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Abstract

In this paper we analyze the stability of the developing thermal boundary layer which is induced by a step-change in the temperature
of the lower horizontal boundary of a uniformly cold semi-infinite porous medium. Particular attention is paid to the influence of local
thermal non-equilibrium between the fluid and solid phases and how this alters the stability criterion compared with corresponding cri-
terion when the phases are in local thermal equilibrium. A full linear stability analysis is developed without approximation, and this
yields a parabolic system of equations for the evolving disturbances. Criteria for the onset of convection are derived as a function of
the three available nondimensional parameters, the inter-phase heat transfer coefficient, H, the porosity-scaled conductivity ratio, c,
and the diffusivity ratio, a.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Much recent work has focused on the instability of con-
vective flows in porous media. The reason is straightfor-
ward: if a computed flow turns out to be unstable, then it
cannot be observed in practice, and important quantities,
such as global rates of heat transfer, which are derived
from such solutions can give misleadingly incorrect results.
Therefore it is essential to examine all flows for their stabil-
ity, and hence their realizability. It is with this in mind that
we consider the stability of an evolving thermal front which
is induced by suddenly raising the temperature of the lower
horizontal boundary of what is essentially a semi-infinite
porous region to a new constant level. It is well-known that
the resulting conduction profile is described by the comple-
mentary error function when the medium is either purely
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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solid (in which case we refer back to the analysis of [1])
or when the medium is a fluid-saturated porous medium
under conditions of local thermal equilibrium (LTE). In
this latter case only one energy equation is required to
model the temperature field, and in the absence of flow,
the physical situation is exactly equivalent to the solid con-
duction problem described in [1].

The above scenario is potentially unstable, however,
since hot fluid lies under cold fluid. As time progresses
the thickness of this evolving thermal boundary layer
increases with time, and if a Darcy–Rayleigh number,
Ra, were to be defined using the instantaneous boundary
layer thickness as a lengthscale, then Ra would also
increase in time. Therefore the evolving conduction profile
becomes increasingly susceptible to instability with the pas-
sage of time. The aim then is to determine the earliest time
for which instability may arise. Such a situation has enor-
mous practical importance for this type of convective insta-
bility could easily occur during the long-term underground
storage of gas emissions from power stations described by
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Nomenclature

a wavenumber of disturbance
C specific heat
c.c. complex conjugate
D microscopic lengthscale
E energy of disturbance
g gravity
h inter-phase heat transfer coefficient
H nondimensional form of h

k conductivity
K permeability
L natural lengthscale
P pressure
Ra Darcy–Rayleigh number
t time
T temperature
u horizontal velocity
v vertical velocity
x horizontal coordinate
y vertical coordinate

Greek symbols

a thermal diffusivity ratio
b expansion coefficient

c porosity-modified conductivity ratio
� porosity
g similarity variable
h fluid temperature
H fluid temperature disturbance
l dynamic viscosity
q density
r heat capacity ratio
s scaled time
/ solid temperature
U solid temperature disturbance
w streamfunction
W streamfunction disturbance

Superscripts and subscripts

0 initiation of disturbance
1 ambient/initial conditions
basic basic state
c neutral/critical conditions
f, s designating fluid or solid phase
pm porous medium
w wall/surface conditions
– dimensional
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Socolow [2]. Although CO2 is a solute, the governing equa-
tions for mass transfer in an isothermal system are identical
to those governing thermally induced convection in the
absence of solute.

