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Abstract This paper considers the onset of free convection in a horizontal fluid-satu-
rated porous layer with uniform heat generation. Attention is focused on cases where
the fluid and solid phases are not in local thermal equilibrium, and where two energy
equations describe the evolution of the temperature of each phase. Standard linear-
ized stability theory is used to determine how the criterion for the onset of convection
varies with the inter-phase heat transfer coefficient, H, and the porosity-modified
thermal conductivity ratio, γ . We also present asymptotic solutions for small values of
H. Excellent agreement is obtained between the asymptotic and the numerical results.

Keywords Local thermal non-equilibrium · Instability · Natural convection ·
Porous media · Internal heat generation

Nomenclature
C Specific heat
Da Darcy number
h Inter-phase heat transfer coefficient
H Nondimensional inter-phase heat transfer coefficient
g Gravity
k Wavenumber of the disturbance
K Permeability
L Depth of the convection layer
LTE Local thermal equilibrium
LTNE Local thermal nonequilibrium
P Pressure
q′′′ Rate of heat generation
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Q Overall rate of heat generation
Ra Darcy–Rayleigh number (Eq. 6)
t Time
T Temperature
u, v Horizontal and vertical velocities
x, y Horizontal and vertical Cartesian coordinates

Greek symbols
α Diffusivity ratio
γ Porosity-scaled conductivity ratio
β Coefficient of cubical expansion
ρ Density
σ Heat capacity ratio
µ Dynamic viscosity
λ Constant
ν Kinematic viscosity
ε Porosity
ς Constant denoting internal heating contribution
ψ Streamfunction
� Streamfunction disturbance
θ ,φ Scaled fluid and solid temperatures
�,� Fluid and solid temperature disturbances
ω Amplification rate of disturbances

Superscripts and subscripts
∧ Dimensional
basic Basic state
PM Porous media
f Fluid
s Solid
0 Wall temperature
• k-derivative
′ y-derivative

1 Introduction

A recent paper by Nouri-Borujerdi et al. (2006b) has considered the effect of adopting
the two-temperature model of thermal conduction in a porous medium on the thermal
profiles in a porous layer with internal heat generation. Heat generation may arise
in either phase and these authors sought not only to determine the thermal profiles
in each phase, but also to determine criteria under which local thermal equilibrium
(LTE) may be expected. In these cases the adoption of a single energy equation
should then be sufficient to describe the effect of heat generation. When the criteria
are not satisfied, then local thermal nonequilibrium (LTNE) occurs, and it is essential
to use two separate energy equations. However, the aim of the present paper is to
determine the conditions for the marginal stability of these conduction solutions, for
the presence of instability will serve to alter the heat transfer characteristics.

There are a significant number of papers which have looked at convection induced
by internal heating, but these are dominated by models in which LTE is assumed to be
valid. There is an essential difference between flows in rectangular cavities and flows in
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horizontally unbounded layers. Unless the vertical sidewalls of a cavity are insulated,
cavities are susceptible to flow at all nonzero Rayleigh numbers; see Banu et al. (1998)
who consider convection in cavities with T = T0 on all four boundaries. Banu et al.
(1998) show that this convecting situation is eventually susceptible to instability as Ra
increases, the instability taking the form of travelling waves. On the other hand, the
basic state for a horizontally unbounded layer is quiescent, and the primary instability
is stationary (Gasser and Kazimi 1976). In this situation the onset of convection may
be determined by first factoring out a horizontal Fourier component.

Takashima (1989) extended Gasser and Kazimi’s analysis to inclined layers.
Nouri-Borujerdi et al. (2006b) also extended the same analysis to include the
effect of nonzero Darcy number. But much earlier Tveitereid (1977) undertook a
detailed stability analysis of fully nonlinear convection above the critical Rayleigh
number. The method of Busse (1967), which was used for Bénard convection and
subsequently for Darcy–Bénard convection by Strauss (1974), was employed to find
the stability of three different steady flows, namely, down-hexagons, up-hexagons
and two-dimensional rolls. Up-hexagons were found to be unconditionally unsta-
ble, while stable ranges of Rayleigh number for the other two planforms were
presented.

