fields, for instance, is in widespread use around the world
for domestic and industrial heating and for the generation of electricity (Barbier
2002). In a hot dry rock formation, water is pumped underground, heated by the
rock and then extracted from a production well. On the other hand, extraction of hot
water in many geothermal reservoirs depends on the fact that the saturated formation
is at high pressure, but, to preserve the pressure, the spent water is reinjected into the
formation (Shook 2001) as part of the standard well-management schemes (Stopa &
Wojnarowski 2006). In both these cases, then, and also in those procedures where
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heat either has to be removed or introduced, the common feature is that a fluid with
a different temperature is used to cause heat transfer from or to the surrounding solid
phase.

Studies such as those of Shook (2001) and Stopa & Wojnarowski (2006) employ
a hyperbolic approximation to the equation of heat transport, assuming that the
presence of temperature variations does not affect the velocity of the injected fluid.
Both papers extend a much earlier analysis by Bodvarsson (1972); Shook (2001) does
this by considering a heterogeneous porous medium, while Stopa & Wojnarowski
(2006) allow the physical properties of the rock and the injected fluid to exhibit
realistic variations with temperature. In both cases conduction is neglected as a
second-order effect, and the resulting hyperbolic system is solved to determine the
detailed thermal front.

However, in both these studies and many others, the temperature fields of the
rock and the fluid are assumed to be identical: such a situation is generally known as
Local Thermal Equilibrium (LTE). The converse situation is known as Local Thermal
Non-Equilibrium (LTNE), and in these cases the solid porous matrix may have a
different temperature from that of the saturating fluid, this being understood in terms
of averages over representative elementary volumes. Thus hot fluid can flow into
a cold, relatively insulating porous matrix, and there will exist a difference in the
average local temperature of the two phases which will take time to reduce to values
where one could say that the phases are in LTE. When the phases are not in LTE
the usual single energy equation should usually be replaced by two, one for each
phase. First introduced by Anzelius (1926) and Schumann (1929), these equations use
simple linear source/sink terms which allow for the local transfer of heat between
the phases. These early equations, which lack diffusion terms, have been used in
very many subsequent studies, especially for the modelling of heat exchangers. The
standard equations that are now used routinely include diffusion and are those quoted
by Nield & Bejan (2006).

An early study by Combarnous & Bories (1974) on the the effect of LTNE on
nonlinear Darcy–Bénard convection and some more recent papers by Straughan
(2006), Baytas (2003), Baytas & Pop (2002) and Banu & Rees (2001) on Darcy–
Bénard convection, and Rees (2003) and Rees & Pop (2000) on boundary layers,
represent much of the published work on the effect of LTNE on free convection in
porous media: see the detailed review by Rees & Pop (2005). On the other hand, the
literature on forced convective heat transfer is considerably more extensive. Some of
the more recent papers have concentrated on the steady introduction of hot fluid
into a channel with cold sidewalls, a variant on the classical Graetz problem: see for
example, Nield, Kuznetsov & Xiong (2002) and Nield (1998). This important subject
has not yet been the subject of a detailed review.

The chief aim of the present paper is to investigate the detailed effect of LTNE on
the propagation of thermal fronts in a one-dimensional porous medium. The fronts are
generated by the sudden injection of hot (cold) fluid into a cold (hot) porous medium.
Physical properties are kept constant with respect to temperature, the porous medium
is assumed to be homogeneous, and buoyancy forces are neglected. In a remarkably
early study Anzelius (1926) presented an analysis of the thermal front propagation in
the absence of conduction in both phases using the method of characteristics. Burch,
Allen & Peavy (1976) considered a finite slab of porous medium, with application
to single blow heating of packed beds, their aim being to determine the time taken
to reach a steady temperature. In this case conduction was neglected only in the
fluid phase. Toovey & Dayan (1985) studied an infinite heat reservoir, similar to the
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present situation, and conduction in the fluid phase was also neglected. Kuznetsov
(1994) employed a perturbation technique wherein the heat gained by the fluid phase
from the solid phase could be neglected. The emphasis of his work was on the
decaying solitary wave-like properties of the difference in the temperatures of the
two phases. Kuznetsov (1998) then considered the sudden injection of hot fluid into
finite two- and three-dimensional regions, expressing the subsequent evolution of the
temperature fields analytically. Use was made of the Anzelius–Schumann model but
with the inclusion of the diffusion terms in both phases. On the other hand, Swailes
& Potts (2006) studied the injection of a hot compressible gas into a cold porous
medium consisting of packed spheres. The thermal field corresponding to the spheres
was accounted for by means of a suitably modified form of the Newton’s law of
cooling boundary condition, relating the local temperature of the gas to heat lost by
the spheres to the gas. Thus only one thermal field needs to be employed in such a
formulation. Abu-Hijleh, Al-Nimr & Hader (2004) have made a preliminary study of
the present problem, but the focus of their short paper was on the ‘thermalization’
time, the time taken for LTE to be re-established, and only numerical data of this
kind were presented.

In the present paper we consider the the evolution of the temperature fields
themselves and find that there are parameter regimes within which thermal shock
waves are formed, that these shocks decrease in strength with time, and that they
travel faster than the velocity of the injected fluid – it is within this regime that
the approach to LTE is very slow indeed. In addition, we discover that there are
other parameter regimes wherein the solid phase heats up more rapidly than the fluid
phase, despite the fact that the fluid is moving. Thus, the present paper represents a
substantial extension of the work of Abu-Hijleh et al. (2004) and Anzelius (1926) by
uncovering the detailed behaviour of the thermal fields.