The study of this type of evolving stability problem is
not new, and there have been a number of papers published
on the topic. Morton [3] considered the rapid heating of a
layer of clear fluid of finite thickness. The evolving conduc-
tion solution becomes unstable long before its thickness is
comparable with the depth of the layer. Foster [4] revisited
Morton’s analysis using amplification theory, which is a
time-dependent analysis. The onset of convection requires
the use of an amplification factor to mark the onset of con-
vection. Another method, called propagation theory, has
been used by Hwang and Choi [5], Choi et al. [6] and
Kim et al. [7] for convection in clear fluids, and by Kim
et al. [8] for the instability of the flow induced by an impul-
sively started rotating cylinder. This latter theory employs
the thermal penetration depth as a length scaling factor
and then the linearized stability equations are transformed
into self-similar form. The onset time is then determined as
the eigenvalue of an ordinary differential eigenvalue prob-
lem. Bassom and Blennerhassett [9] also studied impul-
sively generated convection in a semi-infinite fluid layer
above a heated flat plate using quasi-steady approxima-
tions to the disturbance equations to reduce the full partial
differential disturbance equations to ordinary differential
form. Experimental results have also been described by
Goldstein and Volino [10].
Kaviany [11] extended amplification theory to convec-
tive flows in porous layers by suddenly imposing a uniform
rate of heat generation within the layer. Kim et al. [12] also
considered this internal heat generation problem where the
basic state was still time-dependent and employed amplifi-
cation theory. Later Kim et al. [13] considered an applica-
tion to an oil-saturated medium with gas diffusion from
below, while Kim and Kim [14] determined criteria for
the onset of convection in a porous layer where the temper-
ature of the lower surface increases linearly with time.
Again, amplification theory is applied. Finally, it is essen-
tial to mention the work of Riaz et al. [15] who undertook
both a linear stability analysis and strongly nonlinear sim-
ulations of the problem considered by Kim et al. [13]. In
that paper the authors introduce an approximation, named
the quasi-steady-state approximation, which allows the
authors to determine the growth rates of individual modes
at chosen times. This approximation is slightly different
from that made in [13] and therefore the critical time and
wavenumber they compute are also slightly different.

Recently Selim and Rees [16] revisited the problem of
Kim et al. [13] and Riaz et al. [15] by examining the full lin-
ear stability problem without approximation. Therefore the
stability characteristics were found by solving a parabolic
system of partial differential equations. Disturbances were
seeded at a chosen initiation time, and their evolution with
time was monitored. From this process the onset of convec-
tion, which was defined as being the time when the rate of
change of a thermal energy integral is zero, was found as a
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function of the disturbance wavenumber, and a neutral sta-
bility curve was constructed from this information. The
minimum critical time for instability was shown to be sub-
stantially earlier than those given by Kim et al. [13] and
Riaz et al. [15]. This qualitative result is, perhaps, not sur-
prising, as the imposition of an approximation (such as the
reduction of a parabolic system to an ordinary differential
system by neglecting time derivatives) is likely to make it
more difficult for instability to arise. More specifically,
the setting of a zero growth rate for the whole of the tem-
perature profile does not account for the fact that the
disturbance changes shape with time.

In the present paper we extend the work of Selim and
Rees [16] by relaxing the assumption that the fluid and
the porous matrix are in local thermal equilibrium. Conse-
quently we use energy equations for the temperatures of
each phase. These equations are coupled by source/sink
terms which allow the transfer of heat from the hotter phase
to the cooler phase. When LTE occurs, the basic conducting
state is self-similar with an expanding thermal field, but
when local thermal non-equilibrium (LTNE) occurs then
even the basic state is nonsimilar and needs to be computed.
Apart from this latter aspect, the general methodology
followed here follows closely that of Selim and Rees [16].

2. Governing equations and basic solution

We are considering the thermo-convective instability of
a semi-infinite region of saturated porous medium which is
initially at the uniform temperature, T1, but whose lower
boundary has its temperature raised suddenly to a new uni-
form level, Tw. Darcy’s law is assumed to apply within the
porous medium, which is homogeneous and isotropic, and
the fluid satisfies the Boussinesq approximation. However,
we do not assume that there is local thermal equilibrium
between the phases, and therefore we adopt the two-tem-
perature model for which the evolution of the temperatures
of the solid and fluid phases are modelled using separate
energy equations. As in Selim and Rees [16], it is not nec-
essary to consider the fully three-dimensional equations
since the linearized disturbance equations may always be
Fourier-decomposed into two-dimensional components of
the form we consider later. Therefore the full two-dimen-
sional equations of motion may be written in the form,

o�u
o�x
þ o�v

o�y
¼ 0; ð1aÞ

�u ¼ �K
l

oP
o�x
; ð1bÞ

�v ¼ �K
l

oP
o�y
þ qgbK

l
ðT f � T1Þ; ð1cÞ

�ðqcÞf
oT f

o�t
þ ðqcÞf �u

oT f

o�x
þ �v

oT f

o�y

� �
¼ �r � ðkfrT fÞ þ hðT s � T fÞ; ð1dÞ

ð1� �ÞðqcÞs
oT s

o�t
¼ ð1� �Þr � ðksrT sÞ þ hðT f � T sÞ ð1eÞ
see Nield and Bejan [17] and Rees and Pop [18]. In these
equations �x is the coordinate in the horizontal direction
while �y is vertically upward. The corresponding velocities
are �u and �v, respectively. All the other terms have their
usual meaning for porous medium convection, and these
are given in the Nomenclature. However, we single out
the value h which is the dimensional inter-phase heat
transfer coefficient. Little is known about how h varies
with the conductivities and diffusivities of the phases,
with the porosity and with the detailed geometry of the
porous matrix. However, recent work by Rees [19] has
shown that