However, the present paper is concerned with the effect of adopting separate
energy equations for the fluid and solid phases. The only work of which we are aware
which has considered such a situation when internal heat generation is present is the
paper by Baytas (2003). This paper considered the nonlinear flow in a square cavity
which is induced by heat generation in the solid phase. The cavity was subject to
a constant temperature on all four sides, and the Forchheimer–Brinkman extended
form of Darcy’s law was adopted as the momentum equation. Given the boundary
conditions, the results of the paper by Baytas (2003) cannot be compared the work
we describe here for the reasons given above.

Therefore, we shall follow the analyses of Banu and Rees (2002), Postelnicu and
Rees (2003) and Malashetty et al. (2005), who considered the effect of LTNE on
Darcy–Bénard convection in an infinite layer, by considering the effect of uniform
heat generation. In this regard we shall present numerical solutions for a range of
values of H and γ , and supplement this with an asymptotic analysis for small values
of H.

2 Governing equations and basic solution

A porous layer of infinite horizontal extent is confined between two parallel rigid
surfaces with vertical separation, L, as depicted in Fig. 1. The porous medium is
considered to be homogeneous and isotropic. It is assumed that one of the phases
generates heat at a uniform rate, and we shall consider each phase in turn. The
bounding surfaces are each maintained at the temperature T0. In this paper, we
relax the assumption that the fluid and solid phases of the medium are in local ther-
mal equilibrium and therefore two energy equations are employed, one for each
phase. The governing equations of motion for the fluid in the layer are taken to
be given by Darcy’s law subject to the Boussinesq approximation, and they may be
written as,
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Fig. 1 Definition sketch of the horizontal porous layer with the coordinate system and boundary
conditions
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s sin ς , (1e)

where x and y are the horizontal and vertical coordinates and u and v are the respec-
tive velocity components. The value ς allows the contribution of each phase to the
overall heat source to be varied mathematically, although we shall consider only ς = 0
(heat generation solely in the fluid phase) and ς = π/2 (heat generation solely in the
solid phase). All the other terms have their usual meaning for porous medium con-
vection, and are given in the Nomenclature. We note that there is no need to include
the Forchheimer terms in the above formulation since their presence has no effect
on the linear stability analysis presented here. In similar fashion we also omit the
Brinkman terms. Most porous media are characterized by very small values of the
Darcy number, and since the results of Rees (2002) show that the critical Darcy–Ray-
leigh number is altered only by an O(Da1/2) amount, it is clear that the adoption of
the Darcy model without the Brinkman terms provides accurate stability criteria in
most cases. Finally, we point out that the inter-phase heat transfer coefficient, h, is a
function of the detailed geometry of the porous medium and of the conductivities and
diffusivities of the fluid and solid phases. As our analysis is a linear stability theory
the present values of h correspond to zero microscopic Reynolds numbers. Here we
shall consider the effect of different values of h which are assumed to be known.
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The basic state corresponding to x-independent steady solutions of Eq. 1d, e have
been presented in detail in a recent paper by Nouri-Borujerdi et al. (2006b). It is the
stability of this basic state that forms the subject of the present paper. Eq. 1a–d may
be nondimensionalized using the following substitutions,

t̂ = L2σ

αPM
t, (x̂, ŷ) = L(x, y), (û, v̂) = αPM

L
(u, v) (2a)

and

P̂ = αPMµ

K
P, (Tf , Ts) = T0 + QL2

kPM
(θ ,φ), (2b)

where

σ = (ρC)PM

(ρC)f
,αPM = kPM

(ρC)f
, kPM = εkf + (1 − ε)ks,

Q2 = [ε q′′′
f ]2 + [(1 − ε)q′′′

s ]2. (2c)