The remainder of the paper develops as follows. Section 2 introduces the governing
equations and describes a scale analysis indicating the important parameter regimes.
Some detailed numerical solutions are presented in § 3, and these are complemented
by a large-time analysis which is outlined in § 4. Here we show, in particular, that the
asymptotic solution is in LTE but, unusually, its structure is dependent on the three
governing parameters. In § 5 a hyperbolic approximation is made, which corresponds
to high flow rates or poor heat transfer between the phases. Laplace Transform
solutions are obtained and compared with full numerical simulations of the original
parabolic equations. Finally, we offer some comments and discussion in § 6.

2. Governing equations
Our study of LTNE effects is conducted using a model in which the semi-infinite

expanse of saturated porous medium lies in the region x∗ � 0. Fluid is supposed
to enter at x∗ = 0 with a steady uniform flux velocity v∗ = (U, 0, 0) and the system
is in thermal equilibrium with both phases taken to have the same temperature T0.
In addition, we assume that the fluid is incompressible and buoyancy forces are
negligible. Suddenly, at time t∗ = 0, the temperature of the incoming fluid is changed
to T1, which may be higher or lower than T0, and is maintained thereafter at this new
level.

The governing equations for the evolution of the temperature fields of the fluid
and solid phases of a rigid porous medium have been described by Nield & Bejan
(2006). If ε denotes the porosity of the medium, and if subscripts f and s attached to
variables refer to fluid and solid properties in the obvious way, then the equations
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coupling the temperature fields Tf and Ts are

ε(ρc)f
∂Tf

∂t∗ + (ρc)f v
∗ · ∇Tf = ε∇ · (kf∇Tf) + h(Ts − Tf), (2.1a)

(1 − ε)(ρc)s
∂Ts

∂t∗ = (1 − ε)∇ · (ks∇Ts) + h(Tf − Ts). (2.1b)

Furthermore, the fluid density and thermal capacity are given by ρ and c while the
thermal conductivity is k. It is important to note that kf and ks are not the intrinsic
conductivities of the fluid and solid phases, respectively, but rather are effective
conductivities; see Wakao & Kaguei (1982) or Vafai & Amiri (1998).

Within this system the inter-phase heat transfer coefficient h is worthy of especial
note. Large values of h imply that LTE is achieved very quickly, by which we mean
that the phases tend quickly to the same temperature locally. Conversely, for small
values of h, little heat is lost from the fluid to the solid, and it takes a relatively
long time for the solid phase to attain the same local temperature as the fluid
phase; this is precisely LTNE. In general, the value of h depends on many factors
including the detailed geometry of the porous medium, the porosity, the flow field
and the conductivities and diffusivities of the phases, as reviewed in Rees & Pop
(2005). Recent work by Rees (2007) has drawn attention to the fact that many of
the published expressions for h do not yield the correct symmetries in the zero flow
limit and, in some cases, are independent of the conductivity of the solid phase. In
the present paper we shall assume that it is a constant, which, given that the imposed
flow field is uniform and steady, means that our analysis is independent of how h

is modelled (unless it is also dependent on the temperature difference between the
phases thereby rendering the source/sink terms nonlinear, a scenario which has not
been considered). In system (2.1) we follow standard practice and take Tf and Ts to be
intrinsic averages of the respective temperature fields. This allows us to set Tf = Ts = T0

whenever the boundary of the porous medium is maintained at the temperature T0.
On the other hand, v is a superficial average, which has important ramifications later.

The problem examined here does not possess an obvious natural length scale L

although it does contain the velocity scale, U . However, L may be defined in terms of
U and the other natural properties of the porous medium and the saturating fluid so
that L = kpm/U (ρC)f. Then the system (2.1) may be non-dimensionalized using the
substitutions

x∗ = Lx, v∗ =
kpm

L(ρC)f
v, (2.2a)

t∗ =
L2(ρC)pm

kpm
t, (Tf, Ts) = T0 + (T1 − T0)(θ, φ) (2.2b)

and where all quantities Ξ associated with the porous medium have been defined
according to the weighted arithmetic mean

Ξpm = εΞf + (1 − ε)Ξs. (2.3)

On assuming that variations take place only in the x-direction, as the flow is
unidirectional, the governing equations become(

γ + 1

γ + α

)
∂θ

∂t
+

(
γ + 1

γ

)
∂θ

∂x
=

∂2θ

∂x2
+ H (φ − θ), (2.4a)

α

(
γ + 1

γ + α

)
∂φ

∂t
=

∂2φ

∂x2
+ Hγ (θ − φ). (2.4b)
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The three dimensionless parameters H , γ and α are the non-dimensional inter-phase
heat transfer parameter, the porosity-modified conductivity ratio and the diffusivity
ratio, and are given by

H =
hL2

εkf
, γ =

εkf

(1 − ε)ks
, α =

kf

(ρC)f

(ρC)s
ks

=
αf

αs
. (2.5)

It is worth pointing out that the complicated coefficients in (2.4) have distinctive
meanings in terms of ratios of conductivities and diffusivities since

γ + 1

γ + α
=

αpm

αf
,

γ + 1

γ
=

kpm

εkf

and α

(
γ + 1

γ + α

)
=

αpm

αs
. (2.6)

We also notice that (2.4) simplifies greatly in the LTE (H → ∞) limit. When H is
asympotically large we have θ = φ (≡ Θ , say) to leading order (so that, equivalently,
θ − φ = O(H −1)) where

Θt + Θx = Θxx. (2.7)

Finally, it is important to note that the replacement of the equation (2.7) by the
system (2.4) means that the order of the system has been increased from one to two,
thereby raising the possibility of oscillatory solutions in time. The analysis of Vadasz
(2005) reduces the pair of equations for the respective temperatures to just one, which
is second-order in time and fourth-order in space. Conditions are then derived for
this system to exhibit under-damped oscillations, but these conditions cannot be met
in practice. Therefore the approach to a steady-state solution is always overdamped.