h ¼ 28:4542

D2 �
kf
þ 1��

ks

� � ð2Þ

for a two-dimensional periodic chequerboard pattern in the
absence of flow, where the pattern repeats over the micro-
scopic lengthscale, D, and where the diffusivities of the
phases are identical. Other porous structures were found
to obey a similar formula where the ‘constant of propor-
tionality’ is weakly dependent on �, kf and ks.

There is no macroscopic lengthscale in this problem that
may be used in the process of nondimensionalisation.
However, we may define a natural lengthscale, L, by setting
the Darcy–Rayleigh number, which is defined as Ra =
qgbKL(Tw � T1)/lapm, to be equal to 1. This process is
discussed in some detail in the review by Rees [20], and it
is equivalent to defining a natural lengthscale based upon
the fluid and matrix properties; thus a nondimensional
length of precisely 1 is equivalent to the dimensional
length, L, given by

L ¼ lapm

qgbKðT w � T1Þ
: ð3Þ

Eqs. (1a)–(1e) may now be nondimensionalised using the
following transformations:

�t ¼ L2r
apm

t; ð�x; �yÞ ¼ Lðx; yÞ; ð�u;�vÞ ¼ apm

L
ðu; vÞ;

P ¼ apml
K

p; ð4aÞ

and

T f ¼ T1 þ ðT w � T1Þh; T s ¼ T1 þ ðT w � T1Þ/; ð4bÞ

where

r ¼
ðqCÞpm

ðqCÞf
; apm ¼

kpm

ðqCÞf
ð5aÞ

and

ðqCÞpm ¼ ð1� �ÞðqCÞs þ �ðqCÞf ; kpm ¼ ð1� �Þks þ �kf :

ð5bÞ
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These substitutions yield the following system of equations:

ou
ox
þ ov

oy
¼ 0; ð6aÞ

u ¼ � op
ox
; ð6bÞ

v ¼ � op
oy
þ h; ð6cÞ

cþ 1

cþ a

� �
oh
ot
þ cþ 1

c

� �
u
oh
ox
þ v

oh
oy

� �

¼ o2h
ox2
þ o2h

oy2
þ Hð/� hÞ; ð6dÞ

a
cþ 1

cþ a

� �
o/
ot
¼ o

2/
ox2
þ o

2/
oy2
þ Hcðh� /Þ: ð6eÞ

The appropriate boundary conditions are

y ¼ 0 : v ¼ 0; h ¼ 1 and y !1 : v; h! 0; ð7Þ

while h = 0 everywhere for t < 0.
After eliminating the pressure, p, between Eqs. (6b) and

(6c), the streamfunction, w, may be defined according to

u ¼ � ow
oy

and v ¼ ow
ox
; ð8Þ

in order to satisfy the continuity equation, and so Eqs.
(6b)–(6e) reduce to the system,

o2w
ox2
þ o2w

oy2
¼ oh

ox
; ð9aÞ

cþ 1

cþ a

� �
oh
ot
þ cþ 1

c

� �
ow
ox

oh
oy
� ow

oy
oh
ox

� �

¼ o
2h

ox2
þ o

2h
oy2
þ Hð/� hÞ; ð9bÞ

a
cþ 1

cþ a

� �
o/
ot
¼ o

2/
ox2
þ o

2/
oy2
þ Hcðh� /Þ; ð9cÞ

which are to be solved subject to the boundary conditions,

y ¼ 0 : w ¼ 0; h ¼ 1 and y !1 : w; h! 0: ð9dÞ

In Eqs. (9a)–(9c) the nondimensional parameters, a, H and
c are defined according to

a ¼ kf

ðqCÞf
ðqCÞs

ks

; H ¼ hL2

�kf

; c ¼ �kf

ð1� �Þks

; ð10Þ

which are a diffusivity ratio, an inter-phase heat transfer
coefficient and a porosity-weighted conductivity ratio.

