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Abstract—This short paper presents some numerical simulations of how free convection
plumes in a porous medium are affected by the presence of a neighboring boundary or a
neighboring plume. It is found that they are drawn towards a vertical boundary with the
‘centreline’ following a curved path from the source to the boundary. Thus the boundary
entrains the plume in a manner which is reminiscent of the well-known Coanda effect in
aerodynamics where a fluid jet is drawn towards a solid surface. When two plumes are
present in a horizontally unbounded porous medium, the plumes are drawn towards one
another before rising vertically. In many cases where one plume is weaker or lower than
the other, the former is affected greatly by the latter, but not vice versa.
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1. Introduction

Free convection plumes usually rise vertically. However, this is true only in
certain circumstances, namely, when the flow domain is symmetric about a
vertical line through the heat source. This situation was assumed by Afzal
(1985), where a line source of heat was placed at the intersection of two plane
surfaces bounding a wedge-shaped region of porous medium, but where the
boundaries are at equal but opposite inclinations away from the vertical. Afzal
(1985) provided a detailed high order boundary layer theory to determine the
manner in which such boundaries affect the strength of the plume, thereby
extending the analysis of Wooding (1963). A more general situation was
considered by Bassom et al. (2000), where a porous wedge was allowed to have
a centreline which is no longer vertical. In this case the centreline of the plume
remains straight, at least according to boundary layer theory, but it no longer
remains vertical. In general, the direction of the plume is somewhere between
the vertical and the direction corresponding to the centreline of the wedge, and it
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is, therefore, a compromise between the effect of buoyancy (which induces
vertical forces) and the need to entrain equal amounts of fluid from either side of
the plume (which draws the plume towards the centreline of the wedge). Bassom
et al. (2000) used boundary layer theory and presented an analytical expression
for the direction taken by the plume in the terms of the inclinations of the
bounding surfaces. Similar situations arise for anisotropic porous media (Rees et
al., 2002) and for clear fluids (Rees and Storesletten, 2002; Kurdyumov, 2006).

In the context of groundwater studies the presence of groundwater flow,
together with other effects, such as heterogeneities and variable saturation, also
serve to modify the path taken by contaminant plume in porous medium; see
Harter and Yeh (1996a, b) for example. It is also a matter of common experience
that a crosswind will modify the direction of chimney plumes. Deviations from
straight path were also found by Shaw (1985) when considering plume flow in a
cavity with an inlet and outlet at different horizontal locations.

In the present paper we consider (i) how a plume path is modified by
presence of an adjacent insulated vertical surface and (ii) the merging of two
plumes. This is a purely numerical study of the fully elliptic equations of
motion, and it is, therefore, not a boundary layer study. Indeed, we regard this as
an exploratory investigation into the behaviour which may be displayed by free
convection plumes in porous media, and we intend to follow this work by a
more detailed quantitative study in the near future.

As we have used a time-dependent solver to determine the eventual steady
state solutions, we conclude that such plume flows are stable, at least to two-
dimensional perturbations. We find that, when a localized heat source is placed
away from a vertical surface, the plume curves towards the surface, and the
point of attachment changes its location as the Rayleigh number varies. We also
consider the interaction of two plumes, a situation which has been reviewed by
Gebhart (1979) for plumes in clear fluids.

2. Equations of motion and numerical scheme

The equations governing two-dimensional convection in a porous medium are,
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where Darcy’s law has been assumed to be valid for the momentum equation
and the Boussinesq approximation holds. Here xand y are the horizontal and

vertical coordinates, respectively, and the corresponding flux velocities are u
and v . In addition, p is the pressure and T is the temperature. Heat generation

takes place within the porous medium with the rate q'"', which represents a local

source centreed at the horizontal distance L, from an insulated vertical surface.
The other quantities, namely K, 4, p, g, B, k, C, and o, take their usual meanings:
permeability, dynamic viscosity, reference fluid density, gravity, coefficient of
thermal expansion, thermal conductivity of the porous medium, specific heat of
the fluid, and the ratio of thermal capacities of the porous medium and the fluid.
Finally, T is the ambient temperature of the porous medium.
Nondimensionalization takes place using the following transformations
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On introduction of the streamfunction ¥, using
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the governing equations become
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where the Darcy-Rayleigh number is given by
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and where S(x,) is a local heat source centred at (x,y) = (x¢,)c) which, given that
S =q""'/Q must satisfy
[[S(x,y)axdy =1. (11)
00

When the plume is situated on the horizontal bounding surface at y=0, we use

g gellx)? 4y (122)
2z

but when it is well above this surface we use

g & el )2 +(y-ve)?) (12b)
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We use the value ¢=2 here.