2.1. Coordinate transformations and scale analysis

The sudden change in the inlet condition is highly reminiscent of the classical unsteady
conduction problem described by Carslaw & Jaeger (1959) in which one end of a
conducting solid at a uniform temperature has its temperature instantaneously raised
to a new constant level. In the light of their work, it is natural to make the coordinate
transformation

η =
x

2
√

t
, τ =

√
t (2.8)

so that equations (2.4) become(
γ + 1

γ + α

)
2τ

∂θ

∂τ
=

∂2θ

∂η2
+

[(
γ + 1

γ + α

)
2η −

(
γ + 1

γ

)
2τ

]
∂θ

∂η
+ 4τ 2H (φ − θ), (2.9a)

α

(
γ + 1

γ + α

)
2τ

∂φ

∂τ
=

∂2φ

∂η2
+ α

(
γ + 1

γ + α

)
2η

∂φ

∂η
+ 4τ 2Hγ (θ − φ). (2.9b)

This system needs to be supplemented by suitable starting and boundary conditions.
The initial temperature profiles are given by

θ = φ = 0 at t = 0, (2.10)

while the boundary conditions are taken to be

θ = 1,
∂φ

∂η
= 0 at η = 0, (2.11a)

θ, φ −→ 0 as η −→ ∞. (2.11b)

We have chosen to use an insulating condition for the solid phase at η = 0 as it
models the situation that occurs in an experiment, such as where hot fluid enters a
thin horizontal layer via a narrow slit at x = 0, in which case the boundary condition
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is a symmetry condition. This condition results in the value of φ at η = 0 rising
towards 1 as τ increases and as the passage of hot fluid heats up the relatively cold
solid by means of the source/sink terms. It might be argued that the setting of φ = 1
at η = 0 would be equally appropriate, but this modification affects only the detailed
early-time solutions.

Before embarking on a numerical solution of the problem, there is some benefit in
considering the expected behaviour of the solutions to system (2.9). It is clear from
these equations and the associated boundary conditions that θ = O(1) and φ =0 when
τ = 0. If we suppose that both α and γ are of roughly unit magnitude, then the two
most important quantities in equations (2.9) would seem to be τ and τ 2H . Sufficiently
small values of τ mean that the second term in the coefficient of θη in equation (2.9a)
is negligible at leading order, and then solutions to the full system take the forms

θ = erfc ζ + τ

(
(γ + α)(γ + 1)

γ 2

)1/2

ζerfc ζ + O(τ 2), (2.12a)

φ =
Hγ (γ + α)

(1 − α)(γ + 1)

[
G(ζ ) − 1√

α
G(

√
αζ )

]
τ 2 + O(τ 3), (2.12b)

where

ζ ≡
(

γ + 1

γ + α

)1/2

η and G(ζ ) ≡ (2ζ 2 + 1)erfc ζ − 2√
π

ζe−ζ 2

.

It is important to note that we also require τ 2H � 1 for these results to hold, since
otherwise the source/sink terms in (2.9) are no longer negligible at leading order.
Indeed, the magnitude of τ 2H determines roughly when φ makes the transition from
being small to becoming of O(1) magnitude; at such times, the coupling terms in
(2.9) first allow heat to be transferred between the phases. This allows us to estimate
the various transition stages in the evolution of the thermal fields and the details of
these are sensitive to the relative magnitudes of τ and τ 2H . When the system is likely
to be near to LTE, that is when H 	 1, we have that

θ ∼ erfc

√
γ + 1

γ + α
η, φ = O(τ 2H ) when τ � H −1/2 (2.13a)

θ, φ ∼ erfc η when H −1/2 � τ � 1 (2.13b)

θ, φ ∼ 1

2
erfc (η − τ/2) when 1 � τ. (2.13c)

Conversely, in the opposite limit H � 1 and far from LTE, the equivalent results are

θ ∼ erfc

√
γ + 1

γ + α
η, φ = O(τ 2H ) when τ � 1 (2.14a)

θ ∼ 1

2
erfc

√
γ + 1

γ + α

(
η − γ + α

2γ
τ

)
, φ = O(τ 2H ) when 1 � τ � H −1/2 (2.14b)

θ, φ ∼ 1

2
erfc (η − τ/2) when H −1/2 � τ. (2.14c)

All these expressions arise in a quite straightforward manner either from (2.9), or
else, for the large-τ cases, from the solution of (2.7), which corresponds to the single
energy equation model for LTE.
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We note that, when H 	 1, thermal equilibrium between the phases is achieved
well before the effects of infiltration are felt but the converse is true when H � 1.
We also remark that when H = O(1) there is only one main transition close to unit
values of τ ; the effects of the infiltration and the thermal coupling between the phases
are felt simultaneously at that time, and there is no clearly identifiable intermediate
regime.