These transformations yield the following system of equations,

∂u
∂x

+ ∂v
∂y

= 0, (3a)

u = −∂P
∂x

, (3b)

v = −∂P
∂y

+ Raθ , (3c)
(
γ + 1
γ + α

)
∂θ

∂t
+

(
γ + 1
γ

) (
u
∂θ

∂x
+ v

∂θ

∂y

)

=
(
∂2θ

∂x2 + ∂2θ

∂y2

)
+ H (φ − θ)+

(
γ + 1
γ

)
cos ς , (3d)

α

(
γ + 1
γ + α

)
∂φ

∂t
=

(
∂2φ

∂x2 + ∂2φ

∂y2

)
+ H (θ − φ)+ (γ + 1) sin ς . (3e)

In above equations the non-dimensional parameters, H, α, γ and Ra are the
non-dimensional inter-phase heat transfer parameter, the diffusivity ratio, the poros-
ity-modified conductivity ratio, and the Rayleigh number, respectively; they are
defined as follows,

H = hL2

εkf
, α = αf

αs
, γ = εkf

(1 − ε)ks
and Ra = gβKQL3

ναPMkPM
. (4)

The appropriate boundary conditions are that,

v(x, ± 1
2 ) = θ(x, ± 1

2 ) = φ(x, ± 1
2 ) = 0. (5)

From the continuity Eq. 3a, the streamfunction ψ may be defined according to,

u = −∂ψ
∂y

and v = ∂ψ

∂x
. (6)
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After eliminating the pressure P between Eq. 3b, c, Eq. 3a–e reduce to the system,

∂2ψ

∂x2 + ∂2ψ

∂y2 = Ra
∂θ

∂x
, (7a)

(
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γ + α

)
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γ
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− ∂ψ
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)
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∂2θ
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∂y2

)
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(
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α

(
γ + 1
γ + α

)
∂φ

∂t
=

(
∂2φ

∂x2 + ∂2φ

∂y2

)
+ H (θ − φ)+ (γ + 1) sin ς , (7c)

which are to be solved subject to the boundary conditions,

ψ(x, ± 1
2 ) = θ(x, ± 1

2 ) = φ(x, ± 1
2 ) = 0. (8)

In the absence of convection the basic steady state is such that heat which is
generated within the layer is removed by conduction through the upper and lower
surfaces. When the heat generation is in the fluid phase (ς = 0) the basic temperature
distributions are

θbasic = γ λ2 + 8
8γ λ2 − cosh(λy)

γ λ2 cosh(λ/2)
− y2

2
(9a)

φbasic = λ2 − 8
8λ2 + cosh(λy)

λ2 cosh(λ/2)
− y2

2
(9b)

and, when the heat generation is in the solid phase (ς = π/2), they are

θbasic = λ2 − 8
8λ2 + cosh(λy)

λ2 cosh(λ/2)
− y2

2
(10a)

φbasic = λ2 + γ

8λ2 − γ cosh(λy)
λ2 cosh(λ/2)

− y2

2
, (10b)

where

λ2 = H(γ + 1) (11)

has been defined for convenience. It is the stability of these basic states that forms the
subject of the present paper.

3 Linear stability theory

We may assess the stability characteristics of the evolving basic state using a straight-
forward perturbation theory. Therefore we set,

ψ = �(y)eω t cos kx, (12a)

θ = θbasic(y)+�(y)eω t sin kx, (12b)

φ = φbasic(y)+�(y)eω t sin kx, (12c)

where �, � and � are of sufficiently small amplitude that nonlinear terms may be
neglected. The value, k, is the horizontal wavenumber of the disturbances. The prin-
ciple of exchange of stabilities may be shown easily, since the resulting equations
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may be put into a self-adjoint form, thereby indicating that the onset of convection is
stationary. Therefore, we may setω=0. The linearized stability equations are now,

� ′′ − k2� = Rak�, (13a)

�′′ − k2�+ H(�−�) = −
(
γ + 1
γ

)
k�θ ′

basic, (13b)

�′′ − k2�+ Hγ (�−�) = 0, (13c)

which are subject to the boundary conditions,

�(± 1
2 ) = �(± 1

2 ) = �(± 1
2 ) = 0 (14)

In Eq. 13a–c primes denote differentiation with respect to y. As these equations
cannot be solved analytically it is necessary to resort to numerical methods.