Finally, we transform the y and t coordinates according
to

g ¼ y

2
ffiffi
t
p ; s ¼

ffiffi
t
p
; ð11Þ

and therefore Eqs. (9) become
4s2 o2w
ox2
þ o2w

og2
¼ 4s2 oh

ox
; ð12aÞ

2s
cþ 1

cþ a

� �
oh
os
þ 2s

cþ 1

c

� �
ow
ox

oh
og
� ow

og
oh
ox

� �

¼ 4s2 o2h
ox2
þ o2h

og2
þ 2g

cþ 1

cþ a

� �
oh
og
þ 4s2Hð/� hÞ; ð12bÞ

2sa
cþ 1

cþ a

� �
o/
os
¼ 4s2 o2/

ox2
þ o2/

og2
þ 2ga

cþ 1

cþ a

� �
o/
og

þ 4s2Hcðh� /Þ: ð12cÞ
The basic state, whose stability characteristics form the
purpose of the present paper, may be found by solving
those equations which arise when the x-derivatives in (12)
are suppressed

o2w
og2
¼ 0; ð13aÞ

2s
cþ 1

cþ a

� �
oh
os
¼ o2h

og2
þ 2g

cþ 1

cþ a

� �
oh
og
þ 4s2Hð/� hÞ; ð13bÞ

2sa
cþ 1

cþ a

� �
o/
os
¼ o

2/
og2
þ 2ga

cþ 1

cþ a

� �
o/
og
þ 4s2Hcðh� /Þ:

ð13cÞ

Given the form of (13a) it is clear that there is no flow asso-
ciated with the basic state. The remaining equations for h
and / do not admit self-similar solutions in general, unlike
when the phases are in LTE (or when a = 1, i.e. the diffu-
sivities of the phases are equal), and therefore it is neces-
sary to compute the basic state. Such computations have
already been presented in the paper by Nouri-Borujerdi
et al. [21] and shall not be repeated here. However we
may quote the following results:

h � erfc
cþ 1

cþ a

� �0:5

g

" #
and / � erfc a

cþ 1

kþ a

� �0:5

g

" #
;

ð14a; bÞ
when s� 1, and that

h � erfcðgÞ; / � erfcðgÞ; ð15Þ
when s� 1. Therefore we may state that LTNE effects are
strong at early times when the coefficients of (h � /) in (13)
are small. From (14) it is clear that the thermal boundary
layer corresponding to the fluid phase is thicker than that
corresponding to the solid phase when a > 1, and vice versa
when a < 1. But at late times the thermal profiles of the two
phases are identical to leading order. In the remainder of
the paper we will label the evolving basic states as hbasic

and /basic and these are computed using the Keller box
method in the manner specified below.

3. Linear stability theory

We may now assess the stability characteristics of the
evolving basic state using a straightforward perturbation
theory. Therefore we set
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w ¼ iWðs; gÞeiax þ c:c:; ð16aÞ
h ¼ hbasic þ ðHðs; gÞeiax þ c:c:Þ; ð16bÞ
/ ¼ /basic þ ðUðs; gÞeiax þ c:c:Þ; ð16cÞ

where W, H and U are of sufficiently small amplitude that
nonlinear terms may be neglected. The value, a, is the hor-
izontal wavenumber of the disturbances. Therefore we
obtain the following system of linearized disturbance
equations:

W00 � 4s2a2W¼ 4s2aH; ð17aÞ

2s
cþ 1

cþ a

� �
Hs ¼H00 þ 2g

cþ 1

cþ a

� �
H0 � 4s2a2H

þ 2s
cþ 1

c

� �
ah0basicWþ 4s2HðU�HÞ; ð17bÞ

2as
cþ 1

cþ a

� �
Us ¼ U00 þ 2ag

cþ 1

cþ a

� �
U0 � 4s2a2U

þ 4s2HcðH�UÞ: ð17cÞ

Nouri-Borujerdi et al. [21] noted that H may be scaled out
of the equations for the basic state (see Eqs. (13b) and
(13c)). However, it is not possible to do that for the above
disturbance equations, and therefore Eqs. (17) form a
three-parameter system with a, H and c as the governing
nondimensional parameters. We follow the procedure used
in Selim and Rees [16] by introducing a disturbance at an
early time and by following the evolution of that distur-
bance. In that paper it was found that the thermal energy
Fig. 1. Instantaneous streamlines (upper frames) and isotherms (lower frames)
For the isotherms, continuous lines correspond to the fluid phase while da
sc = 4.44280.
of the disturbance, a global measure of its amplitude, yields
an earlier critical time than does the surface rate of heat
transfer, which is a local measure. Therefore we shall mon-
itor the evolving disturbance by means of the quantity, E,
which is defined as

E ¼ 1

2

Z 1

0

Hþ a
c
U

� �
dy ¼ s

Z 1

0

Hþ a
c
U

� �
dg ð18Þ

and which may be termed a thermal energy.