If the above scenario were to prove to be the complete story then the problem
would require little more analysis. However, we shall see in due course that the
large-τ description is more complex than is suggested above and, indeed, unless H is
asymptotically large, the above simple-minded solution given in (2.14c) is erroneous.
The analysis of Nouri-Borujerdi, Noghrehabadi & Rees (2007) on the evolution of
pure conduction after a sudden rise in boundary temperature shows that large values
of τ 2H are equivalent to attaining LTE whatever the value of H , and then the
evolving temperature profile is found to be independent of H , γ and α. In the present
paper, which differs only by the presence of the infiltrating fluid, we shall discover that
large values of τ 2H are also required for LTE between the phases, but the eventual
thermal profile depends strongly on H , γ and α. This is a case where a näıve large-τ
expansion like (2.14c) turns out to be misleading. The resolution of this paradox
whereby a solution in LTE does not satisfy the single energy equation model (2.9) is
given in § 4.

3. Numerical method
Equations (2.9) subject to (2.11) were solved using a standard Keller-box scheme; see

Keller (1978). The method is most often used for solving non-similar boundary layer
problems, although it may be adapted easily to solving a variety of marching problems.
Generally, the approach requires a reduction of the system to first-order form in η,
which yields a parabolic system of four equations for the present simulations. Central
differencing in both η and τ yields a linear matrix/vector system for the unknowns at
each time step. The matrix takes block tridiagonal form, and it is solved easily using
the block-Thomas algorithm. At τ =0 system (2.9) reduces to an ordinary differential
form which may be solved using precisely the same central differencing technique in
the η-direction.

Generally we took the step lengths in both directions to be 0.05 with the number
of time steps taken depending on the maximum value of τ being considered. On the
other hand, the spatial extent of the initial profile depends strongly on the chosen
values of H , γ and α, as may be seen by the small-τ solutions presented in (2.12).
Thus, if the function erfc η is considered to have a boundary layer thickness equal
to roughly 2, then the two main components of the solutions given in (2.12), namely
erfc ζ and erfc

√
αζ , have boundary layer thicknesses which can be calculated easily.

Account always had to be taken of how many grid points were necessary (i) to
resolve the initial profiles adequately and (ii) to decide how large ηmax should be at
the beginning of the computation. Given that this is an infiltration problem, we also
adjusted the value of ηmax as the computation proceeded in order to account for the
movement of the thermal front into the porous medium. Thus efficient use was made
of smaller numbers of grid points at the beginning of the simulations without loss of
accuracy.

There are three non-dimensional parameters at our disposal and, in order to assess
the influence of each in a concise manner, we explore the effect of varying H , γ and
α in turn away from a chosen datum case in which H = γ = α =1. Figures 1–3 show
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Figure 1. Contours of temperature of the fluid phase θ (continuous lines) and the solid phase
φ (dashed lines). α = 1 and γ = 1 for different values of H . The contours plotted correspond
to temperature fields 0.05n (n= 0, 1, . . . , 20) in this and all other figures of the same type.

contours in η–τ space of the temperature fields of both phases. (We have chosen to
use these variables for plotting purposes as the thickness of the thermal front tends to
a constant as time progresses, and it is therefore easier to compare different solutions
than if they were plotted in x–t space.)

Figure 1 displays the effects of varying H , the inter-phase heat transfer coefficient,
when γ = α =1. Focusing first on the datum case, for which H = 1, the thermal field
of the fluid enlarges initially due to the fluid infiltration, and then a front of uniform
width detaches from η =0 which propagates in the positive-η direction, eventually
without change of profile. As regards the thermal field of the solid phase, it is initially
set at φ = 0, but evolves rapidly until its profile is almost indistinguishable from that
of the fluid. In terms of the physical variables, x and t , the fully developed front is
indeed travelling at a uniform velocity: at sufficiently large values of τ , the θ = 0.5
contour lies along η = τ/2 almost precisely, and this is equivalent to x = t . Therefore
the front is in a state of LTE and is travelling with the speed of the infiltrating fluid,
although it is also expanding slowly in the x-direction owing to diffusion.
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As H takes increasingly large values, the thermal profile of the solid phase adjusts
increasingly rapidly to that of the fluid phase due to the increased importance of the
source/sink terms in (2.9). On the other hand, when H decreases below unity, not
only is there an lengthening time delay before the phases become close to LTE, but
the width of the front increases. Thus we have our first evidence that the large-τ
behaviour proposed in (2.14c) using a simple-minded approach is actually incorrect,
for that expression is independent of H . Indeed when H takes very small values,
such as H = 0.001 (the last panel in figure 1) then once the thermal front of the
fluid has detached itself from the boundary, the evolving front satisfies (2.14b), which,
given that α = γ =1 here, becomes θ ∼ (1/2)erfc (η − τ ). Therefore the centre of the
front is located at x = 2t , and it is clearly travelling faster than when the fluid and
solid phases are in LTE. In particular, this means that the front has non-dimensional
velocity equal to 2, which is twice the velocity of the infiltrating fluid. Although
this conclusion appears to be counter-intuitive, it is important to realize that fluid
velocities in porous media are superficial averages, i.e. they are averages taken over
both phases. The intrinsic average velocity of the fluid is higher, as this average
is taken over the fluid phase only. More generally, then, at intermediate times, the
thermal front is given by (2.14b), and the centre of this front is at x∗ =Ut∗/ε after
conversion back into dimensional form using (2.2) and the definition of U . Therefore
the dimensional velocity of the front is U/ε, which is precisely the intrinsic average
of the velocity of the infiltrating fluid.