4 Numerical method

Equation 13a–c forms an ordinary differential eigenvalue problem for Ra as a func-
tion of the inter-phase heat transfer coefficient, H, the porosity modified conductivity
ratio, γ , and the wavenumber, k. When H → ∞, we recover the local thermal equi-
librium case first studied by Gasser and Kazimi (1976). In this paper, we use a direct
method of numerical solution of similar form to that used by Rees (2002).

Equation 13a–c were discretised using fourth order compact differences on a uni-
form grid in the y-direction with 200 intervals. The zero streamfunction and tem-
perature conditions provide a sufficient number of boundary conditions for these
equations. However, the eigenvalue, Ra, also needs to be found, and this requires one
more condition, the normalization condition,

�′( 1
2 ) = −1, (15)

which simply fixes the amplitude of the eigensolution. Apart from the fact that fourth
order compact differences have been used, the multi-dimensional Newton–Raphson
iteration matrix which is obtained has exactly the same form as that given in Rees
(2002). Specifically it has block tridiagonal form with an extra row and column of
blocks. These latter arise from the presence of the eigenvalue and the normalization
condition. A suitably modified block tridiagonal matrix algorithm was used to solve
this discretised system.

We found that the neutral stability curves relating the critical value of Ra to k
always have a single minimum, and therefore we concentrate solely on the computa-
tion of this minimum. This is achieved numerically by insisting that ∂Ra/∂k = 0 and
by supplementing Eq. 15a–c by their derivatives with respect to k. Thus, if we define,

•
� = ∂�

∂k
,

•
� = ∂�

∂k
and

•
� = ∂�

∂k
, (16)
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then the differentiation of Eq. 13a–c with respect to k yields the following system,

•
� ′′ −k2 •

� −Rak
•
� = 2k� + Ra�, (17a)

•
�′′ −k2 •

�+H(
•
�− •

�)+ k
(
γ + 1
γ

)
θ ′

basic
•
� = 2k�−

(
γ + 1
γ

)
θ ′

basic�, (17b)

•
�′′ −k2 •

�+γH(
•
�− •

�) = 2k�, (17c)

which are subject to the boundary conditions,

•
�(± 1

2 ) = •
�(± 1

2 ) = •
�(± 1

2 ) = 0. (18)

The wavenumber is now a second eigenvalue and therefore it is necessary to impose

a second normalization condition. We have chosen to use
•
�′( 1

2 ) = −1, but any other
value of this derivative would yield precisely the same values of Ra and k. There are
now only two parameters to vary and solutions are presented for different values of
γ and H and for both the chosen values of ς .

5 Results

Figures 2 and 3 show some typical disturbance streamlines and isotherms (� cos kx,
� sin kx and � sin kx) for the problem being solved. Both figures correspond to
H = 100 and γ = 0.01 but the former has internal heating in the fluid phase while the
latter has it in the solid phase. In both cases, the disturbances tend to lie in the top
half of the layer since the layer is unstably stratified only in that half.

The respective critical values are Ra = 1.3151, k = 9.9518 and Ra = 12.321, k =
8.058. There is little difference in the critical wavenumbers because the shape of the
basic conducting state does not vary greatly. But there is a substantial difference in
the critical Rayleigh number. The reason for this is that the amplitude of the basic
temperature field when the solid is the heat generating phase is much less than when
the fluid is the heat generating phase. This means that the Rayleigh number must
be much larger in the solid-heating case in order to ensure that buoyancy forces are
sufficiently strong. These figures also show that the disturbance temperature fields
corresponding to the two phases have different thicknesses. That corresponding to
the solid phase is thicker than the one for the fluid phase, but this is true only when
γ < 1. When H takes larger values, then LTE is approached and the disturbance fields
become identical in both profile and magnitude.