The statement of the problem is completed by the boundary conditions. For
the case of a single plume, the flow is bounded by surfaces at x =0 and y =0
with the porous medium contained in the quarter plane, x,y 2 0. Each surface is

a streamline and both are assumed to be insulated. Therefore, we set

v =0, (—3—9—=0 on x=0 and y=0. (13)
on

Inflow occurs at x = Xpax, and we set

2
Qﬂ:e:o on X = Xmax- (14)
o2

Outflow occurs at the upper surface, and the conditions used here are

% _% 0 on y=ymm (15)
dy oy

Outflow conditions are not as destructive for convective flows in porous
media as they are for the flows of clear fluids. For the present problem it was
found that the outflow conditions given by Eq. (15) cause small streamwise
oscillations for only a few grid points upstream of the upper boundary which,
given that the upper boundary is very far from where plume attachment takes
place due to the use of a coordinate transformation, means that the results
presented are essentially independent of the outflow conditions given by Eq. (15).
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Eqs. (8) and (9) were solved using second order finite differences in space
on a nonuniform grid and first order backward differences in time. The accuracy
with respect to time is not of importance here since every simulation eventually
yielded a steady state solution. The use of backward differences means that the
system being solved is fully implicit and, therefore, we employed a Full
Approximation Scheme multigrid methodology to the problem, where iterations
on each grid were undertaken using the line Gauss-Seidel method. While this
complicates the numerical coding, the fact that the method is implicit means that
it is possible and indeed desirable to increase substantially the time steps
towards the end of the calculation to enhance convergence to the steady state.
Therefore, a crude timestep-changing methodology was employed. In many
cases we determined steady state solutions on relatively coarse grids,
interpolated these solutions onto finer grids and used this as an initial condition
— this increased further the rapidity with which highly accurate solutions were
obtained. The code used is a modified version of the one described in detail in
Rees and Bassom (1993).

3. Results

The present paper is an exploratory work where, despite the complexity of the
numerical code, we are solely interested in determining the qualitative nature of
plume entrainment. Comments will be made later about planned improvements
of the methodology.

In the numerical code we choose not to vary the value of the Rayleigh
number from the chosen value of Ra = 200, rather we alter the location of the
source. When the source is located at x, = d, then the transformations

(x,y)=d(%,9), w=y, 6=0, Ra=Rad, S=38d7° (16)

mean that Egs. (8), (9), and (11) are reproduced precisely in the new variables
with the source at x =1. Therefore, the setting of Ra = 200 and x. = d is
equivalent to setting Ra=200d and x. = 1. The only difference between the two
cases is the size of the spatial region over which the source is defined. The
principle reason we followed this route rather than simply increasing the value
of Ra is that solutions were obtained much more quickly.

Fig. 1 shows some typical streamlines and isotherms for cases where the
source is centred on the axis. We have taken x, =3, 5, 7, and 9, and, therefore,
the effective Rayleigh numbers are R4 = 600, 1000, 1400, and 1800. The
streamlines show clearly that fluid is entrained from the far right, turns near the
corner, and travels upward in the expected manner. In addition there is a small
region of weak recirculation which is bounded by a dividing streamline which
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may be regarded as ‘centreline’ of the plume from the point of view of fluid; this
will be called the fluid centreline.
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Fig. 1. Streamlines (left), isotherms (centre), and modified isotherms (right) for Ra=200
with x=3, 5, 7, and 9 (from top to bottom) and y,=0.