Figure 2 shows the effects of different values of γ on the evolution of the thermal
fronts when H = α =1. There is a great deal of qualitative similarity between these
cases and those given in figure 1. The primary reason is that γ appears in the
source/sink term in equation (2.9b) for the solid phase. Therefore large values serve
to enhance LTE while small values tend to decouple the thermal energy equations,
thereby favouring LTNE. Notice that the presence of γ in other coefficients causes
some quantitative details to vary but these dependences do not affect the qualitative
behaviours of solutions. The velocity of the front for the fluid phase increases with
decreasing values of γ , whereas figure 1 shows that it is independent of H when
H decreases. The fluid-phase isotherms for γ = 0.1 appear to indicate that the front
reverses its direction, but this is simply an artifact of the η–τ coordinate system used;
all isotherms, when plotted in terms of x and t , have a positive slope.

Figure 3 shows the corresponding isotherms for different values of α while
H = γ = 1. As the parameter α is a diffusivity ratio, large values correspond to a
more highly conducting fluid phase. In addition, from (2.13a) and (2.14a), large
values of α also give rise to a relatively thick thermal boundary layer in the fluid
phase; this is seen quite clearly in figure 3 for the cases α = 100 and α = 10. When
α takes small values, there is preferential conduction in the solid phase, which is
seen clearly for the cases where α < 1. In these latter situations, the small size of α,
which multiplies the φτ term in (2.9b) and which therefore enhances the effect of the
source/sink term in that equation, serves to heat up the solid phase very rapidly. The
relative ease of conduction allows the thermal field to spread out ahead of that of the
fluid phase despite the fact that the fluid is moving.

There are two aspects of the solutions presented so far which are worthy of
further exploration, namely, the large-time and the small-H behaviours of the system.
The former issue is of interest because it is clear that the evolving front tends
towards a state of uniform thickness and the extent of the front depends on the
non-dimensional parameters. That this is so is surprising, for it was anticipated
that the increasing magnitude of the coefficients of the source/sink terms would
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Figure 2. Contours of temperature of the fluid phase (continuous lines) and the solid phase
(dashed lines). H = 1 and α = 1 for different values of γ .

guarantee that LTE would be approached for any set of values of H , γ and α, and
therefore the large-τ solution should be given by (2.13c) and (2.14c) independent
of the particular parameter values at hand. As regards the small-H structure, the
approach to a travelling wave solution slows markedly as H decreases towards zero,
and the resulting front is very wide. Therefore the diffusion terms in (2.9) are likely
to play largely passive roles once the thermal front of the fluid phase has detached
itself from the boundary. When H � 1 the governing equations change from being
parabolic to being hyperbolic in nature.

4. Large-time asymptotic solution
The numerical solutions summarized in figures 1–3 suggest that the temperature

profiles of the two phases tend to one another as τ → ∞. The aim here is to sketch
an asymptotic analysis which confirms this observation and, moreover, explains how
the thickness of the thermal front depends on the governing parameters.
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Figure 3. Contours of temperature of the fluid phase (continuous lines) and the solid phase
(dashed lines). H =1 and γ = 1 for different values of α.

The numerical solutions indicate clearly the importance of the line of solution
η = τ/2, so let us redefine the spatial coordinate

η =
1

2
τ + ζ ; (4.1)

then ζ = 0 corresponds to the line of apparent activity in the centre of the front.
Written in terms of τ and ζ , system (2.9) becomes

γ

(
γ + 1

γ + α

)
2τ

∂θ

∂τ
= γ

∂2θ

∂ζ 2
+ 2

(
γ + 1

γ + α

)
[γ ζ − ατ ]

∂θ

∂ζ
+ 4τ 2Hγ (φ − θ), (4.2a)

α

(
γ + 1

γ + α

)
2τ

∂φ

∂τ
=

∂2φ

∂ζ 2
+ 2

(
γ + 1

γ + α

)
[αζ + ατ ]

∂φ

∂ζ
+ 4τ 2Hγ (θ − φ), (4.2b)

where these new equations have been arranged to display as much symmetry as
possible. The boundary conditions require that θ = 1 and φζ = 0 at ζ = − τ/2, and
that both θ and φ vanish as ζ → ∞.
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We seek a solution of the form

(θ, φ) = (θ0, φ0) +
1

τ
(θ1, φ1) +

1

τ 2
(θ2, φ2) + · · · , (4.3)

with each θj and φj functions of ζ . We substitute into (4.2) and compare like powers
of τ . At O(τ 2) we just obtain the consistency condition φ0 = θ0. The two balances that
arise from (4.2a, b) at O(τ ) combine to show that φ1 and θ1 are related by

φ1 = θ1 +
α

2γH

(
γ + 1

γ + α

)
dθ0

dζ
(4.4)

irrespective of the precise form of the zeroth-order unknowns. It is not until the next
order that these quantities are tied down, for O(1) terms in (4.2a, b) tell us that

γ
d2θ0

dζ 2
+ γ

(
γ + 1

γ + α

)
2ζ

dθ

dζ
− 2α

(
γ + 1

γ + α

)
dθ1

dζ
+ 4Hγ (φ2 − θ2) = 0, (4.5a)

α
d2φ0

dζ 2
+ α

(
γ + 1

γ + α

)
2ζ

dφ

dζ
+ 2α

(
γ + 1

γ + α

)
dφ1

dζ
+ 4Hγ (θ2 − φ2) = 0. (4.5b)

If we add these two equations and use the previous results, we have that θ0 satisfies[
1 +

α2(γ + 1)

Hγ (γ + α)2

]
d2θ0

dζ 2
+ 2ζ

dθ0

dζ
= 0 (4.6)

and in view of the boundary conditions the appropriate solution of (4.6) is

θ0 =
1

2
erfc (Z), (4.7)

where

Z ≡
[
1 +

α2(γ + 1)

Hγ (γ + α)2

]−1/2

ζ. (4.8)

Strictly this solution contains superexponentially small errors when τ is large since
the boundary is at ζ = − τ/2 (rather than as ζ → −∞), but our purposes do not
require consideration of such tiny terms. If, to be precise, we define the front to be
that part lying in the range −1 � Z � 1, then its thickness in terms of ζ is

ζfront = 2

[
1 +

α2(γ + 1)

Hγ (γ + α)2

]1/2

. (4.9)

It is clear from this expression that the evolving front yields the expected LTE
thickness, namely 2, given our present definition, in the separate limits, H → ∞,
γ → ∞ and α → 0. On the other hand, the front becomes very thick in the separate
limits H → 0 or γ → 0.