In Figures 4 and 5 we show the variation of critical Rayleigh number and wave-
number with the inter-phase heat transfer coefficient, H, for specific values of γ when
heat generation takes place in the fluid phase. It is clear from these figures that both
Ra and k approach a constant which is independent of γ as H → ∞. This is, of course,
the LTE limit, and the numerical results match well with the equivalent critical values
obtained from the LTE equations: Ra = 471.3787 and k = 4.67519. At the opposite
extreme, namely as H → 0, the Ra curves tend to a constant which depends strongly
on the value of γ , but the asymptotic value of k is again independent of γ . These
behaviours are studied in detail in the Appendix where it is shown that the limiting
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Fig. 2 Disturbance streamlines and isotherms corresponding to H = 100 and γ = 0.01 with internal
heating in the fluid phase (ς = 0): (a) streamlines, (b) isotherms. The solid and dashed lines represent
fluid and solid temperature disturbances, respectively

value of k is exactly the same as for LTE, while that for Ra is

Ra = 471.3787γ 2

(γ + 1)2
+ O(H). (19)

At intermediate values of H the critical value of Ra increases with increasing H.
However, the critical value of k first increases and then decreases with H, and the
maximum value that k achieves becomes quite large as γ decreases. These features



352 A. Nouri-Borujerdi et al.

Fig. 3 Disturbance streamlines and isotherms corresponding to H = 100 and γ = 0.01 with inter-
nal heating in the solid phase (ς = π/2): (a) streamlines, (b) isotherms. The solid and dashed lines
represent fluid and solid temperature disturbances, respectively

appear to be common in this type of stability problem, see Banu and Rees (2002),
Postelnicu and Rees (2003) and Malashetty et al. (2005). We also note that large values
of γ also cause LTE to be approached for any chosen value of H.

Figures 6 and 7 display the equivalent behaviours of the critical values of Ra and
k when heating takes place in the solid phase. As above, LTE is achieved as H is
increased for constant values of γ , and also as γ increases for constant values of H.
However, as H → 0, the critical values of Ra rise rapidly, and Fig. 6 seems to indicate



Onset of convection in a horizontal porous channel with uniform heat generation 353

Fig. 4 Variation of the critical Rayleigh number with Log10 H for various values of γ and with
internal heating in the fluid phase (ς = 0)

Fig. 5 Variation of the critical wavenumber, k, with Log10 H for various values of γ and with internal
heating in the fluid phase (ς = 0)
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Fig. 6 Variation of the critical Rayleigh number with Log10 H for various values of γ with internal
heating in the solid phase (ς = π/2). Dashed lines indicate asymptotic solutions given by Eq. A11

Fig. 7 Variation of critical wavenumber, k, for various values of γ and with internal heating in the
solid phase (ς = π/2)
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that Ra is inversely proportional to H. More intriguingly, the asymptotic curves for
γ = c and γ = c−1 appear to be identical for any chosen value of the constant c.
Again, an asymptotic analysis of this stability problem for small values of H may be
found in the Appendix where it is found that

Ra ∼ 4214.867

H
(
γ

1
2 + γ− 1

2

)2 . (20)

at leading order. This expression confirms not only the dependence on H−1, but also
the unusual γ -dependence. This asymptotic reslation is also included in Fig. 6 for
reference. The other feature of the asymptotic analysis is that k ∼4.6930 at leading
order, which is slightly different from the value corresponding to LTE. At intermedi-
ate values of H it is found that the variation in the critical value of Ra is not monotonic
for small values of γ .