4. Numerical simulations

Parabolic simulations of the system given by Eqs. (17)
were undertaken using the Keller-box method, first intro-
duced by Keller and Cebeci [22]. However, we use a back-
ward difference discretization in s, rather than a central
difference approximation, in order to maximize numerical
stability. In the present computations, uniform grids in
both the s and g-directions were used with a s-step of
0.01, and an g-step of 0.05. The maximum value of g
depended on the precise values of H, c and a as the thick-
ness of the thermal boundary layer depends on these
parameters; see Eq. (14). The initial disturbance profiles
were chosen to be

H ¼ ge�3g; U ¼ 0; ð19Þ
at a specified initiation time, s0, and with a specified wave-
number, a. We note that the corresponding initial W-profile
is given uniquely by the solution of Eq. (17a), and, given
for s0 = 1, ac = 0.15567, a = 1, c = 1 and H = 10�5 plotted in (x,g)-space.
shed lines correspond to the solid phase. The critical time is given by



Table 1
Maximum values of the disturbance streamfunction and temperatures for
the case, s0 = 1, ac = 0.15567, a = 1, c = 1, H = 10�5, which is shown in
Fig. 1

s jW sinaxjmax jHcosaxjmax jUcosaxjmax

2 0.1915 18.22 � 10�2 5.000 � 10�6

6 0.1512 4.772 � 10�2 7.213 � 10�6

10 0.3328 8.116 � 10�2 15.31 � 10�6

20 6.1005 195.5 � 10�2 317.3 � 10�6

40 3.5482 61.68 � 10�2 270.3 � 10�6
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that the method uses backward differences, it is not neces-
sary to find this initial profile.

Certain aspects of the the conclusions of Selim and Rees
[16] also apply here, and therefore we shall not dwell upon
demonstrating them again. However it is necessary to state
that neither the initial temperature profiles nor their initia-
tion time affect the time at which the disturbances become
neutrally stable, although it must be stressed that this is
true only when the initiation is sufficiently early. Here we
have chosen s0 = 1 which is sufficiently well before our cal-
culated onset times.

Likewise, the evolution with time of the energy integral,
E, exhibits precisely the same qualitative behaviour for any
choice of the parameters, H, c and a, as the analogous LTE
computations of Selim and Rees [16]. But it is important to
note that, for each parameter set, (H,c,a), there is a wave-
number above which E is a monotonically decaying func-
tion of s. This implies that the evolving thermal
boundary layer is stable to all disturbances with such wave-
numbers. On the other hand, at smaller wavenumbers, E

decays at first, then experiences an interval of growth
(the interval being longer for smaller values of a) and then
it finally decays. This means that the disturbance has a
finite interval of time during which growth may take place.
Such a scenario happens for most boundary layers. On a
practical level we determine the times at which oE/ot = 0
for each chosen wavenumber, and thereby these data form
points on the neutral stability curve.
Fig. 2. Instantaneous streamlines (upper frames) and isotherms (lower frames)
For the isotherms, continuous lines correspond to the fluid phase while da
sc = 5.98686.
4.1. Evolution of the disturbances

Fig. 1 shows how the instantaneous streamlines and the
isotherms evolve in time for the case c = 1, a = 1 and
H = 10�5. All frames are scaled so that there are 20 equal
intervals between the maximum and minimum values of
each of the three respective disturbance variables. Of chief
interest here are (i) the changing thickness with time of the
disturbances and (ii) the relative thickness of the fluid
phase and solid phase disturbances.