We have a situation where buoyancy forces cause the plume to rise, but the
plume requires an equal amount of fluid to be entrained from each side for the
plume to rise vertically. As the left side of the plume has only a finite amount of
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fluid (in terms of x) which may be entrained, the plume curves to the left to fulfil its
need for fluid to entrain, and it attaches onto the vertical surface thereafter to rise as
a wall plume (or, given the boundary conditions, as one half of a standard plume).

It is interesting to see that the point of attachment on the vertical surface
(which should be labeled as y,) is closer to the origin than is the horizontal distance
of the source from the origin. Table I shows that this attachment point gradually
gets lower as Ra increases. Therefore, the need to entrain fluid appears to be a
stronger effect than that due to buoyancy forces, which cause vertical motion.

Table 1. Attachment points for the plume; y, and y, correspond to where the dividing
streamline joins onto the vertical surface, and ys and J, to where thermal centreline joins

Ra Yy Yy Yo Vo

600 1.60 0.53 2.43 0.81
1000 2.50 0.50 6.60 0.94
1400 3.35 0.48 9.10 1.30
1800 4.05 0.45 11.75 1.31

The second column of subfigures in Fig. [ shows the corresponding
isotherms, but this is not particularly instructive, since the temperature of a free
convection line plume in porous media decays roughly as y'”3 as y increases,
and this masks the thermal behaviour of the plume that we wish to present.
Therefore, the third column of subfigures has been prepared where the
temperature at any point has been scaled with respect to the maximum
temperature at that value of y. Thus, the contour plots show clearly where the
maximum temperature is located and the path taken by this thermal centreline.
Table 1 gives the detailed values of where the thermal attachment point is as a
function of Ra, and it is clear that this location (labeled as y,) increases slightly
as Ra increases. However, we feel that further computation needs to be
undertaken on this aspect as the position of the attachment point has not
increased greatly between Ra = 1400 and Ra = 1800; it may be that this
represents the large-Ra asymptotic limit, or it could presage a lowering of the
attachment point following that of the dividing streamline. Further numerical
work is needed to determine which of these scenarios is correct.

Fig. 2 shows how the plume reacts to changes in the location of its source,
where x. = y., or, equivalently, to changes in Ra. Here the source is above the
horizontal surface and, therefore, fluid passes beneath the plume in order to feed
the entrainment on the left side of the plume. It is important to note that the
abscissa and ordinates of the subframes in Fig. 2 have been scaled in such a way
that each represents 0<X,3<4. Given that computations were performed in

terms of x and y with the source defined in Eq. (12), the increasing concentration
of the isotherms around the source region as x. increases is a direct consequence
of the fact that the source has a diameter of roughly 1 in terms of x and y.
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Fig. 2. Streamlines (dashed) and isotherms (continuous) for Ra=200 with x. =y, , where
x, takes the values (a) 0, (b) 1, (¢) 3, (d) 10, (e) 30, and (f) 100.
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The chief effect of raising the source above y =0 is to delay the attachment
of the plume onto the vertical surface. The concept of an attachment point in
terms of the streamfunction now no longer exists since there is no recirculation,
and the only places where y =0 are the two bounding surfaces. However, the
concept of thermal attachment still applies, and the presence of a strong upward
flow past the plume source means that thermal attachment is delayed
substantially. This is seen most clearly in Fig. 2¢ which corresponds to R4 =600,
which is the same as the case represented by the first row of Table 1. For the
sake of comparison we shall define ys to be based on the vertical distance
between the attachment position and the location of the source:
Vg =(yg —Ye)/ x.. As the maximum temperature at any value of y will

correspond to that isotherm which has a turning point there, Fig. 2c shows
clearly that y, is well above y = 9. Hence Vg is greater than 2, which is
substantially further downstream than the value y=0.81 shown in Table 1. The
attachment point in Fig. 2d is close to y=23, which is even greater.

Figs. 3, 4, and 5 show how two plumes interact, and each represents a
different type of situation. The computational domain is now a half-plane. Fig. 3
represents cases where two plumes have sources centred on y.= 0, but where
their horizontal locations are x,. = +4; therefore, these correspond to cases where
Ra=800 and %, = *1. The strength of the right and left hand plumes are given by
the expressions given in Eq. (12), but where the right and left hand sides are
multiplied by S, and S, respectively. We take S,= 1 and vary S; between 0 and 1.