Figure 4 compares the leading-order large-τ asymptotic profiles given by
equation (4.6) with those obtained by using the Keller-box code. The parameters
H = 0.1 and γ =α = 1 were chosen, and the profiles were compared for four different
values of τ . For this parameter set the asymptotic solution yields quite an accurate
representation of the thermal profile of each phase since the phases are close to
being in LTE. The figure also gives some indication of the rapidity with which the
numerical solutions approach the asymptotic solution. The solutions presented in
figure 1 indicate that the time beyond which the asymptotic solution is valid depends
strongly on the precise values of the non-dimensional parameters. Equation (4.4) gives
the leading-order difference between the temperature profiles of the phases, which is
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Figure 4. Comparison of the numerically computed profiles for θ (solid lines) and φ (dotted
lines) with the leading-order large-τ asymptotic solution (long dashes) given by (4.7). The
parameter values are H = 0.1, γ = α = 1, while τ = 10, 20, 30 and 40.

the thermal wave described in Kuznetsov (1994). Given the form of θ0 in (4.7), this
difference is maximized at ζ =Z = 0. Therefore we find that the maximum difference
in the temperatures takes the form

θ − φ ∼ α√
πHγ

(
γ + 1

γ + α

)(
1 +

α2(γ + 1)

Hγ (γ + α)2

)−1/2

τ−1. (4.10)

where it is noted that θ > φ in this regime. Given the manner of the time-dependence
of this quantity (proportional to t−1/2), we see how the rapidity of the approach
to LTE (or thermalization; see Abu-Hijleh et al. 2004) depends on the governing
parameters. In particular when H takes very large or very small values, we have

θ − φ ∼ α

2
√

πHγ

(
γ + 1

γ + α

)
τ−1, or θ − φ ∼ 1

2

√
γ + 1

πHγ
τ−1, (4.11)

respectively. For large values of H LTE is achieved very rapidly, but the time for the
establishment of LTE increases greatly as H decreases and we now concentrate on
further description of this case.

5. Small-H analysis: the hyperbolic approximation
In order to investigate the behaviour of the system in the small-H limit, it is

convenient to rescale (2.4) once more; setting

t̄ = H
γ + α

γ + 1
t, x̄ = H

γ

γ + 1
x (5.1)
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leads to the system

∂θ

∂t̄
+

∂θ

∂x̄
= H

(
γ

γ + 1

)2
∂2θ

∂x̄2
+ (φ − θ), (5.2a)

α
∂φ

∂t̄
= H

(
γ

γ + 1

)2
∂2φ

∂x̄2
+ γ (θ − φ). (5.2b)

Therefore, when H̄ ≡ H (γ /(γ + 1))2 � 1, the governing equations change type from
parabolic to hyperbolic. Given that

H̄ =
hL2εkf

k2
pm

=
hεkf

U 2(ρC)2f
, (5.3)

we see that the system may be regarded as a hyperbolic one when U is sufficiently
large, or conversely, when one or more of h, kf or ε are sufficiently small. In this case
shocks are expected to occur which are equivalent to sharp changes in the temperature
of the fluid phase and, possibly, of the solid phase as well.

Therefore the system we study here is deduced by taking H̄ → 0, whereupon

θt̄ + θx̄ = φ − θ, φt̄ = −c(φ − θ) (5.4)

where c = γ /α is a constant; the required boundary conditions are that θ =φ = 0
initially and θ =1 on x̄ = 0. This system is similar in style to that considered by
Chikwendu & Ojiakor (1985) who studied a more complicated version including
some diffusion terms. They demonstrated how transform methods could be used to
solve their equations, although the necessary inversions could only be carried out
in certain special cases; in general only asymptotic forms of the solution could be
deduced. In contrast, our simpler equations (5.4) admit an exact solution which can
be obtained using the Laplace transform. If we define

L[θ] = Θ(x̄, p) =

∫ ∞

0

θ(x̄, t̄) exp(−pt̄) dt̄ (5.5)

and identify Φ(x̄, p) ≡ L[φ], then transforms of system (5.4) give that

Θ =
1

p
exp

[
cx̄

p + c
− x̄(1 + p)

]
. (5.6)

It is known (Gradshteyn & Ryzhik 1980) that

L
[

I1(2
√

t̄)√
t̄

]
= exp

(
1

p
− 1

)
, (5.7)

where In denotes the usual modified Bessel function of order n. This result, when
combined with the shift theorem for Laplace transforms and the convolution theorem,
enables us to invert (5.6). Routine calculations yield

θ = e−x̄

[
1 +

∫ 2
√

cx̄ (̄t−x̄)