With regard to (i), the disturbance becomes thinner (in
terms of g) as time progresses. This behaviour may be
traced to the presence of terms like �4s2a2W in Eq. (17a)
which ensure that the e-folding distance of the exponential
decay decreases with time. However, Fig. 2 of Selim and
Rees [16], which also demonstrates this behaviour when
the phases are in LTE, also shows that the thickness of
for s0 = 1, ac = 0.16581, a = 10�1, c = 1, H = 10�5 plotted in (x,g)-space.
shed lines correspond to the solid phase. The critical time is given by
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the disturbance in terms of y still increases very slightly
with time.
Table 2
Maximum values of the disturbance streamfunction and temperatures for
the case s0 = 1, ac = 0.16581, a = 10�1, c = 1, H = 10�5, which is shown in
Fig. 2

s jW sinaxjmax jHcosaxjmax jUcosaxjmax

2 0.2098 27.53 � 10�2 11.51 � 10�6

6 0.1366 5.290 � 10�2 8.769 � 10�6

10 0.1817 5.056 � 10�2 11.35 � 10�6

20 1.4420 30.40 � 10�2 90.09 � 10�6

40 30.417 545.0 � 10�2 196.4 � 10�6

Fig. 3. Neutral stability curves showing the variation of sc with the wavenumbe
c = 1; (b) a = 4, c = 1; (c) a = 0.25, c = 10; (d) a = 4, c = 10.
With regard to (ii), there is only a slight difference
between the thicknesses of the thermal boundary layers of
the respective phases. We believe that this is because
a = 1, and therefore the phases have identical thermal
diffusivities. However, the amplitudes of the thermal distur-
bances are very substantially different from each other, as
may be seen in Table 1, below. At s = 2 the amplitude of
the thermal disturbance in the fluid phase is approximately
36,400 times larger than its solid phase counterpart. As time
progresses this ratio decreases until, at s = 40, it is approxi-
mately 2280. This trend continues as s increases because
the source/sink terms, which are proportional to s2H in
Eqs. (17b) and (17c), become increasingly dominant. At
very large times the two thermal fields become coincident
r, a. Each frame depicts H = 10�n for n = 0, 1, 1.5, 2, 3 and 4: (a) a = 0.25,
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in terms of both the shape of their profiles and their ampli-
tudes, and the phases tend towards LTE.

For a given value of s, larger values of H also result in
thermal fields that are much closer to one another for the
same reason. Although it is perhaps not as obvious, this
behaviour also occurs for larger values of c.

Fig. 2 shows how the situation shown in Fig. 1 changes
when a is reduced from 1 to 0.1. Now the diffusivity of the
solid phase is much greater than that of fluid phase when
a = 0.1. The primary difference between Figs. 1 and 2 is
the spatial extent of the solid phase disturbance field which
now extends well outside, that of the fluid phase. The ratio
of the amplitudes of the thermal fields of the phases also
remains much larger than when a = 1 (see Table 2),
although LTE is recovered eventually for the same reasons
as given above.

4.2. Neutral curves

Neutral stability curves have been constructed using the
detailed evolution of E. Although we are considering a
three-parameter problem, a good understanding of how
the neutral curves vary with H, c and a may be gleaned
from Fig. 3. These curves display the usual behaviour for
a boundary layer, namely one minimum in s and one max-
imum in a. At times before the minimum or for wavenum-
bers greater than the maximum all disturbances are stable
(i.e. they decay).

Focussing primarily upon the minimum time for onset
for each curve, which we shall call sc (and for which the
corresponding wavenumber shall be called ac), it is clear
that the decreasing of H towards zero results in the critical
time becoming earlier. Whilst this might seem counter-intu-
itive, it is important to remember that the small-H limit
means that the dynamics of the convection are essentially
Fig. 4. The variation with H of (a) the critical values of s and (b) the correspond
independent of the solid phase (see Eqs. (17) with H � 0),
and that the equations of motion have been nondimensi-
onalised with respect to the porous medium properties,
rather than those solely of the fluid. In their analytical
work on the onset of Darcy–Bénard convection with
LTNE, Banu and Rees [23] found that the critical
Darcy–Rayleigh number reduces towards zero in the same
limit, but tends towards a nonzero constant when Darcy–
Rayleigh number is based solely upon the fluid properties.
Precisely the same applies here in terms of the critical time,
and, indeed, it is possible to show that we can reproduce
precisely the LTE results of Selim and Rees [16] when the
equations are written down in terms of fluid scalings and
H is formally set to zero. That this is true is a simple con-
sequence of the fact that the resulting disturbance equa-
tions themselves are identical to those of Selim and Rees
[16].

At the opposite extreme of large values of H, we recover
the results of Selim and Rees [16], but these are in terms of
the present scalings, which are based upon the properties of
the porous medium. Curves corresponding to larger values
of H are almost indistinguishable from the H = 1 curves
shown.