Fig. 3a depicts an isolated plume for comparison, while Fig. 3b shows that
the presence of a weak second source nearby has little effect on the overall flow
field and isotherm pattern, except for close to the horizontal bounding surface.
We see that the plume generated by the weaker source exists independently for
only a small distance above the surface before being absorbed into the main
plume. As S, increases, the left hand plume becomes stronger, and it begins to
deflect the main plume towards itself, until, when S; =1 we are left with a

“perfectly symmetrical flow pattern.

Fig. 4 represents the same situation as Fig. 3 except that both sources are
placed at y, = 4. The scenario described for Fig. 3 in the above paragraph also
occurs here, apart from the fact that the increased upward flow due to the
positioning of the sources allows the weaker plume to exist for longer before
being captured by the stronger plume. In this regard the behaviour is similar to
that represented by Fig. 2.

Finally, two plumes of equal strength, but whose source heights are
different, are depicted in Fig. 5. In Fig. 5a the lower plume is affected very
strongly by the flow induced by the upper plume, although the upper plume is
hardly affected by the presence of the lower plume, at least in terms of the part it
takes. Indeed it is only when the source of the lower plume is as large as y. = 0.5,
which is shown in Fig. Sc, that the thermal centreline of the combined plume
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changes from being close to x = 4. When y. = 0.75 for the lower plume, the
centreline of the combined plume is now very close to x =0, and symmetry is
obtained when y.= 1.

(a) (b)
(©) (d)
(€)

Fig. 3. Streamlines (dashed) and isotherms (continuous) for a situation with two plumes
with Ra =200 and y. = 0. The strength of the right hand plume is S,, and it is centred at
x. = 4. The strengths of the left hand plume are (a) §;=0, (b) 0.2, (c) 0.4, (d) 0.6, (¢) 0.8,
and (f) 1. The source of the left hand plume is centred at x.=—4.
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Fig. 4. As Fig. 3 but where the source of each plume is above the lower surface at y.
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Fig. 5. Interaction of two plumes of equal strength (S, = S;=1), where the source of the
right hand plume is at x. = y. =4, while the source of the left hand plume is at x.=—4 with
(@) y.=0, (b) 0.25, () 0.5, (d) 0.75, and (e) 1.
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4. Conclusions

The main conclusion of this qualitative paper is that plumes are highly sensitive
to their external environment. This was shown analytically by Bassom et al.
(2000) where plumes in a wedge-shaped domain have a centreline which is
straight, but not vertical, in general. In the present numerical study we have
found that plumes will exhibit curved centrelines, although, in those cases where
a fluid centreline may be defined, the fluid centreline does not coincide with the
thermal centreline. In fact, within the parameters covered here, we find that the
fluid attachment point descends as Ra increases, while the thermal centreline
rises slightly. In addition, the restriction afforded by the placing of a source on a
horizontal surface, means that there are substantial differences in both the flow
field and the position of the thermal attachment point when the source is raised
above the horizontal surface.

When two sources are present, the weaker one or the lower one is
assimilated into the stronger one or the upper one, in some cases with little
obvious qualitative effect on the latter.

It is our intention to perform further and more detailed computations, but
given the sensitivity to domain shape and the need to keep the source region of
constant size while the Rayleigh number is increased, it will be necessary to
employ more sophisticated coordinate transformations than those employed
here. In particular (i) the grid will need to be concentrated near the source
region, as the whole flow field depends strongly on this, and (ii) the effective
size of the computational domain in terms of the physical variables will need to
be very large indeed in order to minimize the effects on the behaviour of the
plume of the size and geometry of the computational domain and the inflow and
outflow boundary conditions used.

Finally, we believe it to be true that the speed of migration of the plume
towards the vertical wall, shown in Figs. I and 2, will be reduced substantially
when point sources are considered. The flow that is induced in the y direction in
these cases should provide some of the fluid for entrainment that is necessary to
delay attachment.
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