0

exp

(
− u2

4x̄

)
I1(u)du

]
for x̄ � t̄ ; (5.8)

on x̄ = t̄ then θ = e−x̄ . It then follows that

φ = θ − ec(x̄−t̄)−x̄ I0(2
√

cx̄ (̄t − x̄)). (5.9)

Although this establishes formally exact solutions for θ and φ, it is not immediately
clear how these behave in the (x̄, t̄) plane. In order to probe a little deeper, it is
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helpful to examine the asymptotics of the integral in (5.8) when x̄ = λt̄ with t̄ 	 1 and
the constant λ< 1. If we make an obvious change of variables then

M ≡
∫ 2

√
cx̄ (̄t−x̄)

0

exp

(
− u2

4x̄

)
I1(u) du = t̄

√
λ

∫ 2
√

c(1−λ)

0

exp

(
− t̄w2

4

)
I1(̄tw

√
λ) dw,

(5.10)

and we expect the dominant contribution to the integral to arise from the vicinity of
the maximum point of the integrand. Standard results (Abramowitz & Stegun 1965)
give the form of the exponential growth of I1 with increasing argument, and a quick
inspection of (5.10) suggests that if we use the leading term for I1 then

M ∼ t̄1/2λ1/4

√
2π

et̄λ

∫ 2
√

c(1−λ)

0

w−i−1/2 exp

(
− t̄

4
(w − 2

√
λ)2

)
dw. (5.11)

The conclusion is that the largest contribution to M ought to arise in the vicinity
of w = 2

√
λ, as long as, of course, this point lies within the range of integration;

otherwise the integrand is largest at the right-hand end of the integration range. It is
an easy exercise to compute the asymptotic behaviour of M for t̄ 	 1 but there are
then two regimes that may occur, depending on whether or not 2

√
λ < 2

√
c(1 − λ).

After some lengthy evaluations it is found that, recalling that x̄ = λt̄ , λ < 1 and
t̄ 	 1: if λ<c/(1 + c) then

θ = 1 + o(̄t−1) and φ ∼ θ. (5.12)

In fact we can be more precise as to the relationship between θ and φ in this regime,
for (5.9) reveals that these fields differ by only an exponentially small quantity.

On the other hand, when λ > c/(1 + c) it follows that

θ ∼ 1

2
√

πt̄

(
λ

c(1 − λ)

)1/4
√
λ +

√
c(1 − λ)

(1 + c)λ − c
exp[̄t[2

√
cλ(1 − λ) + λ(c − 1) − c]]

(5.13a)

φ ∼ 1

2
√

πt̄

(
c(1 − λ)

λ

)1/4
√
λ +

√
c(1 − λ)

(1 + c)λ − c
exp[̄t[2

√
cλ(1 − λ) + λ(c − 1) − c]].

(5.13b)

We point out that the apparent discontinuities in solutions (5.12) and (5.13) can
easily be resolved by a careful consideration of the behaviour of the integral M for
λ in the vicinity of λ= c/(1 + c). Indeed, for λ= c/(1 + c) + t̄−1/2�, with �= O(1), it
may be shown that

θ ∼ 1

2
√

π

∫ −�
√

(1+c)3/c

−∞
exp

(
−1

4
S2

)
dS (5.14)

and it is then a routine task to show that this form matches smoothly onto (5.12) and
(5.13a) as � → ±∞.

Figures 5 and 6 show some solutions obtained using Laplace transforms compared
with selected parabolic solutions for small values of H . Figure 5 illustrates contours
of the temperatures for both phases for the case c = 1, where γ =α = 1 has been
taken for the parabolic simulations. These contours have been displayed in x̄–t̄ space
for the Laplace transform solutions but in x–t space for the parabolic simulations.
However, the ranges of values chosen for the two cases correspond precisely given
the selected values of H , γ and α.
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Figure 5. Comparison between the parabolic simulations for H = 0.001 (a, c), and the
approximate hyperbolic solutions (b, d) displaying isotherms for the fluid phase (continuous
lines) and the solid phase (dashed lines). We have taken c = 1 with γ = α = 1.

Figures 5(b) and 5(d) correspond to the Laplace transform solution of the hyperbolic
equations. A thermal shock wave is evidently set up close to x̄ = t̄ =0. As time
progresses so the strength of the shock appears to reduce and the integral given
in (5.8) suggests that the height of the shock is precisely exp(−t). Therefore the shock
degrades as time progresses, due to the fact that the fluid phase surrenders heat
continually, though slowly, to the solid phase. Figure 5(a) and 5(b) clearly compare
exceptionally well, with the only noticeable difference being the presence of a distinct
corner in the θ =0.05 isotherm at t̄ = x̄ =3.

Figures 5(c) and 5(d) display the thermal fields much closer to x̄ = t̄ = 0. In this range
there is a very distinct contrast between the parabolic and the hyperbolic simulations.
A small amount of diffusion is evident in the parabolic simulations which serves to
smooth the thermal shock wave. Apart from the fluid-phase isotherms in the shock
region, the corresponding isotherms of each phase compare extremely well, showing
that diffusion is generally unimportant. Therefore, when H � 1, the transform solution
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Figure 6. Profiles of temperature of the fluid phase (continuous lines) and the solid phase
(dashed lines) in the small-H limit. We have taken α =1 and γ =1 with c = 1. For the fluid
phase the hyperbolic H → 0 solutions display shocks, while the smooth curves correspond to
H = 0.001. For the solid phase the H → 0 and H =0.001 curves are indistinguishable.

may be used to estimate thermal breakthrough time without the need to resort to
detailed numerical calculations.