6 Conclusion

In this paper, we have considered the linear instability of the conductive state in a
horizontal porous layer which is caused by uniform internal heat generation in either
the fluid or the solid phase. Unimodal neutral stability curves arise for this configura-
tion and we have presented numerical solutions for the critical Rayleigh number as a
function of both H and γ , together with the values of the wavenumber, k, which min-
imize the Rayleigh number. Not surprisingly, we find that LTE is achieved whenever
either H or γ is sufficiently large, as such conditions serve to increase the dominance
of the source/sink terms in the two energy equations. However, when the heat is being
generated in the fluid phase, the equation for the disturbance temperature in the solid
phase decouples from the other disturbance equations leaving a scaled version of the
LTE problem to solve. On the other hand, when the heat generation is in the solid
phase, a small value of H means that the fluid phase is hardly affected by the internal
heating. In turn, this means that the critical Rayleigh number must be correspondingly
large in order to obtain instability.
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Appendix: asymptotic analysis for small values of H

Case 1 When heat generation is within the fluid phase, ς = 0.

According to Fig. 4 the critical Rayleigh number is constant when H is small, but with
a value that depends on γ . If we expand θbasic given in (9a) as a power series in small
values of H, then we obtain,

θbasic =
(
γ + 1
γ

) (
1
4

− y2
)

+ O(H). (A1)
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The leading order form of the linearized disturbance equations (15a–c) are given
by the following system,

� ′′ − k2� = Rak�, (A2a)

�′′ − k2�−
(
γ + 1
γ

)2

k�y = 0, (A2b)

�′′ − k2� = 0. (A2c)

It is clear that (A2c) is decoupled from (A2a) and (A2b), and has solution� = 0. We
may now reduce the remaining equations to the standard LTE form by first defining,

�̂ =
(
γ + 1
γ

)2

�. (A3)

Equation (A2b, c) now reduce to the system

�̂ ′′ − k2�̂ =
(
γ + 1
γ

)2

Rak�, (A4a)

�′′ − k2�− k�̂y = 0, (A4b)

where the coefficient of k� plays the same role as the Rayleigh number does in
the LTE analysis of Nouri-Borujerdi et al. (2006b), i.e. where the linearised stability
equations are,

� ′′ − k2� = RaLTEk�, (A5a)

�′′ − k2�− k�y = 0. (A5b)

According to Nouri-Borujerdi et al. (2006b) the critical Rayleigh number, RaLTE for
the case of LTE is 471.3787. Therefore, it is clear that the critical Rayleigh number for
Eq. A4 must be,

Ra = 471.3787γ 2

(γ + 1)2
+ O(H). (A6)

The corresponding critical wavenumber is k = 4.67519, which is in excellent agree-
ment with our computed data for small H.

Case 2 When heat generation is in the solid phase, ς = π/2.

Figure 6 shows that the critical value of Ra increases as H decreases. Numerically,
the slope of these curves is −1, and this suggests that RaH tends to a γ -dependent
constant as H → 0. In the small H limit, the magnitude of the basic thermal profile of
the fluid phase is of O(H), and is,

θbasic = H(γ + 1)
(

y3

6
− y

8

)
+ O(H2). (A7)

In order to write down a consistent set of linearized stability equations in the small-H
limit, it is necessary first to rescale � and Ra as follows,

Ra = HRa(γ + 1)2

γ
and �̂ = H(γ + 1)2

γ
�. (A8)
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At leading order the linearized stability equations are now,

�̂ ′′ − k2�̂ = Rak�, (A9a)

�′′ − k2�+ k�̂
(

y3

6
− y

8

)
= 0, (A9b)

�′′ − k2� = 0. (A9c)

It is clear that the above equations are independent of both H and γ . Again � = 0,
but now the resulting system possesses the minimizing solution,

Ra = 4214.867 and k = 4.6390. (A10)

Hence the critical Rayleigh number in the small-H limit is

Ra ∼ 4214.867γ

H (γ + 1)2
= 4214.867

H
(
γ

1
2 + γ− 1

2

)2 . (A11)

Asymptotic curves corresponding to this formula are shown in Fig. 6 as dashed lines.
Given that (A11) gives exactly the same values for Ra when γ=constant and when
γ−1 = constant, this explains why we get the unusual merging of the curves for γ = 101

and γ = 10−1, for example.
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