Figs. 3a and b both represent situations where c = 1, but
are distinguished by the fact that a = 0.25 and a = 4,
respectively. A large value of a implies that the thermal dif-
fusivity of the fluid phase is greater than that of the solid
phase. At early times the basic states for the thermal field
of the two phases are given by (14), and it may be seen that,
for any chosen time, s, the thermal boundary layer thick-
ness of the fluid phase increases as a increases. Given that
a Rayleigh number based upon the thickness of the fluid
thermal boundary layer increases with time and, crudely
speaking, has to pass a nominal value before instability
occurs, it is clear that the faster development of the
ing wavenumbers for c = 1 and for a = 0.1, 0.25, 0.5, 1.0, 2.0, 4.0 and 10.0.



Fig. 5. The variation with H of (a) the critical values of s and (b) the corresponding wavenumbers for c = 10 and for a = 0.1, 0.25, 0.5, 1.0, 2.0, 4.0 and
10.0.

3098 A. Nouri-Borujerdi et al. / International Journal of Heat and Mass Transfer 50 (2007) 3090–3099
large-a cases must yield small critical times. That this is so
is seen readily on comparing corresponding curves between
Figs. 3a and b.

The same arguments apply when comparing Figs. 3c
and d, which are for c = 10. However, the primary differ-
ence between this pair of figures and the pair, Fig. 3a
and b, is that there is now much less variation between
the large-H and the small-H curves. When c = 10, the basic
thermal boundary layer thickness of the fluid phase varies
little when a changes from 0.25 to 4, and this goes some
way to explaining why there is only a small variation in
the critical time for the onset of convection. A second argu-
ment is based upon the fact that the value c = 10 increases
the dominance of the source/sink term in the solid phase
disturbance Eq. (17c). In turn, this means that the solid
phase reacts quickly to changes in the fluid phase tempera-
ture. Therefore the phases are nearly in LTE, and the
neutral curves differ by only a small amount.

Concentrating now on the minimum values of each
curve, where s = sc and a = ac, Figs. 4 and 5 summarise
how these critical values vary with H for a range of values
of a, and for c = 1 and c = 10, respectively. These graphs
reveal one feature which was not apparent in Figs. 3a–d,
namely the very sharp change in the critical values as H

increases from very small values to very large ones. It
would appear that this transition is centred very roughly
at H = 10�2, and that for values of H below this then the
phases may be considered to be decoupled, while for values
of H above this, then the results of Selim and Rees [16] may
be used.

5. Conclusion

In this paper we have extended the analysis of Selim and
Rees [16], which gives a detailed account of the onset of
convection in a porous region after the temperature of
the horizontal lower bounding surface has been raised sud-
denly, to cases where the solid and fluid phases of the por-
ous medium are no longer in local thermal equilibrium. To
this end we have taken the results of Nouri-Borujerdi et al.
[21] as the basic conducting state and have perturbed the
full governing equations in a standard linear stability
theory. On retaining the time derivatives in the resulting
perturbation equations, it has been possible to follow the
evolution of disturbances to the basic state and to monitor
the response by means of an energy integral. Neutral curves
relating onset times with the imposed wavenumber have
been presented.

We have found that the presence of LTNE can have a
strong influence on the onset of convection. Generally
onset occurs earlier when H is small, c is small or when a
is large, as compared with cases when any of these param-
eters have the opposite magnitudes. The qualitative behav-
iour for small values of H and c have been found to be
caused by the lack of local thermal equilibrium. However,
this behaviour for large values of a is caused by preferential
and much more rapid conduction in the fluid phase.

Finally, as with many other works such as Banu and
Rees [23], Marafie and Vafai [24] and Minkowycz et al.
[25], local thermal equilibrium is always attained when H
is sufficiently large. For the present problem, the basic state
admits the one-phase complementary error function solu-
tion either when H is large or when a = 1; in the latter case
this is solely because both phases have the same diffusivity
and there is no flow. When considering instability, Fig. 4
suggests that LTE is valid when if H P 10 when c = 1
and Fig. 5 yields H P 1 when c = 10. Finally, given the
form of source/sink terms in Eqs. (12b) and (12c), which
are proportional to s2H, the evolving disturbances enter
the LTE regime at a value of s which is proportional to



A. Nouri-Borujerdi et al. / International Journal of Heat and Mass Transfer 50 (2007) 3090–3099 3099
H�1/2. Therefore LTE is always attained eventually, but
this may often be much later than when convective instabil-
ity arises.
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