Figure 6 shows how the detailed temperature profiles behave in time for the
parameter set corresponding to figure 5, and it also gives a comparison between
the parabolic and hyperbolic solutions. In general, there is no discernible difference
between the two different solutions for the solid phase, and almost no difference in the
profiles for the fluid phase either. The only exception occurs at the shock front, and
this figure shows very clearly the increasing effect of diffusion as the shock weakens
with time.

Both figures 5 and 6 suggest that there remains quite a substantial difference
between the thermal profiles of the two phases, with the solid phase still lagging
behind the fluid phase at t̄ = 10. When c = 1, which is the value chosen here, we may
use equation (5.9) to determine the maximum value of θ − φ at any given time. On
assuming that the argument in the function I0 is large, we may use its leading-order
asymptotic form to deduce that

θ − φ ∼ e−x̄+2
√

x̄ (̄t−x̄)

2
√

π[x̄ (̄t − x̄)]1/4
. (5.15)

For t̄ 	 1 this function is largest very close to x̄ = µt̄ say, where µ is chosen so as to
maximize the exponent in the numerator. This exponent is

E = [2
√

µ(1 − µ) − 1]̄t, (5.16)

which is greatest for µ = 1/2, whence E = 0. Then equation (5.15) reduces to

θ − φ ∼ 1√
2πt̄

, (5.17)
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which implies that LTE is attained very slowly. The equivalent expression for general
values of c is

θ − φ ∼
√

1 + c

c

1

2
√

πt̄
, (5.18)

which, when translated back into the original non-dimensional variables, becomes

θ − φ ∼ 1

2

√
γ + 1

πHγ
t−1/2, (5.19)

and is precisely the same as that given in equation (4.11) for small values of H .
Therefore it appears that the H → 0 and t → ∞ limits yield the same conclusion
irrespective of the order in which the limits are taken. This is somewhat surprising
because the large-time parabolic analysis of § 4 has diffusion playing a central role,
even when H takes asymptotically small values, whereas the small-H analysis of the
present section is one in which diffusion is negligible.

Finally, if for the sake of estimating time scales we were to define LTE as being
attained θ − φ < 0.01 for all values of x at large times, then LTE occurs when

t >
104(γ + 1)

4πHγ
. (5.20)

6. Discussion and conclusions
In this paper we considered in detail the manner in which the temperature fields

of the solid and fluid phases evolve when a hot fluid is suddenly injected into a
cold saturated porous medium. In particular we have concentrated on those cases
where the phases are not in LTE. In using the simplest possible two-equation model
to describe the evolution of the temperature fields of each phase, we have employed
fully numerical means, a large-time analysis and a strong LTNE hyperbolic analysis
to understand the variety of phenomena this apparently simple problem is able to
display, even in a one-dimensional idealized system.

We have shown that LTE is always attained as t → ∞. However, once LTE has
been reached, the evolving thermal front is not the one that would be obtained had
LTE been assumed at the outset. Rather, the early, very strong LTNE effects and
the associated slow response of the solid phase to the changing thermal profile of
the fluid phase gives rise to a thermal front with a width which depends on the
values of the three governing parameters. Thus a thicker front is formed than the one
obtained when H is asymptotically large. We believe that this is the first time that a
situation has been described where a solution in LTE still depends on the values of
H , γ and α – this is a reason why the näıve large-τ solution given in (2.14c) seemed
reasonable a priori. By contrast, the thermal front studied by Nouri-Borujerdi et al.
(2007), which also eventually attains LTE irrespective of the values of the governing
parameters, gives rise to an evolving front which is independent of the governing
non-dimensional parameters. The steady boundary layer analysis of Rees (2003) also
yields a parameter-independent flow at sufficiently large distances from the leading
edge.

While the solid phase is slow to react initially to the advancing hot fluid when the
phases are in strong LTNE, there are situations where the solid phase responds very
quickly. In particular, very small values of α correspond to a relatively high thermal
diffusivity of the solid phase, a situation which is unlikely to arise in geothermal
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contexts. But in these situations, which could model heat exchangers where the solid
phase is metallic, conduction in the solid phase will advance rapidly at early times,
overtaking the combined effects of conduction and advection in the fluid phase. It
comes, therefore, as little surprise that the asymptotic width of the evolving front
is then very close to that obtained when the phases are in LTE, since the speed of
the fluid will eventually become substantially larger than the thermal diffusion speed,
which is proportional to t−1/2. This physical conclusion is backed by the expression
given in equation (4.9) for the width of the advancing thermal front. Small values of
α contribute little change to the width of the front.

At sufficiently high flow rates, diffusion may be neglected formally, in line with
the studies of Shook (2001) and Stopa & Wojnarowski (2006). Therefore a thermal
shock wave in the fluid phase is obtained whose strength decays in time. This result
is also qualitatively different from the LTE situation, as exemplified by equation
(2.7), in which, when diffusion has been neglected, a shock wave of constant height
is obtained. Therefore, the presence of heat transfer between the phases causes the
strength of the thermal shock to be degraded with time.

The situation we have considered in this paper is perhaps the simplest in which
LTNE effects might be considered. Referring to the geothermal applications, both
injection and production wells are line sources and sinks, and the resulting flow field
is either two- or, more typically, three-dimensional. In addition, we have assumed that
buoyancy forces can be neglected and these too will add to the complexity of the flow
field. However, our intention here has been to uncover how the presence of LTNE
alters a relatively straightforward basic case, and our conclusion is that substantial
changes do indeed take place when LTNE effects are strong. It is anticipated that
similar alterations will also occur within more complex configurations.
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